Pandas difference between groupby-size and unique - python

The goal here is to see how many unique values i have in my database. This is the code i have written:
apps = pd.read_csv('ConcatOwned1_900.csv', sep='\t', usecols=['appid'])
apps[('appid')] = apps[('appid')].astype(int)
apps_list=apps['appid'].unique()
b = apps.groupby('appid').size()
blist = b.unique()
print len(apps_list), len(blist), len(set(b))
>>>7672 2164 2164
Why is there difference in those two methods?
Due to request i am posting some of my data:
Unnamed: 0 StudID No appid work work2
0 0 76561193665298433 0 10 nan 0
1 1 76561193665298433 1 20 nan 0
2 2 76561193665298433 2 30 nan 0
3 3 76561193665298433 3 40 nan 0
4 4 76561193665298433 4 50 nan 0
5 5 76561193665298433 5 60 nan 0
6 6 76561193665298433 6 70 nan 0
7 7 76561193665298433 7 80 nan 0
8 8 76561193665298433 8 100 nan 0
9 9 76561193665298433 9 130 nan 0
10 10 76561193665298433 10 220 nan 0
11 11 76561193665298433 11 240 nan 0
12 12 76561193665298433 12 280 nan 0
13 13 76561193665298433 13 300 nan 0
14 14 76561193665298433 14 320 nan 0
15 15 76561193665298433 15 340 nan 0
16 16 76561193665298433 16 360 nan 0
17 17 76561193665298433 17 380 nan 0
18 18 76561193665298433 18 400 nan 0
19 19 76561193665298433 19 420 nan 0
20 20 76561193665298433 20 500 nan 0
21 21 76561193665298433 21 550 nan 0
22 22 76561193665298433 22 620 6.0 3064
33 33 76561193665298434 0 10 nan 837
34 34 76561193665298434 1 20 nan 27
35 35 76561193665298434 2 30 nan 9
36 36 76561193665298434 3 40 nan 5
37 37 76561193665298434 4 50 nan 2
38 38 76561193665298434 5 60 nan 0
39 39 76561193665298434 6 70 nan 403
40 40 76561193665298434 7 130 nan 0
41 41 76561193665298434 8 80 nan 6
42 42 76561193665298434 9 100 nan 10
43 43 76561193665298434 10 220 nan 14

IIUC based on attached piece of the dataframe it seems that you should analyze b.index, not values of b. Just look:
b = apps.groupby('appid').size()
In [24]: b
Out[24]:
appid
10 2
20 2
30 2
40 2
50 2
60 2
70 2
80 2
100 2
130 2
220 2
240 1
280 1
300 1
320 1
340 1
360 1
380 1
400 1
420 1
500 1
550 1
620 1
dtype: int64
In [25]: set(b)
Out[25]: {1, 2}
But if you do it for b.index you'll get the same values for all 3 methods:
blist = b.index.unique()
In [30]: len(apps_list), len(blist), len(set(b.index))
Out[30]: (23, 23, 23)

