Pandas compare 2 dataframes by specific rows in all columns - python
I have the following Pandas dataframe of some raw numbers:
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 10000)
col_raw_headers = ['07_08_19 #1','07_08_19 #2','07_08_19 #2.1','11_31_19 #1','11_31_19 #1.1','11_31_19 #1.3','12_15_20 #1','12_15_20 #2','12_15_20 #2.1','12_15_20 #2.2']
col_raw_trial_info = ['Quantity1','Quantity2','Quantity3','Quantity4','Quantity5','Quantity6','TimeStamp',np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan]
cols_raw = [[1,75,9,7,-4,0.4,'07/08/2019 05:11'],[1,11,20,-17,12,0.8,'07/08/2019 10:54'],[2,0.9,17,102,56,0.6,'07/08/2019 21:04'],[1,70,4,75,0.8,0.4,'11/31/2019 11:15'],[2,60,74,41,-36,0.3,'11/31/2019 16:50'],[3,17,12,-89,30,0.1,'11/31/2019 21:33'],[1,6,34,496,-84,0.5,'12/15/2020 01:36'],[1,3,43,12,-23,0.5,'12/15/2020 07:01'],[2,5,92,17,64,0.5,'12/15/2020 11:15'],[3,7,11,62,-11,0.5,'12/15/2020 21:45']]
both_values = [[1,2,3,4,8,4,3,8,7],[6,5,3,7,3,23,27,3,11],[65,3,6,78,9,2,45,6,7],[4,3,6,8,3,5,66,32,84],[2,3,11,55,3,7,33,65,34],[22,1,6,32,5,6,4,3,898],[1,6,3,2,6,55,22,6,23],[34,37,46,918,0,37,91,12,68],[51,20,1,34,12,59,78,6,101],[12,71,34,94,1,73,46,51,21]]
processed_cols = ['c_1trial','14_1','14_2','8_1','8_2','8_3','28_1','24_1','24_2','24_3']
df_raw = pd.DataFrame(zip(*cols_raw))
df_temp = pd.DataFrame(zip(*both_values))
df_raw = pd.concat([df_raw,df_temp])
df_raw.columns=col_raw_headers
df_raw.insert(0,'Tr_id',col_raw_trial_info)
df_raw.reset_index(drop=True,inplace=True)
It looks like this:
Tr_id 07_08_19 #1 07_08_19 #2 07_08_19 #2.1 11_31_19 #1 11_31_19 #1.1 11_31_19 #1.3 12_15_20 #1 12_15_20 #2 12_15_20 #2.1 12_15_20 #2.2
0 Quantity1 1 1 2 1 2 3 1 1 2 3
1 Quantity2 75 11 0.9 70 60 17 6 3 5 7
2 Quantity3 9 20 17 4 74 12 34 43 92 11
3 Quantity4 7 -17 102 75 41 -89 496 12 17 62
4 Quantity5 -4 12 56 0.8 -36 30 -84 -23 64 -11
5 Quantity6 0.4 0.8 0.6 0.4 0.3 0.1 0.5 0.5 0.5 0.5
6 TimeStamp 07/08/2019 05:11 07/08/2019 10:54 07/08/2019 21:04 11/31/2019 11:15 11/31/2019 16:50 11/31/2019 21:33 12/15/2020 01:36 12/15/2020 07:01 12/15/2020 11:15 12/15/2020 21:45
7 NaN 1 6 65 4 2 22 1 34 51 12
8 NaN 2 5 3 3 3 1 6 37 20 71
9 NaN 3 3 6 6 11 6 3 46 1 34
10 NaN 4 7 78 8 55 32 2 918 34 94
11 NaN 8 3 9 3 3 5 6 0 12 1
12 NaN 4 23 2 5 7 6 55 37 59 73
13 NaN 3 27 45 66 33 4 22 91 78 46
14 NaN 8 3 6 32 65 3 6 12 6 51
15 NaN 7 11 7 84 34 898 23 68 101 21
I have a separate dataframe of a processed version of these numbers where:
some of the header rows from above have been deleted,
the column names have been changed
Here is the second dataframe:
df_processed = pd.DataFrame(zip(*both_values),columns=processed_cols)
df_processed = df_processed[[3,4,9,7,0,2,1,6,8,5]]
8_1 8_2 24_3 24_1 c_1trial 14_2 14_1 28_1 24_2 8_3
0 4 2 12 34 1 65 6 1 51 22
1 3 3 71 37 2 3 5 6 20 1
2 6 11 34 46 3 6 3 3 1 6
3 8 55 94 918 4 78 7 2 34 32
4 3 3 1 0 8 9 3 6 12 5
5 5 7 73 37 4 2 23 55 59 6
6 66 33 46 91 3 45 27 22 78 4
7 32 65 51 12 8 6 3 6 6 3
8 84 34 21 68 7 7 11 23 101 898
Common parts of each dataframe:
For each column, rows 8 onwards of the raw dataframe are the same as row 1 onwards from the processed dataframe. The order of columns in both dataframes is not the same.
