Related
I have a 3d velocity vector field in a numpy array of shape (zlength, ylength, xlength, 3). The '3' contains the velocity components (u,v,w).
I can quite easily plot the vector field in the orthogonal x-y, x-z, and y-z planes using quiver, e.g.
X, Y = np.meshgrid(xvalues, yvalues)
xyfieldfig = plt.figure()
xyfieldax = xyfieldfig.add_subplot(111)
Q1 = xyfieldax.quiver(X, Y, velocity_field[zslice,:,:,0], velocity_field[zslice,:,:,1])
However, I'd like to be able to view the velocity field within an arbitrary plane.
I tried to project the velocity field onto a plane by doing:
projected_field = np.zeros(zlength,ylength,xlength,3)
normal = (nx,ny,nz) #normalised normal to the plane
for i in range(zlength):
for j in range(ylength):
for k in range(xlength):
projected_field[i,j,m] = velocity_field[i,j,m] - np.dot(velocity_field[i,j,m], normal)*normal
However, this (of course) still leaves me with a 3d numpy array with the same shape: (zlength, ylength, xlength, 3). The projected_field now contains velocity vectors at each (x,y,z) position that lie within planes at each local (x,y,z) position.
How do I project velocity_field onto a single plane? Or, how do I now plot my projected_field along one plane?
Thanks in advance!
You're close. Daniel F's suggestion was right, you just need to know how to do the interpolation. Here's a worked example
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
import scipy.interpolate
def norm(v,axis=0):
return np.sqrt(np.sum(v**2,axis=axis))
#Original velocity field
xpoints = np.arange(-.2, .21, 0.05)
ypoints = np.arange(-.2, .21, 0.05)
zpoints = np.arange(-.2, .21, 0.05)
x, y, z = np.meshgrid(xpoints,ypoints,zpoints,indexing='ij')
#Simple example
#(u,v,w) are the components of your velocity field
u = x
v = y
w = z
#Setup a template for the projection plane. z-axis will be rotated to point
#along the plane normal
planex, planey, planez =
np.meshgrid(np.arange(-.2,.2001,.1),
np.arange(-.2,.2001,.1), [0.1],
indexing='ij')
planeNormal = np.array([0.1,0.4,.4])
planeNormal /= norm(planeNormal)
#pick an arbirtrary vector for projection x-axis
u0 = np.array([-(planeNormal[2] + planeNormal[1])/planeNormal[0], 1, 1])
u1 = -np.cross(planeNormal,u0)
u0 /= norm(u0)
u1 /= norm(u1)
#rotation matrix
rotation = np.array([u0,u1,planeNormal]).T
#Rotate plane to get projection vertices
rotatedVertices = rotation.dot( np.array( [planex.flatten(), planey.flatten(), planez.flatten()]) ).T
#Now you can interpolate gridded vector field to rotated vertices
uprime = scipy.interpolate.interpn( (xpoints,ypoints,zpoints), u, rotatedVertices, bounds_error=False )
vprime = scipy.interpolate.interpn( (xpoints,ypoints,zpoints), v, rotatedVertices, bounds_error=False )
wprime = scipy.interpolate.interpn( (xpoints,ypoints,zpoints), w, rotatedVertices, bounds_error=False )
#Projections
cosineMagnitudes = planeNormal.dot( np.array([uprime,vprime,wprime]) )
uProjected = uprime - planeNormal[0]*cosineMagnitudes
vProjected = vprime - planeNormal[1]*cosineMagnitudes
wProjected = wprime - planeNormal[2]*cosineMagnitudes
The number of lines could be reduced using some tensordot operations if you wanted to get fancy. Also this or some close variant it would work without indexing='ij' in meshgrid.
Original field:
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.quiver(x, y, z, u, v, w, length=0.1, normalize=True)
Projected field:
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.quiver(rotatedVertices[:,0], rotatedVertices[:,1], rotatedVertices[:,2],
uprime, vprime,wprime, length=0.5, color='blue', label='Interpolation only')
ax.quiver(rotatedVertices[:,0], rotatedVertices[:,1], rotatedVertices[:,2],
uProjected, vProjected, wProjected, length=0.5, color='red', label='Interpolation + Projection')
plt.legend()
I would like to plot a heat map on the unit sphere using the matplotlib library of python. There are several places where this question is discussed. Just like this: Heat Map half-sphere plot
I can do this partially. I can creat the sphere and the heatplot. I have coordinate matrices X,Y and Z, which have the same size. I have another variable of the same size as X, Y and Z, which contains scalars used to creat the heat map. However in case c contains scalars differ from zero in its first and last rows, just one polar cap will be colored but not the other. The code generates the above mentioned result is the next:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
#Creating the theta and phi values.
theta = np.linspace(0,np.pi,100,endpoint=True)
phi = np.linspace(0,np.pi*2,100,endpoint=True)
#Creating the coordinate grid for the unit sphere.
X = np.outer(np.sin(theta),np.cos(phi))
Y = np.outer(np.sin(theta),np.sin(phi))
Z = np.outer(np.cos(theta),np.ones(100))
#Creating a 2D matrix contains the values used to color the unit sphere.
c = np.zeros((100,100))
for i in range(100):
c[0,i] = 100
c[99,i] = 100
#Creat the plot.
fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
ax.set_axis_off()
ax.plot_surface(X,Y,Z, rstride=1, cstride=1, facecolors=cm.plasma(c/np.amax(c)), alpha=0.22, linewidth=1)
m = cm.ScalarMappable(cmap=cm.plasma)
m.set_array(c)
plt.colorbar(m)
#Show the plot.
plt.show()
The plot which was generated:
Could somebody help me what's going on here?