Related

How calculate diff() in condition value? Python

I have a pandas df, like this:
ID date value
0 10 2022-01-01 100
1 10 2022-01-02 150
2 10 2022-01-03 0
3 10 2022-01-04 0
4 10 2022-01-05 200
5 10 2022-01-06 0
6 10 2022-01-07 150
7 10 2022-01-08 0
8 10 2022-01-09 0
9 10 2022-01-10 0
10 10 2022-01-11 0
11 10 2022-01-12 100
12 23 2022-02-01 490
13 23 2022-02-02 0
14 23 2022-02-03 350
15 23 2022-02-04 333
16 23 2022-02-05 0
17 23 2022-02-06 0
18 23 2022-02-07 0
19 23 2022-02-08 211
20 23 2022-02-09 100
I would like calculate the days of last value. Like the bellow example. How can I using diff() for this? And the calculus change by ID.
Output:
ID date value days_last_value
0 10 2022-01-01 100 0
1 10 2022-01-02 150 1
2 10 2022-01-03 0
3 10 2022-01-04 0
4 10 2022-01-05 200 3
5 10 2022-01-06 0
6 10 2022-01-07 150 2
7 10 2022-01-08 0
8 10 2022-01-09 0
9 10 2022-01-10 0
10 10 2022-01-11 0
11 10 2022-01-12 100 5
12 23 2022-02-01 490 0
13 23 2022-02-02 0
14 23 2022-02-03 350 2
15 23 2022-02-04 333 1
16 23 2022-02-05 0
17 23 2022-02-06 0
18 23 2022-02-07 0
19 23 2022-02-08 211 4
20 23 2022-02-09 100 1
Explanation below.
import pandas as pd
df = pd.DataFrame({'ID': 12 * [10] + 9 * [23],
'value': [100, 150, 0, 0, 200, 0, 150, 0, 0, 0, 0, 100, 490, 0, 350, 333, 0, 0, 0, 211, 100]})
days = df.groupby(['ID', (df['value'] != 0).cumsum()]).size().groupby('ID').shift(fill_value=0)
days.index = df.index[df['value'] != 0]
df['days_last_value'] = days
df
ID value days_last_value
0 10 100 0.0
1 10 150 1.0
2 10 0 NaN
3 10 0 NaN
4 10 200 3.0
5 10 0 NaN
6 10 150 2.0
7 10 0 NaN
8 10 0 NaN
9 10 0 NaN
10 10 0 NaN
11 10 100 5.0
12 23 490 0.0
13 23 0 NaN
14 23 350 2.0
15 23 333 1.0
16 23 0 NaN
17 23 0 NaN
18 23 0 NaN
19 23 211 4.0
20 23 100 1.0
First, we'll have to group by 'ID'.
We also creates groups for each block of days, by creating a True/False series where value is not 0, then performing a cumulative sum. That is the part (df['value'] != 0).cumsum(), which results in
0 1
1 2
2 2
3 2
4 3
5 3
6 4
7 4
8 4
9 4
10 4
11 5
12 6
13 6
14 7
15 8
16 8
17 8
18 8
19 9
20 10
We can use the values in this series to also group on; combining that with the 'ID' group, you have the individual blocks of days. This is the df.groupby(['ID', (df['value'] != 0).cumsum()]) part.
Now, for each block, we get its size, which is obviously the interval in days; which is what you want. We do need to shift one up, since we've counted the total number of days per group, and the difference would be one less; and fill with 0 at the bottom. But this shift has to be by ID group, so we first group by ID again before shifting (as we lost the grouping after doing .size()).
Now, this new series needs to get assigned back to the dataframe, but it's obviously shorter. Since its index it also reset, we can't easily reassign it (not with df['days_last_value'], df.loc[...] or df.iloc).
Instead, we select the index values of the original dataframe where value is not zero, and set the index of the days equal to that.
Now, it's easy step to directly assign the days to relevant column in the dataframe: Pandas will match the indices.

How to get sum of rolling for each group based on different columns?

date hy_code curr_idx_diff is_vol_price_up
24 2021/12/3 A 17 1
25 2021/12/6 A 2 0
26 2021/12/7 A 19 0
27 2021/12/8 A 20 0
28 2021/12/9 A 21 1
29 2021/12/10 A 22 0
30 2021/12/13 A 23 0
31 2021/12/14 A 24 0
32 2021/12/15 A 24 0
33 2021/12/16 A 20 1
34 2021/12/17 A 21 0
35 2021/12/20 A 22 0
36 2021/12/21 A 23 0
37 2021/12/22 A 24 0
38 2021/12/23 A 24 0
39 2021/12/24 A 19 0
40 2021/12/27 A 20 0
41 2021/12/28 A 21 0
42 2021/12/29 A 22 0
43 2021/12/30 A 23 1
24 2021/12/3 B 3 0
25 2021/12/6 B 4 0
26 2021/12/7 B 5 1
27 2021/12/8 B 6 0
28 2021/12/9 B 7 0
29 2021/12/10 B 8 0
30 2021/12/13 B 9 0
31 2021/12/14 B 10 0
32 2021/12/15 B 11 0
33 2021/12/16 B 12 0
34 2021/12/17 B 13 0
35 2021/12/20 B 14 0
36 2021/12/21 B 15 0
37 2021/12/22 B 16 0
38 2021/12/23 B 14 1
39 2021/12/24 B 12 0
40 2021/12/27 B 19 0
41 2021/12/28 B 20 0
42 2021/12/29 B 21 0
43 2021/12/30 B 20 0
Goal
I want to assign column called bkb for each hy_code group, which computes rolling sum based on curr_idx_diff like below:
df.assign(bkb=lambda x:x.groupby('hy_code')[['is_vol_price_up','curr_idx_diff']].agg(lambda x: x[0].rolling(x[1],1).sum()))
But got KeyError: 0
Expected Output
date hy_code curr_idx_diff is_vol_price_up bkb
24 2021/12/3 A 17 1 NaN
25 2021/12/6 A 2 0 1
26 2021/12/7 A 19 0 NaN
27 2021/12/8 A 20 0 NaN
28 2021/12/9 A 21 1 NaN
29 2021/12/10 A 22 0 NaN
30 2021/12/13 A 23 0 NaN
31 2021/12/14 A 24 0 NaN
32 2021/12/15 A 24 0 NaN
33 2021/12/16 A 20 1 NaN
34 2021/12/17 A 21 0 NaN
35 2021/12/20 A 22 0 NaN
36 2021/12/21 A 23 0 NaN
37 2021/12/22 A 24 0 NaN
38 2021/12/23 A 24 0 NaN
39 2021/12/24 A 19 0 NaN
40 2021/12/27 A 20 0 NaN
41 2021/12/28 A 21 0 NaN
42 2021/12/29 A 22 0 NaN
43 2021/12/30 A 23 1 NaN
24 2021/12/3 B 3 0 NaN
25 2021/12/6 B 4 0 NaN
26 2021/12/7 B 5 1 NaN
27 2021/12/8 B 6 0 NaN
28 2021/12/9 B 7 0 NaN
29 2021/12/10 B 8 0 NaN
30 2021/12/13 B 9 0 NaN
31 2021/12/14 B 10 0 NaN
32 2021/12/15 B 11 0 NaN
33 2021/12/16 B 12 0 NaN
34 2021/12/17 B 13 0 NaN
35 2021/12/20 B 14 0 NaN
36 2021/12/21 B 15 0 NaN
37 2021/12/22 B 16 0 NaN
38 2021/12/23 B 14 1 2
39 2021/12/24 B 12 0 1
40 2021/12/27 B 19 0 NaN
41 2021/12/28 B 20 0 NaN
42 2021/12/29 B 21 0 NaN
43 2021/12/30 B 20 0 2
For example
index=25, rolling 2(curr_idx_diff=2), sum=1.
index=38, rolling 14(curr_idx_diff=14), sum=2.
index=24, rolling 3(curr_idx_diff=3), sum=NaN because for B group, there's only 1 row.

