spiraling hexagonal grid in python - python

I want to create a hexagonal grid using XYZ coordinates that is constructed in a spiraling pattern. This is my current code, which produces a grid depicted by the red arrows below. My problem area is circled. Rather than going from [-1,0,1] to [0,-2,2] I need to move from [-1,0,1] to [-1,-1,2] (following the blue line).
The complete code appears below the hash line- I am creating the visualization in Blender 2.65a
radius = 11 # determines size of field
deltas = [[1,0,-1],[0,1,-1],[-1,1,0],[-1,0,1],[0,-1,1],[1,-1,0]]
hex_coords = []
for r in range(radius):
x = 0
y = -r
z = +r
points = x,y,z
hex_coords.append(points)
for j in range(6):
if j==5:
num_of_hexas_in_edge = r-1
else:
num_of_hexas_in_edge = r
for i in range(num_of_hexas_in_edge):
x = x+deltas[j][0]
y = y+deltas[j][1]
z = z+deltas[j][2]
plot = x,y,z
hex_coords.append(plot)
-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-
import bpy
FOXP2 = '''
CTTGAACCTTTGTCACCCCTCACGTTGCACACCAAAGACATACCCTAGTGATTAAATGCTGATTTTGTGT
ACGATTGTCCACGGACGCCAAAACAATCACAGAGCTGCTTGATTTGTTTTAATTACCAGCACAAAATGCC
CAATTCCTCCTCGACTACCTCCTCCAACACTTCCAAAGCATCACCACCAATAACTCATCATTCCATAGTG
AATGGACAGTCTTCAGTTCTAAGTGCAAGACGAGACAGCTCGTCACATGAGGAGACTGGGGCCTCTCACA
CTCTCTATGGCCATGGAGTTTGCAAATGGCCAGGCTGTGAAAGCATTTGTGAAGATTTTGGACAGTTTTT
AAAGCACCTTAACAATGAACACGCATTGGATGACCGAAGCACTGCTCAGTGTCGAGTGCAAATGCAGGTG
GTGCAACAGTTAGAAATACAGCTTTCTAAAGAACGCGAACGTCTTCAAGCAATGATGACCCACTTGCACA
'''
set_size = len(FOXP2)
def makeMaterial(name, diffuse, specular, alpha):
mat = bpy.data.materials.new(name)
mat.diffuse_color = diffuse
mat.diffuse_shader = 'LAMBERT'
mat.diffuse_intensity = 1.0
mat.specular_color = specular
mat.specular_shader = 'COOKTORR'
mat.specular_intensity = 0.5
mat.alpha = alpha
mat.ambient = 1
return mat
def setMaterial(ob, mat):
me = ob.data
me.materials.append(mat)
# Create four materials
red = makeMaterial('Red', (1,0,0), (0,0,0), .5)
blue = makeMaterial('BlueSemi', (0,0,1), (0,0,0), 0.5)
green = makeMaterial('Green',(0,1,0), (0,0,0), 0.5)
yellow = makeMaterial('Yellow',(1,1,0), (0,0,0), 0.5)
black = makeMaterial('Black',(0,0,0), (0,0,0), 0.5)
white = makeMaterial('White',(1,1,1), (0,0,0), 0.5)
def make_sphere(volume, position):
create = bpy.ops.mesh.primitive_uv_sphere_add
create(size=volume, location=position)
# Builds a list of coordinate points
radius = 11
deltas = [[1,0,-1],[0,1,-1],[-1,1,0],[-1,0,1],[0,-1,1],[1,-1,0]]
hex_coords = []
for r in range(radius):
x = 0
y = -r
z = +r
points = x,y,z
hex_coords.append(points)
for j in range(6):
if j==5:
num_of_hexas_in_edge = r-1
else:
num_of_hexas_in_edge = r
for i in range(num_of_hexas_in_edge):
x = x+deltas[j][0]
y = y+deltas[j][1]
z = z+deltas[j][2]
plot = x,y,z
hex_coords.append(plot)
# Color-codes sequence and appends to color_array
color_array = []
for x in FOXP2:
if x == 'A':
color_array.append(1)
elif x == 'T':
color_array.append(1)
elif x == 'C':
color_array.append(0)
elif x == 'G':
color_array.append(0)
else:
pass
# Pulls from sequence data and applies color to sphere
# Positions sphere to coordinates
# Pulls from color_code and applies color scheme to sphere object
for x in color_array:
if x =='RED':
coord_tuple = hex_coords.pop(0)
make_sphere(1, coord_tuple)
setMaterial(bpy.context.object, red)
elif x =='GREEN':
coord_tuple = hex_coords.pop(0)
make_sphere(1, coord_tuple)
setMaterial(bpy.context.object, green)
elif x =='BLUE':
coord_tuple = hex_coords.pop(0)
make_sphere(1, coord_tuple)
setMaterial(bpy.context.object, blue)
elif x =='YELLOW':
coord_tuple = hex_coords.pop(0)
make_sphere(1, coord_tuple)
setMaterial(bpy.context.object, yellow)
else:
pass

Related

How to excess scipy.solve_ivp solution.y_events?