Output combination:
I am looking to compare rows 8-16 in columns 1-10 of the raw dataframe dr_raw to the processed dataframe df_processed. If the columns match each other, then I would like to extract rows 1-7 of the df_raw and the column header from df_processed.
Example:
the values in column c_1trial only matches values in rows 8-16 from the column 07_08_19 #1. I would 2 steps: (1) I would like to find some way to determine that these 2 columns are matching each other, (2) if 2 columns do match eachother, then in the sample output, I would like to select rows from the matching columns.
Here is the output I am looking to get:
Tr_id 07_08_19 #1 07_08_19 #2 07_08_19 #2.1 11_31_19 #1 11_31_19 #1.1 11_31_19 #1.3 12_15_20 #1 12_15_20 #2 12_15_20 #2.1 12_15_20 #2.2
Quantity1 1 1 2 1 2 3 1 1 2 3
Quantity2 75 11 0.9 70 60 17 6 3 5 7
Quantity3 9 20 17 4 74 12 34 43 92 11
Proc_Name c_1trial 14_1 14_2 8_1 8_2 8_3 28_1 24_1 24_2 24_3
Quantity4 7 -17 102 75 41 -89 496 12 17 62
Quantity5 -4 12 56 0.8 -36 30 -84 -23 64 -11
Quantity6 0.4 0.8 0.6 0.4 0.3 0.1 0.5 0.5 0.5 0.5
TimeStamp 07/08/2019 05:11 07/08/2019 10:54 07/08/2019 21:04 11/31/2019 11:15 11/31/2019 16:50 11/31/2019 21:33 12/15/2020 01:36 12/15/2020 07:01 12/15/2020 11:15 12/15/2020 21:45
My attempts are giving trouble:
print (df_raw.iloc[7:,1:] == df_processed).all(axis=1)
gives
ValueError: Can only compare identically-labeled DataFrame objects
and
print (df_raw.ix[7:].values == df_processed.values) #gives False
gives
False
The problem with my second attempt is that I am not selecting .all(axis=1). When I make a comparison I want to do this across all rows of every column, not just one row.
Question:
Is there a way to select out the output I showed above from these 2 dataframes?
Does this look like the output you're looking for?