converting an HTML table in Pandas Dataframe

I am reading an HTML table with pd.read_html but the result is coming in a list, I want to convert it inot a pandas dataframe, so I can continue further operations on the same. I am using the following script
import pandas as pd
import html5lib
data=pd.read_html('http://www.espn.com/nhl/statistics/player/_/stat/points/sort/points/year/2015/seasontype/2',skiprows=1)
and since My results are coming as 1 list, I tried to convert it into a data frame with
data1=pd.DataFrame(Data)
and result came as
0
0 0 1 2 3 4...
and because of result as a list, I can't apply any functions such as rename, dropna, drop.
I will appreciate every help
I think you need add [0] if need select first item of list, because read_html return list of DataFrames:
So you can use:
import pandas as pd
data1 = pd.read_html('http://www.espn.com/nhl/statis‌​tics/player/‌​_/stat/point‌​s/sort/point‌​s/year/2015&‌​#47;seasontype/2‌​',skiprows=1)[0]
print (data1)
0 1 2 3 4 5 6 7 8 9 \
0 RK PLAYER TEAM GP G A PTS +/- PIM PTS/G
1 1 Jamie Benn, LW DAL 82 35 52 87 1 64 1.06
2 2 John Tavares, C NYI 82 38 48 86 5 46 1.05
3 3 Sidney Crosby, C PIT 77 28 56 84 5 47 1.09
4 4 Alex Ovechkin, LW WSH 81 53 28 81 10 58 1.00
5 NaN Jakub Voracek, RW PHI 82 22 59 81 1 78 0.99
6 6 Nicklas Backstrom, C WSH 82 18 60 78 5 40 0.95
7 7 Tyler Seguin, C DAL 71 37 40 77 -1 20 1.08
8 8 Jiri Hudler, LW CGY 78 31 45 76 17 14 0.97
9 NaN Daniel Sedin, LW VAN 82 20 56 76 5 18 0.93
10 10 Vladimir Tarasenko, RW STL 77 37 36 73 27 31 0.95
11 NaN PP SH NaN NaN NaN NaN NaN NaN NaN
12 RK PLAYER TEAM GP G A PTS +/- PIM PTS/G
13 NaN Nick Foligno, LW CBJ 79 31 42 73 16 50 0.92
14 NaN Claude Giroux, C PHI 81 25 48 73 -3 36 0.90
15 NaN Henrik Sedin, C VAN 82 18 55 73 11 22 0.89
16 14 Steven Stamkos, C TB 82 43 29 72 2 49 0.88
17 NaN Tyler Johnson, C TB 77 29 43 72 33 24 0.94
18 16 Ryan Johansen, C CBJ 82 26 45 71 -6 40 0.87
19 17 Joe Pavelski, C SJ 82 37 33 70 12 29 0.85
20 NaN Evgeni Malkin, C PIT 69 28 42 70 -2 60 1.01
21 NaN Ryan Getzlaf, C ANA 77 25 45 70 15 62 0.91
22 20 Rick Nash, LW NYR 79 42 27 69 29 36 0.87
23 NaN PP SH NaN NaN NaN NaN NaN NaN NaN
24 RK PLAYER TEAM GP G A PTS +/- PIM PTS/G
25 21 Max Pacioretty, LW MTL 80 37 30 67 38 32 0.84
26 NaN Logan Couture, C SJ 82 27 40 67 -6 12 0.82
27 23 Jonathan Toews, C CHI 81 28 38 66 30 36 0.81
28 NaN Erik Karlsson, D OTT 82 21 45 66 7 42 0.80
29 NaN Henrik Zetterberg, LW DET 77 17 49 66 -6 32 0.86
30 26 Pavel Datsyuk, C DET 63 26 39 65 12 8 1.03
31 NaN Joe Thornton, C SJ 78 16 49 65 -4 30 0.83
32 28 Nikita Kucherov, RW TB 82 28 36 64 38 37 0.78
33 NaN Patrick Kane, RW CHI 61 27 37 64 10 10 1.05
34 NaN Mark Stone, RW OTT 80 26 38 64 21 14 0.80
35 NaN PP SH NaN NaN NaN NaN NaN NaN NaN
36 RK PLAYER TEAM GP G A PTS +/- PIM PTS/G