I need to simulate a penalty where the ball shoots in every direction. For this I use solve_ivp and I terminate the integration when the ball crosses the backline. When this happens I want to use the values found when the integration stops to see if the ball at that point is within the dimensions of the goal (and count it as a goal). However, solution.y does not give the required precision that I want. The desired values are within solution.y_events, however, I can't seem to be able to get receive them. I also can't find information about this online. My code:
import numpy as np
from scipy import integrate
from scipy import constants
import matplotlib.pyplot as plt
#### Constants
# Number of simulations
number_of_penalty_shots = 10
# Angle of the shots
theta = np.random.uniform(0, 2.0*np.pi, number_of_penalty_shots)
phi = np.random.uniform(0, np.pi, number_of_penalty_shots)
# Velocity of the ball
v_magnitude = 80
### Starting Position Ball (defined as the penalty stip)
pos_x = 0.0
pos_y = 0.0
pos_z = 0.0
in_position = np.array([pos_x, pos_y, pos_z]) # Inital position in m
def homo_magnetic_field(t, vector):
vx = vector[3] # dx/dt = vx
vy = vector[4] # dy/dt = vy
vz = vector[5] # dz/dt = vz
# ax = -0.05*vector[3] # dvx/dt = ax
# ay = -0.05*vector[4] # dvy/dy = ay
# az = -0.05*vector[5] - constants.g #dvz/dt = az
ax = 0
ay = 0
az = 0
dvectordt = (vx,vy,vz,ax,ay,az)
return(dvectordt)
def goal(t, vector):
return vector[1] - 11
def own_goal(t,vector):
return vector[1] + 100
def ground(t,vector):
return vector[2]
goal.terminal=True
own_goal.terminal=True
def is_it_goal(vector):
if vector.status == 1:
if (vector.y[1][len(vector.y[1])-1] > 0) and (-3.36 < vector.y[0][len(vector.y[1])-1] < 3.36) and (vector.y[2][len(vector.y[1])-1] < 2.44):
print("GOAAAAAAAAAAAAL!")
elif (vector.y[1][len(vector.y[1])-1] < 0) and (-3.36 < vector.y[0][len(vector.y[1])-1] < 3.36) and (vector.y[2][len(vector.y[1])-1] < 2.44):
print("Own goal?! Why?")
else: print("Awwwwh")
else: print("Not even close, lol")
# Integrating
time_range = (0.0, 10**2)
for i in range(number_of_penalty_shots):
v_x = v_magnitude*np.sin(phi[i])*np.cos(theta[i])
v_y = v_magnitude*np.sin(phi[i])*np.sin(theta[i])
v_z = v_magnitude*np.cos(phi[i])
in_velocity = np.array([v_x, v_y, v_z])
initial_point = np.array([in_position, in_velocity])
start_point = initial_point.reshape(6,)
solution = integrate.solve_ivp(homo_magnetic_field , time_range, start_point,events=(goal, own_goal))
is_it_goal(solution)
Here I want to change vector.y[1][len(vector.y[1])-1] into something like vector.y_events...

drawing box around image where there are black pixels in python

I want to draw a box around an image where there are black pixels.
this is my image:(quiz.JPG):
and i would like the image to be something like this:
but with the code below I get this(quiz2.JPG):
here is what i have tried:
from PIL import Image,ImageDraw
image = Image.open("quiz.JPG").convert('L') #open and convert to black and white
pixels = image.load()
width, height = image.size
black_pixels= []
for col in range(width):
for row in range(height):
pixel = pixels[col, row]
if pixel == (0): #select pixels that are black
black_pixels.append((col, row)) #add them to the list of black pixels
def sortCoordinates(lst): #this is just a bubble sort to get the coordinates in order of y values
length = len(lst) -1
solved = False
while not solved:
solved = True
for i in range(length):
if lst[i][1] > lst[i+1][1]:
solved = False
lst[i],lst[i+1] = lst[i+1],lst[i]
return lst
black_pixels = sortCoordinates(black_pixels)
def getShape(black_pixels): # function to generate box from the pixels given
firstPixelXValue = black_pixels[0][0]
lastPixelXValue = black_pixels[-1][0]
tallestPixel = 0
for pixel in black_pixels:
YValue = pixel[1]
if YValue > tallestPixel:
tallestPixel = YValue
topMostPixelYValue = tallestPixel
shortestPixel = pixel[1]
for pixel in black_pixels:
YValue = pixel[1]
if YValue < shortestPixel:
shortestPixel = YValue
bottomMostPixelYValue = shortestPixel
shape = [(firstPixelXValue-4, topMostPixelYValue+2), (lastPixelXValue+4,bottomMostPixelYValue-3)]
return shape
questions = {}
count = 0
count2 = 0
currentQuestionPixels = []
oldPixelY = black_pixels[0][1]
for newPixel in black_pixels:
newPixelY = newPixel[1]
if newPixelY > oldPixelY + 100 or len(black_pixels)-1 == count2: #run this if new question is found
questions[str(count)] = getShape(currentQuestionPixels)
currentQuestionPixels = []
count += 1
oldPixelY = newPixelY
currentQuestionPixels.append(newPixel)
count2 += 1
image = image.convert('RGB')
for question in questions: #draw shape around all questions found
shape = questions.get(question)
img1 = ImageDraw.Draw(image)
img1.rectangle(shape, outline ="red")
image.save("quiz2.JPG")
This should work, in theory, because I am getting all the black pixel coordinates and sorting them out into their Y values. Then I am looping through the black pixels and if the new pixel Y value is grater than the old pixel Y value + 100 or it is the last pixel it must be a new question.