Raw dataframe df:
Tr_id 07_08_19 07_08_19.1 07_08_19.2 11_31_19 11_31_19.1
0 Quantity1 1 1 2 1 2
1 Quantity2 75 11 0.9 70 60
2 Quantity3 9 20 17 4 74
3 Quantity4 7 -17 102 75 41
4 Quantity5 -4 12 56 0.8 -36
5 Quantity6 0.4 0.8 0.6 0.4 0.3
6 TimeStamp 07/08/2019 07/08/2019 07/08/2019 11/31/2019 11/31/2019
7 NaN 1 6 65 4 2
8 NaN 2 5 3 3 3
9 NaN 3 3 6 6 11
10 NaN 4 7 78 8 55
11 NaN 8 3 9 3 3
12 NaN 4 23 2 5 7
13 NaN 3 27 45 66 33
14 NaN 8 3 6 32 65
15 NaN 7 11 7 84 34
11_31_19.2 12_15_20 12_15_20.1 12_15_20.2 12_15_20.3
0 3 1 1 2 3
1 17 6 3 5 7
2 12 34 43 92 11
3 -89 496 12 17 62
4 30 -84 -23 64 -11
5 0.1 0.5 0.5 0.5 0.5
6 11/31/2019 12/15/2020 12/15/2020 12/15/2020 12/15/2020
7 22 1 34 51 12
8 1 6 37 20 71
9 6 3 46 1 34
10 32 2 918 34 94
11 5 6 0 12 1
12 6 55 37 59 73
13 4 22 91 78 46
14 3 6 12 6 51
15 898 23 68 101 21
Processed dataframe dfp:
8_1 8_2 24_3 24_1 c_1trial 14_2 14_1 28_1 24_2 8_3
0 4 2 12 34 1 65 6 1 51 22
1 3 3 71 37 2 3 5 6 20 1
2 6 11 34 46 3 6 3 3 1 6
3 8 55 94 918 4 78 7 2 34 32
4 3 3 1 0 8 9 3 6 12 5
5 5 7 73 37 4 2 23 55 59 6
6 66 33 46 91 3 45 27 22 78 4
7 32 65 51 12 8 6 3 6 6 3
8 84 34 21 68 7 7 11 23 101 898
Code:
df = pd.read_csv('raw_df.csv') # raw dataframe
dfp = pd.read_csv('processed_df.csv') # processed dataframe
dfr = df.drop('Tr_id', axis=1)
x = pd.DataFrame()
for col_raw in dfr.columns:
for col_p in dfp.columns:
if (dfr.tail(9).astype(int)[col_raw] == dfp[col_p]).all():
series = dfr[col_raw].head(7).tolist()
series.append(col_raw)
x[col_p] = series
x = pd.concat([df['Tr_id'].head(7), x], axis=1)
Output:
Tr_id c_1trial 14_1 14_2 8_1 8_2
0 Quantity1 1 1 2 1 2
1 Quantity2 75 11 0.9 70 60
2 Quantity3 9 20 17 4 74
3 Quantity4 7 -17 102 75 41
4 Quantity5 -4 12 56 0.8 -36
5 Quantity6 0.4 0.8 0.6 0.4 0.3
6 TimeStamp 07/08/2019 07/08/2019 07/08/2019 11/31/2019 11/31/2019
7 NaN 07_08_19 07_08_19.1 07_08_19.2 11_31_19 11_31_19.1
8_3 28_1 24_1 24_2 24_3
0 3 1 1 2 3
1 17 6 3 5 7
2 12 34 43 92 11
3 -89 496 12 17 62
4 30 -84 -23 64 -11
5 0.1 0.5 0.5 0.5 0.5
6 11/31/2019 12/15/2020 12/15/2020 12/15/2020 12/15/2020
7 11_31_19.2 12_15_20 12_15_20.1 12_15_20.2 12_15_20.3
I think the code could be more concise but maybe this does the job.