37 NaN Alexander Steen, LW STL 74 24 40 64 8 33 0.86
38 NaN Kyle Turris, C OTT 82 24 40 64 5 36 0.78
39 NaN Johnny Gaudreau, LW CGY 80 24 40 64 11 14 0.80
40 NaN Anze Kopitar, C LA 79 16 48 64 -2 10 0.81
41 35 Radim Vrbata, RW VAN 79 31 32 63 6 20 0.80
42 NaN Jaden Schwartz, LW STL 75 28 35 63 13 16 0.84
43 NaN Filip Forsberg, C NSH 82 26 37 63 15 24 0.77
44 NaN Jordan Eberle, RW EDM 81 24 39 63 -16 24 0.78
45 NaN Ondrej Palat, LW TB 75 16 47 63 31 24 0.84
46 40 Zach Parise, LW MIN 74 33 29 62 21 41 0.84
10 11 12 13 14 15 16
0 SOG PCT GWG G A G A
1 253 13.8 6 10 13 2 3
2 278 13.7 8 13 18 0 1
3 237 11.8 3 10 21 0 0
4 395 13.4 11 25 9 0 0
5 221 10.0 3 11 22 0 0
6 153 11.8 3 3 30 0 0
7 280 13.2 5 13 16 0 0
8 158 19.6 5 6 10 0 0
9 226 8.9 5 4 21 0 0
10 264 14.0 6 8 10 0 0
11 NaN NaN NaN NaN NaN NaN NaN
12 SOG PCT GWG G A G A
13 182 17.0 3 11 15 0 0
14 279 9.0 4 14 23 0 0
15 101 17.8 0 5 20 0 0
16 268 16.0 6 13 12 0 0
17 203 14.3 6 8 9 0 0
18 202 12.9 0 7 19 2 0
19 261 14.2 5 19 12 0 0
20 212 13.2 4 9 17 0 0
21 191 13.1 6 3 10 0 2
22 304 13.8 8 6 6 4 1
23 NaN NaN NaN NaN NaN NaN NaN
24 SOG PCT GWG G A G A
25 302 12.3 10 7 4 3 2
26 263 10.3 4 6 18 2 0
27 192 14.6 7 6 11 2 1
28 292 7.2 3 6 24 0 0
29 227 7.5 3 4 24 0 0
30 165 15.8 5 8 16 0 0
31 131 12.2 0 4 18 0 0
32 190 14.7 2 2 13 0 0
33 186 14.5 5 6 16 0 0
34 157 16.6 6 5 8 1 0
35 NaN NaN NaN NaN NaN NaN NaN
36 SOG PCT GWG G A G A
37 223 10.8 5 8 16 0 0
38 215 11.2 6 4 12 1 0
39 167 14.4 4 8 13 0 0
40 134 11.9 4 6 18 0 0
41 267 11.6 7 12 11 0 0
42 184 15.2 4 8 8 0 2
43 237 11.0 6 6 13 0 0
44 183 13.1 2 6 15 0 0
45 139 11.5 5 3 8 1 1
46 259 12.7 3 11 5 0 0
If your dataframe ends up with columns indexed as 0,1,2 etc and the headings in the first row, (as above) just specify that the column names are in the first row with header=0
Without this, pandas may see a mix of data types - text in row 1 and numbers in the rest and cast the column as object rather than, say, int64.
Full line would be:
data1 = pd.read_html(url, skiprows=1, header=0)[0]
[0] is the first table in the list of possible tables.
There are options for handling NA values as well. Check out the documentation here:
https://pandas.pydata.org/docs/reference/api/pandas.read_html.html
I know this is late, but here's a better way...
I noticed that the DataFrames in the list are all part of the same table/dataset you are trying to analyze, so instead of breaking them up and then merging them together, a better solution is to contact the list of DataFrames.
Check out the results of this code:
df = pd.concat(pd.read_html('https://www.espn.com/nhl/stats/player/_/view/goaltending'),axis=1)
output:
df.head(1)
index RK Name POS GP W L OTL GA/G SA GA SV SV% SO TOI PIM SOSA SOS SOS%
0 1 Igor ShesterkinNYR G 53 36 13 4 2.07 1622 106 1516 0.935 6 3070:32 2 28 20 0.714