So then I draw a box around all the questions
I've modified the getShape function
Check out the code below
from PIL import Image,ImageDraw
image = Image.open("quiz.JPG").convert('L') #open and convert to black and white
pixels = image.load()
width, height = image.size
black_pixels= []
for col in range(width):
for row in range(height):
pixel = pixels[col, row]
if pixel == (0): #select pixels that are black
black_pixels.append((col, row)) #add them to the list of black pixels
def sortCoordinates(lst): #this is just a bubble sort to get the coordinates in order of y values
length = len(lst) -1
solved = False
while not solved:
solved = True
for i in range(length):
if lst[i][1] > lst[i+1][1]:
solved = False
lst[i],lst[i+1] = lst[i+1],lst[i]
return lst
black_pixels = sortCoordinates(black_pixels)
def getShape(black_pixels): # function to generate box from the pixels given
first_x = 0
first_y = 0
last_x = 99999999
last_y = 99999999
for x, y in black_pixels:
if first_x < x :
first_x = x
if first_y < y :
first_y = y
if last_x > x :
last_x = x
if last_y > y :
last_y = y
shape = [(first_x-4, first_y+2), (last_x+4,last_y-3)]
return shape
questions = {}
count = 0
count2 = 0
currentQuestionPixels = []
oldPixelY = black_pixels[0][1]
for newPixel in black_pixels:
newPixelY = newPixel[1]
if newPixelY > oldPixelY + 100 or len(black_pixels)-1 == count2: #run this if new question is found
questions[str(count)] = getShape(currentQuestionPixels)
currentQuestionPixels = []
count += 1
oldPixelY = newPixelY
currentQuestionPixels.append(newPixel)
# print(currentQuestionPixels)
count2 += 1
image = image.convert('RGB')
for question in questions: #draw shape around all questions found
shape = questions.get(question)
print(shape)
img1 = ImageDraw.Draw(image)
img1.rectangle(shape, outline ="red")
image.save("quiz2.JPG")

How to display tkinter polygons on canvas under 3D conditions?

I'm trying to create a program that renders an object in 3D and that you can rotate and control with your mouse's position. I'm trying to display the faces of the object but I don't know how could I display the closer faces first so that there isn't any 'background' face displayed in front of closer faces.
the code I provided is fully reproducable, just copy and paste it if you have tkinter and numpy.
from numpy import *
from tkinter import *
#eulers angles matrixes
def Rx(theta):
return mat(mat([[1, 0 , 0 ],
[0, cos(theta), -sin(theta)],
[0, sin(theta), cos(theta) ]]).round(15))
def Ry(theta):
return mat(mat([[cos(theta), 0, -sin(theta)],
[ 0 , 1, 0 ],
[sin(theta), 0, cos(theta) ]]).round(15))
def Rz(theta):
return mat(mat([[cos(theta), -sin(theta), 0],
[sin(theta), cos(theta) , 0],
[ 0 , 0 , 1]]).round(15))
#returns a 2d projection matrix,
def proj2d(p):
return mat(eye(2,3)*p)
#tuple into vector
def vector(tuple):
return transpose(mat(list(tuple)))
#updates position of the 3D point in function of the x,y,z angles
def position(pts3d,anglex,angley,anglez):
for i in range(len(pts3d)):
pts3d[i] = (float((Rx(anglex) * vector(pts3d[i]))[0]),
float((Rx(anglex) * vector(pts3d[i]))[1]),
float((Rx(anglex) * vector(pts3d[i]))[2]))
pts3d[i] = (float((Ry(angley) * vector(pts3d[i]))[0]),
float((Ry(angley) * vector(pts3d[i]))[1]),
float((Ry(angley) * vector(pts3d[i]))[2]))
pts3d[i] = (float((Rz(anglez) * vector(pts3d[i]))[0]),
float((Rz(anglez) * vector(pts3d[i]))[1]),
float((Rz(anglez) * vector(pts3d[i]))[2]))
#makes a projection of the 3d points on the 2d screen
def projected(pts3d):
pts2d = []
for i in pts3d:
pts2d.append((float((proj2d(30+0.75*i[2]) * vector(i))[0]),
float((proj2d(30+0.75*i[2]) * vector(i))[1])))
return pts2d
#displays dots
def dots(canvas,points):
for i in points:
canvas.create_oval(H/2+5+i[0],H/2+5+i[1],H/2-5+i[0],H/2-5+i[1],fill = 'white')
#displays vertices
def connect(canvas,vertics,points):
for i in vertics:
canvas.create_line(H/2+points[int(i[0])][0],H/2+points[int(i[0])][1],H/2+points[int(i[1])][0],H/2+points[int(i[1])][1],width = 2,fill = 'white')
#what I should modify, I guess: it's the funtion that displays the faces of the object
def face(canvas,faces,points,colors):
for i in range(len(faces)):
coordsface = ()
for j in faces[i]:
coordsface += (H/2+points[int(j)][0],H/2+points[int(j)][1])
canvas.create_polygon(coordsface,fill = colors[i])
#major functions, updates position each time interval(delay)
def updateposition(self,H,canvas,points,vertics,faces,clrfc,delai,domegax,domegay,domegaz):
canvas.delete('all')
y,x = self.winfo_pointerx() - self.winfo_rootx() - H/2, self.winfo_pointery() - self.winfo_rooty() - H/2
if abs(x) >= H/2 or abs(y) >= H/2: x,y = 0,0
domegax -= 0.00001*(x)
domegay -= 0.00001*(y)
position(points,domegax,domegay,domegaz)
if affpts == 'y':
dots(canvas,projected(points))
if affart == 'y':
connect(canvas,vertics,projected(points))
if afffac == 'y':
face(canvas,faces,projected(points),clrfc)
self.after(delai,updateposition,self,H,canvas,points,vertics,faces,clrfc,delai,domegax,domegay,domegaz)
## cube
def pts3Dcube():
#points
a = ( L/2, L/2, L/2)
b = ( L/2, L/2,-L/2)
c = ( L/2,-L/2, L/2)
d = ( L/2,-L/2,-L/2)
e = (-L/2, L/2, L/2)
f = (-L/2, L/2,-L/2)
g = (-L/2,-L/2, L/2)
h = (-L/2,-L/2,-L/2)
pts3d = [a,b,c,d,e,f,g,h]
#vertices
aretes = []
for i in [0,2,4,6]:
aretes.append(str(i)+str(i+1))
for i in [0,1,4,5]:
aretes.append(str(i)+str(i+2))
for i in [0,1,2,3]:
aretes.append(str(i)+str(i+4))
#faces
faces = ['0132','4576','0154','2376','1375','0264']
clrfc = ['green','red','yellow','blue','orange','white']
return pts3d, aretes, faces, clrfc
## initial conditions
L = 5
H = 600
delai = 5
self = Tk()
canvas = Canvas(self,height = H,width = H,bg = 'gray13')
canvas.pack()
objet = pts3Dcube() #object choice
domegax = 0.0
domegay = 0.0
domegaz = 0.0
#initial rotation angles
iomegax = 0
iomegay = 0
iomegaz = 0
#displaying points, vertices, faces or not
affpts = 'y'
affart = 'y'
afffac = 'y'
position(objet[0],iomegax,iomegay,iomegaz) #initial rotation
updateposition(self,H,canvas,objet[0],objet[1],objet[2],objet[3],delai,domegax,domegay,domegaz) # dynamic rotation
if any of you have an idea, please comment it or something, I'm lost.