alternative solution, using DataFrame.isin() method:
In [171]: df1
Out[171]:
a b c
0 1 1 3
1 0 2 4
2 4 2 2
3 0 3 3
4 0 4 4
In [172]: df2
Out[172]:
a b c
0 0 3 3
1 1 1 1
2 0 3 4
3 4 2 3
4 0 4 4
In [173]: common = pd.merge(df1, df2)
In [174]: common
Out[174]:
a b c
0 0 3 3
1 0 4 4
In [175]: df1[df1.isin(common.to_dict('list')).all(axis=1)]
Out[175]:
a b c
3 0 3 3
4 0 4 4
Or if you want to subtract second data set from the first one. I.e. Pandas equivalent for SQL's:
select col1, .., colN from tableA
minus
select col1, .., colN from tableB
in Pandas:
In [176]: df1[~df1.isin(common.to_dict('list')).all(axis=1)]
Out[176]:
a b c
0 1 1 3
1 0 2 4
2 4 2 2
I came up with this using loops. It is very disappointing:
holder = []
for randm,pp in enumerate(list(df_processed)):
list1 = df_processed[pp].tolist()
for car,rr in enumerate(list(df_raw)):
list2 = df_raw.loc[7:,rr].tolist()
if list1==list2:
holder.append([rr,pp])
df_intermediate = pd.DataFrame(holder,columns=['A','B'])
df_c = df_raw.loc[:6,df_intermediate.iloc[:,0].tolist()]
df_c.loc[df_c.shape[0]] = df_intermediate.iloc[:,1].tolist()
df_c.insert(0,list(df_raw)[0],df_raw[list(df_raw)[0]])
df_c.iloc[-1,0]='Proc_Name'
df_c = df_c.reindex([0,1,2]+[7]+[3,4,5,6]).reset_index(drop=True)
Output:
Tr_id 11_31_19 #1 11_31_19 #1.1 12_15_20 #2.2 12_15_20 #2 07_08_19 #1 07_08_19 #2.1 07_08_19 #2 12_15_20 #1 12_15_20 #2.1 11_31_19 #1.3
0 Quantity1 1 2 3 1 1 2 1 1 2 3
1 Quantity2 70 60 7 3 75 0.9 11 6 5 17
2 Quantity3 4 74 11 43 9 17 20 34 92 12
3 Proc_Name 8_1 8_2 24_3 24_1 c_1trial 14_2 14_1 28_1 24_2 8_3
4 Quantity4 75 41 62 12 7 102 -17 496 17 -89
5 Quantity5 0.8 -36 -11 -23 -4 56 12 -84 64 30
6 Quantity6 0.4 0.3 0.5 0.5 0.4 0.6 0.8 0.5 0.5 0.1
7 TimeStamp 11/31/2019 11:15 11/31/2019 16:50 12/15/2020 21:45 12/15/2020 07:01 07/08/2019 05:11 07/08/2019 21:04 07/08/2019 10:54 12/15/2020 01:36 12/15/2020 11:15 11/31/2019 21:33
The order of the columns is different than what I required, but that is a minor problem.
The real problem with this approach is using loops.
I wish there was a better way to do this using some built-in Pandas functionality. If you have a better solution, please post it. thank you.
Related
Rearrange dataframe values
Let's say I have the following dataframe: ID stop x y z 0 202 9 20 27 4 1 202 2 23 24 13 2 1756 5 5 41 73 3 1756 3 7 42 72 4 1756 4 3 50 73 5 2153 14 121 12 6 6 2153 3 122.5 2 6 7 3276 1 54 33 -12 8 5609 9 -2 44 -32 9 5609 2 8 44 -32 10 5609 5 102 -23 16 I would like to change the ID values in order to have the smallest being 1, the second smallest being 2 etc.. So for my example, I would get this: ID stop x y z 0 1 9 20 27 4 1 1 2 23 24 13 2 2 5 5 41 73 3 2 3 7 42 72 4 2 4 3 50 73 5 3 14 121 12 6 6 3 3 122.5 2 6 7 4 1 54 33 -12 8 5 9 -2 44 -32 9 5 2 8 44 -32 10 5 5 102 -23 16 Any idea please? Thanks in advance!