Pandas compare 2 dataframes by specific rows in all columns

I have the following Pandas dataframe of some raw numbers:
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 10000)
col_raw_headers = ['07_08_19 #1','07_08_19 #2','07_08_19 #2.1','11_31_19 #1','11_31_19 #1.1','11_31_19 #1.3','12_15_20 #1','12_15_20 #2','12_15_20 #2.1','12_15_20 #2.2']
col_raw_trial_info = ['Quantity1','Quantity2','Quantity3','Quantity4','Quantity5','Quantity6','TimeStamp',np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan]
cols_raw = [[1,75,9,7,-4,0.4,'07/08/2019 05:11'],[1,11,20,-17,12,0.8,'07/08/2019 10:54'],[2,0.9,17,102,56,0.6,'07/08/2019 21:04'],[1,70,4,75,0.8,0.4,'11/31/2019 11:15'],[2,60,74,41,-36,0.3,'11/31/2019 16:50'],[3,17,12,-89,30,0.1,'11/31/2019 21:33'],[1,6,34,496,-84,0.5,'12/15/2020 01:36'],[1,3,43,12,-23,0.5,'12/15/2020 07:01'],[2,5,92,17,64,0.5,'12/15/2020 11:15'],[3,7,11,62,-11,0.5,'12/15/2020 21:45']]
both_values = [[1,2,3,4,8,4,3,8,7],[6,5,3,7,3,23,27,3,11],[65,3,6,78,9,2,45,6,7],[4,3,6,8,3,5,66,32,84],[2,3,11,55,3,7,33,65,34],[22,1,6,32,5,6,4,3,898],[1,6,3,2,6,55,22,6,23],[34,37,46,918,0,37,91,12,68],[51,20,1,34,12,59,78,6,101],[12,71,34,94,1,73,46,51,21]]
processed_cols = ['c_1trial','14_1','14_2','8_1','8_2','8_3','28_1','24_1','24_2','24_3']
df_raw = pd.DataFrame(zip(*cols_raw))
df_temp = pd.DataFrame(zip(*both_values))
df_raw = pd.concat([df_raw,df_temp])
df_raw.columns=col_raw_headers
df_raw.insert(0,'Tr_id',col_raw_trial_info)
df_raw.reset_index(drop=True,inplace=True)
It looks like this:
Tr_id 07_08_19 #1 07_08_19 #2 07_08_19 #2.1 11_31_19 #1 11_31_19 #1.1 11_31_19 #1.3 12_15_20 #1 12_15_20 #2 12_15_20 #2.1 12_15_20 #2.2
0 Quantity1 1 1 2 1 2 3 1 1 2 3
1 Quantity2 75 11 0.9 70 60 17 6 3 5 7
2 Quantity3 9 20 17 4 74 12 34 43 92 11
3 Quantity4 7 -17 102 75 41 -89 496 12 17 62
4 Quantity5 -4 12 56 0.8 -36 30 -84 -23 64 -11
5 Quantity6 0.4 0.8 0.6 0.4 0.3 0.1 0.5 0.5 0.5 0.5
6 TimeStamp 07/08/2019 05:11 07/08/2019 10:54 07/08/2019 21:04 11/31/2019 11:15 11/31/2019 16:50 11/31/2019 21:33 12/15/2020 01:36 12/15/2020 07:01 12/15/2020 11:15 12/15/2020 21:45
7 NaN 1 6 65 4 2 22 1 34 51 12
8 NaN 2 5 3 3 3 1 6 37 20 71
9 NaN 3 3 6 6 11 6 3 46 1 34
10 NaN 4 7 78 8 55 32 2 918 34 94
11 NaN 8 3 9 3 3 5 6 0 12 1
12 NaN 4 23 2 5 7 6 55 37 59 73
13 NaN 3 27 45 66 33 4 22 91 78 46
14 NaN 8 3 6 32 65 3 6 12 6 51
15 NaN 7 11 7 84 34 898 23 68 101 21
I have a separate dataframe of a processed version of these numbers where:
some of the header rows from above have been deleted,
the column names have been changed
Here is the second dataframe:
df_processed = pd.DataFrame(zip(*both_values),columns=processed_cols)
df_processed = df_processed[[3,4,9,7,0,2,1,6,8,5]]
8_1 8_2 24_3 24_1 c_1trial 14_2 14_1 28_1 24_2 8_3
0 4 2 12 34 1 65 6 1 51 22
1 3 3 71 37 2 3 5 6 20 1
2 6 11 34 46 3 6 3 3 1 6
3 8 55 94 918 4 78 7 2 34 32
4 3 3 1 0 8 9 3 6 12 5
5 5 7 73 37 4 2 23 55 59 6
6 66 33 46 91 3 45 27 22 78 4
7 32 65 51 12 8 6 3 6 6 3
8 84 34 21 68 7 7 11 23 101 898
Common parts of each dataframe:
For each column, rows 8 onwards of the raw dataframe are the same as row 1 onwards from the processed dataframe. The order of columns in both dataframes is not the same.