Thanks!

Trying to implement potential field navigation in matplotlib

I am trying to produce an algorithm where multiple agents (blue) work together as a team to capture a slightly faster enemy agent (red) by preforming surrounding and circling tactics in a 2D grid. So I am trying to make a robust multi-agent algorithm that would allow multi-agents would capture an intelligent and faster enemy agent
So I attempted to give the enemy agent navigation and obstacle avoidance abilities by using something known as potential field navigation. Basically, the enemy agent pretends there is an attraction force at the exit and a repulsive force by each blue agent
Click here for more details on potential fields
When I implemented this into the enemy agent, the agent being attracted to the exit is successful (except for the fact it slows down when it is close to it). The main problem I am having is with the repulsion field where the enemy is trying to avoid the blue particles. While it attempts to escape, it does things such as moving in a zig-zag pattern rapidly, run around a blue particle or group or particles in circles.
I would like the enemy agent to smoothly avoid the blue particles in an intelligent way.
Also, is someone knows how to turn repulsive field into a tangential field, that would be great. I would like tangential fields so that the red particle can slip through the blue particles.
Also, although the code is long, the only function that the enemy agent uses is goToExit(), so that function and any function that it calls will be the only ones relevant.
My code:
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
from random import randint
import random
import math
keep = False
keepX = 0
keepY = 0
### Variables that we can play with ###
interestPointVisual = False
huntEnemy = True
numOfAgents = 10
enemyTopSpeed = 0.5
topSpeed = 0.3
secondDoor = False
resultVisual = False
#obstacleAvoidance = False
chargeEnemy = True
maxFrame = 2000
agentRadius = 2
####################################
phaseCount = 0
fig = plt.figure()
fig.set_dpi(100)
fig.set_size_inches(5, 4.5)
# Declaring the enemy and ally agents
ax = plt.axes(xlim=(0, 100), ylim=(0, 100))
enemy = plt.Circle((10, -10), 0.95, fc='r')
agent = plt.Circle((10, -10), 0.95, fc='b')
if interestPointVisual:
interestColor = 'y'
interestSize = 0.55
else:
interestColor = 'w'
interestSize = 0.55
#interestSize = 0.000001
midpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
eastpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
northpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
westpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
northeastpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
mideastpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
midwestpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
northwestpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
# Adding the exits
rect_size = 5
x_se_s = 47
x_se = 50
y_se = 0
southExit = plt.Rectangle([x_se_s - rect_size / 2, y_se - rect_size / 2], rect_size + 3, rect_size -2 , facecolor='black', edgecolor='black')
x_ne = 50
y_ne = 101
if secondDoor:
northExit = plt.Rectangle([x_ne - rect_size / 2, y_ne - rect_size / 2], rect_size + 3, rect_size -2 , facecolor='black', edgecolor='black')
patches_ac = []
if interestPointVisual:
ax.add_patch(midpoint)
ax.add_patch(northpoint)
ax.add_patch(eastpoint)
ax.add_patch(westpoint)
ax.add_patch(mideastpoint)
ax.add_patch(midwestpoint)
ax.add_patch(northeastpoint)
ax.add_patch(northwestpoint)
# enemy, north, east, south, west
# 0 represents unoccupied, 1 represent occupied
global occupied_ar
global victory
global agentID
global timeStep
global agentLocationAR
ax.add_patch(agent)
for x in range(0, numOfAgents - 1):
agent_clone = plt.Circle((10, -10), 0.95, fc='b')
agent_clone.center = (random.randint(1, 100), random.randint(1, 100))
patches_ac.append(agent_clone)
ax.add_patch(agent_clone)
ax.add_patch(enemy)
# Adding exit patches
ax.add_patch(southExit)
if secondDoor:
ax.add_patch(northExit)
def victoryCheck(enemy_patch):
global agentLocationAR
ex, ey = enemy_patch.center
rangeVal = 0.8
for i in range(0, numOfAgents-1):
if abs(float(ex-agentLocationAR[i][0])) < rangeVal and abs(float(ey-agentLocationAR[i][1])) < rangeVal:
return True
return False
def enemyWonCheck(enemy_patch):
x,y = enemy_patch.center
if (x > x_se - 4 and x < x_se + 4) and y <= y_se +4:
return True
return False
def borderCheck(x,y):
if x < 0:
x = 0
elif x > 100:
x = 100
if y < 0:
y = 0
elif y > 100:
y = 100
return x, y
def init():
global occupied_ar
global agentLocationAR
global keep
global keepX
global keepY
keep = False
keepX = 0
keepY = 0
#enemy.center = (50, 50)
enemy.center = (random.randint(1, 100), random.randint(40, 100))
agent.center = (random.randint(1, 100), random.randint(1, 100))
occupied_ar = np.zeros([9])
agentLocationAR = np.zeros((numOfAgents,2))
for ac in patches_ac:
ac.center = (random.randint(1, 100), random.randint(1, 100))
return []
def animationManage(i):
global occupied_ar
global agentLocationAR
global victory
global agentID
global timeStep
global phaseCount
global maxFrame
timeStep = i
agentID = 1
followTarget(i, agent, enemy)
agentLocationAR[agentID-1][0], agentLocationAR[agentID-1][1] = agent.center
for ac in patches_ac:
agentID = agentID + 1
followTarget(i, ac, enemy)
agentLocationAR[agentID-1][0], agentLocationAR[agentID-1][1] = ac.center
goToExit(i, enemy, southExit)
# printing tests
if victoryCheck(enemy):
print 'Phase ', phaseCount
print 'Victory!'