You can use pd.Series.rank with method='dense' df['ID'] = df['ID'].rank(method='dense').astype(int)
assign a number id for every 4 rows in pandas dataframe
I have a pandas dataframe like this: pd.DataFrame({'week': ['2019-w01', '2019-w02','2019-w03','2019-w04', '2019-w05','2019-w06','2019-w07','2019-w08', '2019-w9','2019-w10','2019-w11','2019-w12'], 'value': [11,22,33,34,57,88,2,9,10,1,76,14], 'period': [1,1,1,1,2,2,2,2,3,3,3,3]}) week value 0 2019-w1 11 1 2019-w2 22 2 2019-w3 33 3 2019-w4 34 4 2019-w5 57 5 2019-w6 88 6 2019-w7 2 7 2019-w8 9 8 2019-w9 10 9 2019-w10 1 10 2019-w11 76 11 2019-w12 14 what I need is like below. I would like to assign a period ID every 4-week interval. week value period 0 2019-w01 11 1 1 2019-w02 22 1 2 2019-w03 33 1 3 2019-w04 34 1 4 2019-w05 57 2 5 2019-w06 88 2 6 2019-w07 2 2 7 2019-w08 9 2 8 2019-w9 10 3 9 2019-w10 1 3 10 2019-w11 76 3 11 2019-w12 14 3 what is the best way to achieve that? Thanks.
try with: df['period']=(pd.to_numeric(df['week'].str.split('-').str[-1] .str.replace('w',''))//4).shift(fill_value=0).add(1) print(df) week value period 0 2019-w01 11 1 1 2019-w02 22 1 2 2019-w03 33 1 3 2019-w04 34 1 4 2019-w05 57 2 5 2019-w06 88 2 6 2019-w07 2 2 7 2019-w08 9 2 8 2019-w9 10 3 9 2019-w10 1 3 10 2019-w11 76 3 11 2019-w12 14 3
Merge dataframes including extreme values
I have 2 data frames, df1 and df2: df1 Out[66]: A B 0 1 11 1 1 2 2 1 32 3 1 42 4 1 54 5 1 66 6 2 16 7 2 23 8 3 13 9 3 24 10 3 35 11 3 46 12 3 51 13 4 12 14 4 28 15 4 39 16 4 49 df2 Out[80]: B 0 32 1 42 2 13 3 24 4 35 5 39 6 49 I want to merge dataframes but at the same time including the first and/or last value of the set in column A. This is an example of the desired outcome: df3 Out[93]: A B 0 1 2 1 1 32 2 1 42 3 1 54 4 3 13 5 3 24 6 3 35 7 3 46 8 4 28 9 4 39 10 4 49 I'm trying to use merge but that only slice the portion of data frames that coincides. Someone have an idea to deal with this? thanks!
Here's one way to do it using merge with indicator, groupby, and rolling: df[df.merge(df2, on='B', how='left', indicator='Ind').eval('Found=Ind == "both"') .groupby('A')['Found'] .apply(lambda x: x.rolling(3, center=True, min_periods=2).max()).astype(bool)] Output: A B 1 1 2 2 1 32 3 1 42 4 1 54 8 3 13 9 3 24 10 3 35 11 3 46 14 4 28 15 4 39 16 4 49
pd.concat([df1.groupby('A').min().reset_index(), pd.merge(df1,df2, on="B"), df1.groupby('A').max().reset_index()]).reset_index(drop=True).drop_duplicates().sort_values(['A','B']) A B 0 1 2 4 1 32 5 1 42 1 2 16 2 3 13 7 3 24 8 3 35 3 4 12 9 4 39 10 4 49 Breaking down each part #Get Minimum df1.groupby('A').min().reset_index() # Merge on B pd.merge(df1,df2, on="B") # Get Maximum df1.groupby('A').max().reset_index() # Reset the Index and drop duplicated rows since there may be similarities between the Merge and Min/Max. Sort values by 'A' then by 'B' .reset_index(drop=True).drop_duplicates().sort_values(['A','B'])
insert dataframe into a dataframe - Python/Pandas
Question is pretty self explanatory, how would you insert a dataframe with a couple of values in to a bigger dataframe at a given point (between index's 10 and 11). Meaning that .append cant be used