Output combination:
I am looking to compare rows 8-16 in columns 1-10 of the raw dataframe dr_raw to the processed dataframe df_processed. If the columns match each other, then I would like to extract rows 1-7 of the df_raw and the column header from df_processed.
Example:
the values in column c_1trial only matches values in rows 8-16 from the column 07_08_19 #1. I would 2 steps: (1) I would like to find some way to determine that these 2 columns are matching each other, (2) if 2 columns do match eachother, then in the sample output, I would like to select rows from the matching columns.
Here is the output I am looking to get:
Tr_id 07_08_19 #1 07_08_19 #2 07_08_19 #2.1 11_31_19 #1 11_31_19 #1.1 11_31_19 #1.3 12_15_20 #1 12_15_20 #2 12_15_20 #2.1 12_15_20 #2.2
Quantity1 1 1 2 1 2 3 1 1 2 3
Quantity2 75 11 0.9 70 60 17 6 3 5 7
Quantity3 9 20 17 4 74 12 34 43 92 11
Proc_Name c_1trial 14_1 14_2 8_1 8_2 8_3 28_1 24_1 24_2 24_3
Quantity4 7 -17 102 75 41 -89 496 12 17 62
Quantity5 -4 12 56 0.8 -36 30 -84 -23 64 -11
Quantity6 0.4 0.8 0.6 0.4 0.3 0.1 0.5 0.5 0.5 0.5
TimeStamp 07/08/2019 05:11 07/08/2019 10:54 07/08/2019 21:04 11/31/2019 11:15 11/31/2019 16:50 11/31/2019 21:33 12/15/2020 01:36 12/15/2020 07:01 12/15/2020 11:15 12/15/2020 21:45
My attempts are giving trouble:
print (df_raw.iloc[7:,1:] == df_processed).all(axis=1)
gives
ValueError: Can only compare identically-labeled DataFrame objects
and
print (df_raw.ix[7:].values == df_processed.values) #gives False
gives
False
The problem with my second attempt is that I am not selecting .all(axis=1). When I make a comparison I want to do this across all rows of every column, not just one row.
Question:
Is there a way to select out the output I showed above from these 2 dataframes?
Does this look like the output you're looking for?
Raw dataframe df:
Tr_id 07_08_19 07_08_19.1 07_08_19.2 11_31_19 11_31_19.1
0 Quantity1 1 1 2 1 2
1 Quantity2 75 11 0.9 70 60
2 Quantity3 9 20 17 4 74
3 Quantity4 7 -17 102 75 41
4 Quantity5 -4 12 56 0.8 -36
5 Quantity6 0.4 0.8 0.6 0.4 0.3
6 TimeStamp 07/08/2019 07/08/2019 07/08/2019 11/31/2019 11/31/2019
7 NaN 1 6 65 4 2
8 NaN 2 5 3 3 3
9 NaN 3 3 6 6 11
10 NaN 4 7 78 8 55
11 NaN 8 3 9 3 3
12 NaN 4 23 2 5 7
13 NaN 3 27 45 66 33
14 NaN 8 3 6 32 65
15 NaN 7 11 7 84 34
11_31_19.2 12_15_20 12_15_20.1 12_15_20.2 12_15_20.3
0 3 1 1 2 3
1 17 6 3 5 7
2 12 34 43 92 11
3 -89 496 12 17 62
4 30 -84 -23 64 -11
5 0.1 0.5 0.5 0.5 0.5
6 11/31/2019 12/15/2020 12/15/2020 12/15/2020 12/15/2020
7 22 1 34 51 12
8 1 6 37 20 71
9 6 3 46 1 34
10 32 2 918 34 94
11 5 6 0 12 1
12 6 55 37 59 73
13 4 22 91 78 46
14 3 6 12 6 51
15 898 23 68 101 21
Processed dataframe dfp:
8_1 8_2 24_3 24_1 c_1trial 14_2 14_1 28_1 24_2 8_3
0 4 2 12 34 1 65 6 1 51 22
1 3 3 71 37 2 3 5 6 20 1
2 6 11 34 46 3 6 3 3 1 6
3 8 55 94 918 4 78 7 2 34 32
4 3 3 1 0 8 9 3 6 12 5
5 5 7 73 37 4 2 23 55 59 6
6 66 33 46 91 3 45 27 22 78 4
7 32 65 51 12 8 6 3 6 6 3
8 84 34 21 68 7 7 11 23 101 898
Code:
df = pd.read_csv('raw_df.csv') # raw dataframe
dfp = pd.read_csv('processed_df.csv') # processed dataframe