phaseCount += 1
init()
elif enemyWonCheck(enemy):
print 'Phase ', phaseCount
print 'Failure!'
init()
elif i >= maxFrame - 1:
print 'Phase ', phaseCount
phaseCount += 1
return []
def goToExit(i, patch, exit_patch):
global agentLocationAR
global keep
global keepX
global keepY
x, y = patch.center
v_x, v_y = velocity_calc_exit(patch, exit_patch)
mid_x, mid_y, rad_x, rad_y = getMidDistance(patch, exit_patch)
rad_size = math.sqrt(rad_x**2 + rad_y**2)
v_ax, v_ay = attractionFieldExit(patch, x_se, y_se)
v_rx, v_ry = repulsiveFieldEnemy(patch, 5)
v_x = v_ax + v_rx
v_y = v_ay + v_ry
'''
if abs(v_rx) > 1:
v_x = v_x/abs(v_x/10)
if abs(v_ry) > 1:
v_y = v_x/abs(v_x/10)
'''
# Nomalize the magnitude
v_x = v_x*enemyTopSpeed*0.03
v_y = v_y*enemyTopSpeed*0.03
'''
if abs(v_x) > 1 or abs(v_y) > 1:
print '-------------'
print 'Att X: ', v_ax
print 'Att Y: ', v_ay
print 'Rep X: ', v_rx
print 'Rep Y: ', v_ry
print 'Total X: ', v_x
print 'Total Y: ', v_y
'''
# x position
x += v_x*enemyTopSpeed
# y position
y += v_y*enemyTopSpeed
x,y = borderCheck(x,y)
patch.center = (x, y)
return patch,
def dispersalCalc(user_patch):
global agentLocationAR # we need location of agents
for i in range(0,numOfAgents-1):
if(checkSemiRadius(user_patch, agentRadius)):
return True
return False
def attractionFieldExit(user_patch, attr_x, attr_y):
x,y = user_patch.center
netX = (x - attr_x)
netY = (y - attr_y)
# To prevent slow down when enemy is close to exit
if x - attr_x > 20 or y - attr_y > 20:
if x - attr_x > 20:
netX = (x - attr_x)
else:
if x - attr_x == 0:
netX = 0
else:
netX = 5*((x - attr_x)/abs((x - attr_x)))
if y - attr_y > 30:
netY = (y - attr_y)
else:
if y -attr_y == 0:
netY = 0
else:
netY = 50*((y - attr_y)/abs((y - attr_y)))
#print 'something y ', netY
return -netX, -netY
def repulsiveFieldEnemy(user_patch, repulseRadius):
# repulsive field that will be used by the enemy agent
global agentLocationAR
x,y = user_patch.center
totalRepX = 0
totalRepY = 0
scaleConstant = 1**38
for i in range(0, numOfAgents-1):
repX = 0
repY = 0
avoidX = agentLocationAR[i][0]
avoidY = agentLocationAR[i][1]
# To check if one of the agents to avoid are in range
#print getDistanceScalar(x, y, avoidX, avoidY)
if getDistanceScalar(x, y, avoidX, avoidY) <= repulseRadius:
#print 'Enemy agent detected'
netX = int(x - avoidX)
netY = int(y - avoidY)
# To deal with division by zero and normaize magnitude of repX and repY
if netX == 0:
netX = 0.2*((x - avoidX)/abs(x - avoidX))
if netY == 0:
netY = 0.2*((x - avoidX)/abs(x - avoidX))
repX = ((1/abs(netX)) - (1/repulseRadius))*(netX/(abs(netX)**3))
repY = ((1/abs(netY)) - (1/repulseRadius))*(netY/(abs(netY)**3))
totalRepX = totalRepX + repX
totalRepY = totalRepY + repY
totalRepX = totalRepX/scaleConstant
totalRepY = totalRepY/scaleConstant
return -totalRepX, -totalRepY
def followTarget(i, patch, enemy_patch):
x, y = patch.center
# Will try to follow enemy
#v_x, v_y = velocity_calc(patch, enemy_patch)
# Will follow midpoint of enemy & exit
v_x, v_y = velocity_calc_mid(patch, enemy_patch)
#print 'Here:'
#print interest_ar
# x position
x += v_x
# y position
y += v_y
patch.center = (x, y)
return patches_ac
def getInterestPoints(enemy_patch, exit_patch):
# Calculate interest points to attract agents
x, y = enemy_patch.center
# Calculate enemy-to-exit midpoint
mid_x, mid_y, rad_x, rad_y = getMidDistance(enemy_patch, exit_patch)
interest_ar = np.array([[x,y],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]])
#north
interest_ar[1][0] = x - rad_x
interest_ar[1][1] = y - rad_y
#east
interest_ar[3][0] = x - rad_y
interest_ar[3][1] = y + rad_x
#south (basically the midpoint)
interest_ar[5][0] = x + rad_x
interest_ar[5][1] = y + rad_y
#west
interest_ar[7][0] = x + rad_y
interest_ar[7][1] = y - rad_x
# northeast
interest_ar[2][0] = (interest_ar[1][0] + interest_ar[3][0])/2
interest_ar[2][1] = (interest_ar[1][1] + interest_ar[3][1])/2
#southeast
interest_ar[4][0] = (interest_ar[3][0] + interest_ar[5][0])/2
interest_ar[4][1] = (interest_ar[3][1] + interest_ar[5][1])/2