You can use concat with sliced df by loc: np.random.seed(100) df1 = pd.DataFrame(np.random.randint(100, size=(5,6)), columns=list('ABCDEF')) print (df1) A B C D E F 0 8 24 67 87 79 48 1 10 94 52 98 53 66 2 98 14 34 24 15 60 3 58 16 9 93 86 2 4 27 4 31 1 13 83 df2 = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9], 'D':[1,3,5], 'E':[5,3,6], 'F':[7,4,3]}) print (df2) A B C D E F 0 1 4 7 1 5 7 1 2 5 8 3 3 4 2 3 6 9 5 6 3 #inserted between 4 and 5 index values print (pd.concat([df1.loc[:4], df2, df1.loc[4:]], ignore_index=True)) A B C D E F 0 8 24 67 87 79 48 1 10 94 52 98 53 66 2 98 14 34 24 15 60 3 58 16 9 93 86 2 4 27 4 31 1 13 83 5 1 4 7 1 5 7 6 2 5 8 3 3 4 7 3 6 9 5 6 3 8 27 4 31 1 13 83
Pandas difference between groupby-size and unique
The goal here is to see how many unique values i have in my database. This is the code i have written: apps = pd.read_csv('ConcatOwned1_900.csv', sep='\t', usecols=['appid']) apps[('appid')] = apps[('appid')].astype(int) apps_list=apps['appid'].unique() b = apps.groupby('appid').size() blist = b.unique() print len(apps_list), len(blist), len(set(b)) >>>7672 2164 2164 Why is there difference in those two methods? Due to request i am posting some of my data: Unnamed: 0 StudID No appid work work2 0 0 76561193665298433 0 10 nan 0 1 1 76561193665298433 1 20 nan 0 2 2 76561193665298433 2 30 nan 0 3 3 76561193665298433 3 40 nan 0 4 4 76561193665298433 4 50 nan 0 5 5 76561193665298433 5 60 nan 0 6 6 76561193665298433 6 70 nan 0 7 7 76561193665298433 7 80 nan 0 8 8 76561193665298433 8 100 nan 0 9 9 76561193665298433 9 130 nan 0 10 10 76561193665298433 10 220 nan 0 11 11 76561193665298433 11 240 nan 0 12 12 76561193665298433 12 280 nan 0 13 13 76561193665298433 13 300 nan 0 14 14 76561193665298433 14 320 nan 0 15 15 76561193665298433 15 340 nan 0 16 16 76561193665298433 16 360 nan 0 17 17 76561193665298433 17 380 nan 0 18 18 76561193665298433 18 400 nan 0 19 19 76561193665298433 19 420 nan 0 20 20 76561193665298433 20 500 nan 0 21 21 76561193665298433 21 550 nan 0 22 22 76561193665298433 22 620 6.0 3064 33 33 76561193665298434 0 10 nan 837 34 34 76561193665298434 1 20 nan 27 35 35 76561193665298434 2 30 nan 9 36 36 76561193665298434 3 40 nan 5 37 37 76561193665298434 4 50 nan 2 38 38 76561193665298434 5 60 nan 0 39 39 76561193665298434 6 70 nan 403 40 40 76561193665298434 7 130 nan 0 41 41 76561193665298434 8 80 nan 6 42 42 76561193665298434 9 100 nan 10 43 43 76561193665298434 10 220 nan 14
IIUC based on attached piece of the dataframe it seems that you should analyze b.index, not values of b. Just look: b = apps.groupby('appid').size() In [24]: b Out[24]: appid 10 2 20 2 30 2 40 2 50 2 60 2 70 2 80 2 100 2 130 2 220 2 240 1 280 1 300 1 320 1 340 1 360 1 380 1 400 1 420 1 500 1 550 1 620 1 dtype: int64 In [25]: set(b) Out[25]: {1, 2} But if you do it for b.index you'll get the same values for all 3 methods: blist = b.index.unique() In [30]: len(apps_list), len(blist), len(set(b.index)) Out[30]: (23, 23, 23)