dfr = df.drop('Tr_id', axis=1)
x = pd.DataFrame()
for col_raw in dfr.columns:
for col_p in dfp.columns:
if (dfr.tail(9).astype(int)[col_raw] == dfp[col_p]).all():
series = dfr[col_raw].head(7).tolist()
series.append(col_raw)
x[col_p] = series
x = pd.concat([df['Tr_id'].head(7), x], axis=1)
Output:
Tr_id c_1trial 14_1 14_2 8_1 8_2
0 Quantity1 1 1 2 1 2
1 Quantity2 75 11 0.9 70 60
2 Quantity3 9 20 17 4 74
3 Quantity4 7 -17 102 75 41
4 Quantity5 -4 12 56 0.8 -36
5 Quantity6 0.4 0.8 0.6 0.4 0.3
6 TimeStamp 07/08/2019 07/08/2019 07/08/2019 11/31/2019 11/31/2019
7 NaN 07_08_19 07_08_19.1 07_08_19.2 11_31_19 11_31_19.1
8_3 28_1 24_1 24_2 24_3
0 3 1 1 2 3
1 17 6 3 5 7
2 12 34 43 92 11
3 -89 496 12 17 62
4 30 -84 -23 64 -11
5 0.1 0.5 0.5 0.5 0.5
6 11/31/2019 12/15/2020 12/15/2020 12/15/2020 12/15/2020
7 11_31_19.2 12_15_20 12_15_20.1 12_15_20.2 12_15_20.3
I think the code could be more concise but maybe this does the job.
alternative solution, using DataFrame.isin() method:
In [171]: df1
Out[171]:
a b c
0 1 1 3
1 0 2 4
2 4 2 2
3 0 3 3
4 0 4 4
In [172]: df2
Out[172]:
a b c
0 0 3 3
1 1 1 1
2 0 3 4
3 4 2 3
4 0 4 4
In [173]: common = pd.merge(df1, df2)
In [174]: common
Out[174]:
a b c
0 0 3 3
1 0 4 4
In [175]: df1[df1.isin(common.to_dict('list')).all(axis=1)]
Out[175]:
a b c
3 0 3 3
4 0 4 4
Or if you want to subtract second data set from the first one. I.e. Pandas equivalent for SQL's:
select col1, .., colN from tableA
minus
select col1, .., colN from tableB
in Pandas:
In [176]: df1[~df1.isin(common.to_dict('list')).all(axis=1)]
Out[176]:
a b c
0 1 1 3
1 0 2 4
2 4 2 2
I came up with this using loops. It is very disappointing:
holder = []
for randm,pp in enumerate(list(df_processed)):
list1 = df_processed[pp].tolist()
for car,rr in enumerate(list(df_raw)):
list2 = df_raw.loc[7:,rr].tolist()
if list1==list2:
holder.append([rr,pp])
df_intermediate = pd.DataFrame(holder,columns=['A','B'])
df_c = df_raw.loc[:6,df_intermediate.iloc[:,0].tolist()]
df_c.loc[df_c.shape[0]] = df_intermediate.iloc[:,1].tolist()
df_c.insert(0,list(df_raw)[0],df_raw[list(df_raw)[0]])
df_c.iloc[-1,0]='Proc_Name'
df_c = df_c.reindex([0,1,2]+[7]+[3,4,5,6]).reset_index(drop=True)
Output:
Tr_id 11_31_19 #1 11_31_19 #1.1 12_15_20 #2.2 12_15_20 #2 07_08_19 #1 07_08_19 #2.1 07_08_19 #2 12_15_20 #1 12_15_20 #2.1 11_31_19 #1.3
0 Quantity1 1 2 3 1 1 2 1 1 2 3
1 Quantity2 70 60 7 3 75 0.9 11 6 5 17
2 Quantity3 4 74 11 43 9 17 20 34 92 12
3 Proc_Name 8_1 8_2 24_3 24_1 c_1trial 14_2 14_1 28_1 24_2 8_3
4 Quantity4 75 41 62 12 7 102 -17 496 17 -89
5 Quantity5 0.8 -36 -11 -23 -4 56 12 -84 64 30
6 Quantity6 0.4 0.3 0.5 0.5 0.4 0.6 0.8 0.5 0.5 0.1
7 TimeStamp 11/31/2019 11:15 11/31/2019 16:50 12/15/2020 21:45 12/15/2020 07:01 07/08/2019 05:11 07/08/2019 21:04 07/08/2019 10:54 12/15/2020 01:36 12/15/2020 11:15 11/31/2019 21:33
The order of the columns is different than what I required, but that is a minor problem.
The real problem with this approach is using loops.
I wish there was a better way to do this using some built-in Pandas functionality. If you have a better solution, please post it. thank you.