#southwest
interest_ar[6][0] = (interest_ar[5][0] + interest_ar[7][0])/2
interest_ar[6][1] = (interest_ar[5][1] + interest_ar[7][1])/2
interest_ar[8][0] = (interest_ar[7][0] + interest_ar[1][0])/2
interest_ar[8][1] = (interest_ar[7][1] + interest_ar[1][1])/2
# Setting up visuals
northpoint.center = (interest_ar[1][0], interest_ar[1][1])
eastpoint.center = (interest_ar[3][0], interest_ar[3][1])
midpoint.center = (interest_ar[5][0], interest_ar[5][1])
westpoint.center = (interest_ar[7][0], interest_ar[7][1])
mideastpoint.center = (interest_ar[2][0], interest_ar[2][1])
midwestpoint.center = (interest_ar[4][0], interest_ar[4][1])
northeastpoint.center = (interest_ar[6][0], interest_ar[6][1])
northwestpoint.center = (interest_ar[8][0], interest_ar[8][1])
return interest_ar
def findClosestInterest(agent_patch, in_ar):
# For some reason, north never gets occupied
# north east is (north/2) + (south/2)
global occupied_ar
global victory
global agentID
global timeStep
global huntEnemy
victory = False
index = -1
smallDis = 999999
tempAr = np.zeros([9])
if huntEnemy:
minDis = 0
else:
minDis = 1
# To check agent's distance of all interest points
for i in range(minDis,9):
dis = abs(int(getDistance(agent_patch, in_ar, i)))
# Add heavy weights to charge at enemy
if chargeEnemy:
if i == 0:
dis = dis*0.5
if occupied_ar[i] != 0:
# we must write a condition so that agent knows it is the
# one that is occupying it
dis = dis*5
# Add heavy weights to avoid the back
if i == 1 or i == 8 or i == 2:
if i == 1:
dis = dis*3
elif i == 2 or i == 8:
dis = dis*4
tempAr[i] = dis
# When we discover unoccupied shorter distance, replace index
if dis < smallDis:
# index is agent_patch.center[0] < 47 and agent_patch.center[0] > 53the index of interest_array of the closest interest point
smallDis = dis
index = i
# If the smallest distance is less than 10, we are currently engaged
if smallDis < 0.5:
# We are near or at the targeted interest point,
# now we should update array as occupied
occupied_ar[index] = agentID
if occupied_ar[0] != 0:
victory = True
#print 'engaged index ', index
else:
# Else we are still far away from the index
if occupied_ar[index] == agentID:
occupied_ar[index] = 0
#print 'lost track of index ', index
#else:
#print 'far away from index ', index
return index
def getBypassInterestPoints(user_patch,avoidX, avoidY, exit_x, exit_y):
# Mainly used by the enemy agent
# User agent will find a point around the blocking agent that is closest to
# the exit.
x,y = user_patch.center
rad_range = 20
tempX = x - avoidX
tempY = y - avoidY
diffR = math.sqrt(tempX**2 + tempY**2)
# Calculating our target x and y length
radX = (rad_range*tempX)/diffR
radY = (rad_range*tempY)/diffR
# Now we calculate the main interest points
# Since we are calculating perpendicular points, we reverse the X and Y
# in the pt calculation process
pt1X = avoidX + radY
pt1Y = avoidY - radX
###
pt2X = avoidX - radY
pt2Y = avoidY + radX
# Then we must determine which interest point is closer to the exit
pt1Dis = int(getDistanceScalar(pt1X, pt1Y,exit_x, exit_y))
pt2Dis = int(getDistanceScalar(pt2X, pt2Y,exit_x, exit_y))
# If point 1 is closer to the exit than point 2
if(int(pt1Dis) <= int(pt2Dis)):
print int(pt1X)
return pt1X, pt1Y
print int(pt2X)
return int(pt2X), int(pt2Y)
def getDistanceScalar(x1, y1, x2, y2):
return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def getDistance(agent_patch, in_ar, index):
x_a, y_a = agent_patch.center
x_t = in_ar[index][0]
y_t = in_ar[index][1]
# get distance between two particles
ans = math.sqrt((x_t - x_a)**2 + (y_t - y_a)**2)
if math.isnan(ans):
print 'x_a: ',x_a
print 'y_a: ',y_a
print 'x_t: ',x_t
print 'y_t: ',y_t
init()
return math.sqrt((x_t - x_a)**2 + (y_t - y_a)**2)
def getMidDistance(enemy_patch, exit_patch):
# Get midpoint between enemy agent and exit
x, y = enemy_patch.center
x_e = x_se
y_e = y_se
# Get midpoint values
mid_x = (x + x_e)/2
mid_y = (y + y_e)/2
# Get radius values
rad_x = mid_x - x
rad_y = mid_y - y
# Returns (midpoint x and y) values and (radius x and y) values
return mid_x, mid_y, rad_x, rad_y
def top_speed_regulate(curr_speed, top_speed):
if curr_speed > top_speed:
return top_speed
elif curr_speed < -top_speed:
return -top_speed
else:
return curr_speed
def velocityCalcScalar(x1, y1, x2, y2):
veloX = top_speed_regulate( (x2 - x1) ,enemyTopSpeed)
veloY = top_speed_regulate( (y2 - y1) ,enemyTopSpeed)
return veloX, veloY
# Calculate velocity to rush to exit
def velocity_calc_exit(agent_patch, exit_patch):
x, y = agent_patch.center
#x_e, y_e = exit_patch.center
x_e = x_se
y_e = y_se
velo_vect = np.array([0.0, 0.0], dtype='f')
dis_limit_thresh = 1
velo_vect[0] = top_speed_regulate( (x_e - x)* dis_limit_thresh ,enemyTopSpeed)
velo_vect[1] = top_speed_regulate( (y_e - y)* dis_limit_thresh ,enemyTopSpeed)
return velo_vect[0], velo_vect[1]
# Calculate velocity to chase down enemy
def velocity_calc(agent_patch, enemy_patch):
x, y = agent_patch.center
x_e, y_e = enemy_patch.center
velo_vect = np.array([0.0, 0.0], dtype='f')
dis_limit_thresh = 1
velo_vect[0] = top_speed_regulate( (x_e - x)* dis_limit_thresh ,topSpeed)
velo_vect[1] = top_speed_regulate( (y_e - y)* dis_limit_thresh ,topSpeed)
return velo_vect[0], velo_vect[1]
# Calculate velocity to arrive at midpoint between enemy and exit
def velocity_calc_mid(agent_patch, enemy_patch):
x, y = agent_patch.center
x_e, y_e, _, _ = getMidDistance(enemy_patch, southExit)
# We get location of interest points as well as animate the interest points
interest_ar = getInterestPoints(enemy_patch, southExit)
interest_index = findClosestInterest(agent_patch, interest_ar)
x_e = interest_ar[interest_index][0]
y_e = interest_ar[interest_index][1]
velo_vect = np.array([0.0, 0.0], dtype='f')
dis_limit_thresh = 1
topSpeed = 0.3
velo_vect[0] = top_speed_regulate( (x_e - x)* dis_limit_thresh , topSpeed)
velo_vect[1] = top_speed_regulate( (y_e - y)* dis_limit_thresh , topSpeed)
'''
if dispersalCalc(agent_patch):
velo_vect[0] = 0
velo_vect[1] = 0
'''
return velo_vect[0], velo_vect[1]
def checkRadius(user_patch, r):
global agentLocationAR
r = 1
for i in range(0,numOfAgents-1):
x = int(agentLocationAR[i][0])
y = int(agentLocationAR[i][1])
if(inRadius(user_patch, x, y, r)):
# if an agent is in the user's radius
#print 'Nearby agent detected'
return True
return False
def checkSemiRadius(user_patch, r):
global agentLocationAR
r = 0.001
for i in range(0,numOfAgents-1):
x = int(agentLocationAR[i][0])
y = int(agentLocationAR[i][1])
if(inSemiRadius(user_patch, x, y, r)):
# if an agent is in the user's radius
#print 'Nearby agent detected'
return True
return False
def inRadius(self_patch, pointX, pointY, r):
# Helps determine if there is something near the using agent
x, y = self_patch.center # agent emitting the radius
# agent we are trying to avoid
h = pointX
k = pointY
# Equation of circle
# (x-h)^2 + (y-k)^2 <= r^2
tempX = (x - h)**2
tempY = (y - k)**2
r_2 = r**2
if tempX + tempY <= r_2:
# It is within the radius
return True
else:
return False
def inSemiRadius(self_patch, pointX, pointY, r):
# Helps determine if there is something near the using agent
h, k = self_patch.center # agent emitting the radius
# agent we are trying to avoid
x = pointX
y = pointY
# Equation of semicircle
tempTerm = r**2 - (x-h)**2
if tempTerm < 0:
# if this term is negative, that means agent to avoid is out of range
return False
tempEq = k - math.sqrt(tempTerm)
if y <= tempEq:
# It is within the radius
return True
else:
return False
def animateCos(i, patch):
x, y = patch.center
x += 0.1
y = 50 + 30 * np.cos(np.radians(i))
patch.center = (x, y)
return patch,
anim = animation.FuncAnimation(fig, animationManage,
init_func=init,
frames=maxFrame,
interval=1,
blit=True,
repeat=True)
plt.show()

Python: Visualization tool for graphs

Guys I have asked this question before but did not receive a single comment or answer
I want to simulate a search algorithm on a power law graph and want to visually see the algorithm move from one node to another on the graph. How do I do that?