pandas drop row below each row containing an 'na'

i have a dataframe with, say, 4 columns [['a','b','c','d']], to which I add another column ['total'] containing the sum of all the other columns for each row. I then add another column ['growth of total'] with the growth rate of the total.
some of the values in [['a','b','c','d']] are blank, rendering the ['total'] column invalid for these rows. I can easily get rid of these rows with df.dropna(how='any').
However, my growth rate will be invalid not only for rows with missing values in [['a','b','c','d']], but also for the following row. How do I drop all these rows?
IIUC correctly you can use notnull with all to mask off any rows with NaN and any rows that follow NaN rows:
In [43]:
df = pd.DataFrame({'a':[0,np.NaN, 2, 3,np.NaN], 'b':[np.NaN, 1,2,3,4], 'c':[0, np.NaN,2,3,4]})
df
Out[43]:
a b c
0 0 NaN 0
1 NaN 1 NaN
2 2 2 2
3 3 3 3
4 NaN 4 4
In [44]:
df[df.notnull().all(axis=1) & df.shift().notnull().all(axis=1)]
Out[44]:
a b c
3 3 3 3
Here's one option that I think does what you're looking for:
In [76]: df = pd.DataFrame(np.arange(40).reshape(10,4))
In [77]: df.ix[1,2] = np.nan
In [78]: df.ix[6,1] = np.nan
In [79]: df['total'] = df.sum(axis=1, skipna=False)
In [80]: df
Out[80]:
0 1 2 3 total
0 0 1 2 3 6
1 4 5 NaN 7 NaN
2 8 9 10 11 38
3 12 13 14 15 54
4 16 17 18 19 70
5 20 21 22 23 86
6 24 NaN 26 27 NaN
7 28 29 30 31 118
8 32 33 34 35 134
9 36 37 38 39 150
In [81]: df['growth'] = df['total'].iloc[1:] - df['total'].values[:-1]
In [82]: df
Out[82]:
0 1 2 3 total growth
0 0 1 2 3 6 NaN
1 4 5 NaN 7 NaN NaN
2 8 9 10 11 38 NaN
3 12 13 14 15 54 16
4 16 17 18 19 70 16
5 20 21 22 23 86 16
6 24 NaN 26 27 NaN NaN
7 28 29 30 31 118 NaN
8 32 33 34 35 134 16
9 36 37 38 39 150 16

Categories

Resources