You can adapt this completely different code I happen to have written for Find the most points enclosed in a fixed size circle :)
The useful bit is:
It uses the basic windowing system tkinter to create a frame containing a canvas; it then does some algorithm, calling it's own 'draw()' to change the canvas and then 'update()' to redraw the screen, with a delay. From seeing how easy it is to chart in tkinter, you can perhaps move on to interactive versions etc.
import random, math, time
from Tkinter import * # our UI
def sqr(x):
return x*x
class Point:
def __init__(self,x,y):
self.x = float(x)
self.y = float(y)
self.left = 0
self.right = []
def __repr__(self):
return "("+str(self.x)+","+str(self.y)+")"
def distance(self,other):
return math.sqrt(sqr(self.x-other.x)+sqr(self.y-other.y))
def equidist(left,right,dist):
u = (right.x-left.x)
v = (right.y-left.y)
if 0 != u:
r = math.sqrt(sqr(dist)-((sqr(u)+sqr(v))/4.))
theta = math.atan(v/u)
x = left.x+(u/2)-(r*math.sin(theta))
if x < left.x:
x = left.x+(u/2)+(r*math.sin(theta))
y = left.y+(v/2)-(r*math.cos(theta))
else:
y = left.y+(v/2)+(r*math.cos(theta))
else:
theta = math.asin(v/(2*dist))
x = left.x-(dist*math.cos(theta))
y = left.y + (v/2)
return Point(x,y)
class Vis:
def __init__(self):
self.frame = Frame(root)
self.canvas = Canvas(self.frame,bg="white",width=width,height=height)
self.canvas.pack()
self.frame.pack()
self.run()
def run(self):
self.count_calc0 = 0
self.count_calc1 = 0
self.count_calc2 = 0
self.count_calc3 = 0
self.count_calc4 = 0
self.count_calc5 = 0
self.prev_x = 0
self.best = -1
self.best_centre = []
for self.sweep in xrange(0,len(points)):
self.count_calc0 += 1
if len(points[self.sweep].right) <= self.best:
break
self.calc(points[self.sweep])
self.sweep = len(points) # so that draw() stops highlighting it
print "BEST",self.best+1, self.best_centre # count left-most point too
print "counts",self.count_calc0, self.count_calc1,self.count_calc2,self.count_calc3,self.count_calc4,self.count_calc5
self.draw()
def calc(self,p):
for self.right in p.right:
self.count_calc1 += 1
if (self.right.left + len(self.right.right)) < self.best:
# this can never help us
continue
self.count_calc2 += 1
self.centre = equidist(p,self.right,radius)
assert abs(self.centre.distance(p)-self.centre.distance(self.right)) < 1
count = 0
for p2 in p.right:
self.count_calc3 += 1
if self.centre.distance(p2) <= radius:
count += 1
if self.best < count:
self.count_calc4 += 4
self.best = count
self.best_centre = [self.centre]
elif self.best == count:
self.count_calc5 += 5
self.best_centre.append(self.centre)
self.draw()
self.frame.update()
time.sleep(0.1)
def draw(self):
self.canvas.delete(ALL)
# draw best circle
for best in self.best_centre:
self.canvas.create_oval(best.x-radius,best.y-radius,\
best.x+radius+1,best.y+radius+1,fill="red",\
outline="red")
# draw current circle
if self.sweep < len(points):
self.canvas.create_oval(self.centre.x-radius,self.centre.y-radius,\
self.centre.x+radius+1,self.centre.y+radius+1,fill="pink",\
outline="pink")
# draw all the connections
for p in points:
for p2 in p.right:
self.canvas.create_line(p.x,p.y,p2.x,p2.y,fill="lightGray")
# plot visited points
for i in xrange(0,self.sweep):
p = points[i]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="blue")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="blue")
# plot current point
if self.sweep < len(points):
p = points[self.sweep]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="red")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="red")
self.canvas.create_line(p.x,p.y,self.right.x,self.right.y,fill="red")
self.canvas.create_line(p.x,p.y,self.centre.x,self.centre.y,fill="cyan")
self.canvas.create_line(self.right.x,self.right.y,self.centre.x,self.centre.y,fill="cyan")
# plot unvisited points
for i in xrange(self.sweep+1,len(points)):
p = points[i]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="green")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="green")
radius = 60
diameter = radius*2
width = 800
height = 600
points = []
# make some points
for i in xrange(0,100):
points.append(Point(random.randrange(width),random.randrange(height)))
# sort points for find-the-right sweep
points.sort(lambda a, b: int(a.x)-int(b.x))
# work out those points to the right of each point
for i in xrange(0,len(points)):
p = points[i]
for j in xrange(i+1,len(points)):
p2 = points[j]
if p2.x > (p.x+diameter):
break
if (abs(p.y-p2.y) <= diameter) and \
p.distance(p2) < diameter:
p.right.append(p2)
p2.left += 1
# sort points in potential order for sweep, point with most right first
points.sort(lambda a, b: len(b.right)-len(a.right))
# debug
for p in points:
print p, p.left, p.right
# show it
root = Tk()
vis = Vis()
root.mainloop()
You can use matplotlib for that.
Here is a simlple example of a mesh with an animated highlighted point:
import matplotlib.pyplot as plt
import time
x_size = 4
y_size = 3
# create the points and edges of the mesh
points = [(x,y) for y in range(y_size) for x in range(x_size)]
vert_edges = [((i_y*x_size)+i_x,(i_y*x_size)+i_x+1)
for i_x in range(x_size-1) for i_y in range(y_size)]
horz_edges = [((i_y*x_size)+i_x,((i_y+1)*x_size)+i_x)
for i_x in range(x_size) for i_y in range(y_size-1)]
edges = vert_edges + horz_edges
# plot all the points and edges
lines = []
for edge in edges:
x_coords, y_coords = zip(points[edge[0]], points[edge[1]])
lines.extend((x_coords, y_coords, 'g'))
plt.plot(linewidth=1, *lines)
x, y = zip(*points)
plt.plot(x, y, 'o')
# create the highlighted point
point_plot = plt.plot([0], [0], 'ro')[0]
# turn on interactive plotting mode
plt.ion()
plt.ylim(-1, y_size)
plt.xlim(-1, x_size)
# animate the highlighted point
for i_point in range(1, len(x)):
point_plot.set_xdata([x[i_point]])
point_plot.set_ydata([y[i_point]])
plt.draw()
time.sleep(0.5)
plt.show()

Categories

Resources