Thank you for your help in advance!
There are a number of small differences with your example but an
important one, namely the shape of the values array c.
As mentioned in another
answer the grid that
defines the surface is larger (by one in both dimensions) than the
grid that defines the value in each quadrangular patch, so that by
using a smaller array for c it is possible to choose correctly the
bands to color not only with respect to the beginnings of the c
array but also with respect to its ends, as I tried to demonstrate in
the following.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
# Creating the theta and phi values.
intervals = 8
ntheta = intervals
nphi = 2*intervals
theta = np.linspace(0, np.pi*1, ntheta+1)
phi = np.linspace(0, np.pi*2, nphi+1)
# Creating the coordinate grid for the unit sphere.
X = np.outer(np.sin(theta), np.cos(phi))
Y = np.outer(np.sin(theta), np.sin(phi))
Z = np.outer(np.cos(theta), np.ones(nphi+1))
# Creating a 2D array to be color-mapped on the unit sphere.
# {X, Y, Z}.shape → (ntheta+1, nphi+1) but c.shape → (ntheta, nphi)
c = np.zeros((ntheta, nphi)) + 0.4
# The poles are different
c[ :1, :] = 0.8
c[-1:, :] = 0.8
# as well as the zones across Greenwich
c[:, :1] = 0.0
c[:, -1:] = 0.0
# Creating the colormap thingies.
cm = mpl.cm.inferno
sm = mpl.cm.ScalarMappable(cmap=cm)
sm.set_array([])
# Creating the plot.
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=cm(c), alpha=0.3)
plt.colorbar(m)
# Showing the plot.
plt.show()
The values in the arrays define the edges of the grid. The color of the ith face is determined by the ith value in the color array. However, for n edges you only have n-1 faces, such that the last value is ignored.
E.g. if you have 4 grid values and 4 colors, the plot will have only the first three colors in the grid.
Thus a solution for the above would be to use a color array with one color less than gridpoints in each dimension.
c = np.zeros((99,99))
c[[0,98],:] = 100
I need to plot contour and quiver plots of scalar and vector fields defined on an uneven grid in (r,theta) coordinates.
As a minimal example of the problem I have, consider the contour plot of a Stream function for a magnetic dipole, contours of such a function are streamlines of the corresponeding vector field (in this case, the magnetic field).
The code below takes an uneven grid in (r,theta) coordinates, maps it to the cartesian plane and plots a contour plot of the stream function.
import numpy as np
import matplotlib.pyplot as plt
r = np.logspace(0,1,200)
theta = np.linspace(0,np.pi/2,100)
N_r = len(r)
N_theta = len(theta)
# Polar to cartesian coordinates
theta_matrix, r_matrix = np.meshgrid(theta, r)
x = r_matrix * np.cos(theta_matrix)
y = r_matrix * np.sin(theta_matrix)
m = 5
psi = np.zeros((N_r, N_theta))
# Stream function for a magnetic dipole
psi = m * np.sin(theta_matrix)**2 / r_matrix
contour_levels = m * np.sin(np.linspace(0, np.pi/2,40))**2.
fig, ax = plt.subplots()
# ax.plot(x,y,'b.') # plot grid points
ax.set_aspect('equal')
ax.contour(x, y, psi, 100, colors='black',levels=contour_levels)
plt.show()
For some reason though, the plot I get doesn't look right:
If I interchange x and y in the contour function call, I get the desired result:
Same thing happens when I try to make a quiver plot of a vector field defined on the same grid and mapped to the x-y plane, except that interchanging x and y in the function call no longer works.
It seems like I made a stupid mistake somewhere but I can't figure out what it is.
If psi = m * np.sin(theta_matrix)**2 / r_matrix
then psi increases as theta goes from 0 to pi/2 and psi decreases as r increases.
So a contour line for psi should increase in r as theta increases. That results
in a curve that goes counterclockwise as it radiates out from the center. This is
consistent with the first plot you posted, and the result returned by the first version of your code with
ax.contour(x, y, psi, 100, colors='black',levels=contour_levels)
An alternative way to confirm the plausibility of the result is to look at a surface plot of psi:
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as axes3d
r = np.logspace(0,1,200)
theta = np.linspace(0,np.pi/2,100)
N_r = len(r)
N_theta = len(theta)
# Polar to cartesian coordinates
theta_matrix, r_matrix = np.meshgrid(theta, r)
x = r_matrix * np.cos(theta_matrix)
y = r_matrix * np.sin(theta_matrix)
m = 5
# Stream function for a magnetic dipole
psi = m * np.sin(theta_matrix)**2 / r_matrix
contour_levels = m * np.sin(np.linspace(0, np.pi/2,40))**2.
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.set_aspect('equal')
ax.plot_surface(x, y, psi, rstride=8, cstride=8, alpha=0.3)
ax.contour(x, y, psi, colors='black',levels=contour_levels)
plt.show()
I am trying to use python3 and matplotlib (version 1.4.0) to plot a scalar function defined on the surface of a sphere. I would like to have faces distributed relatively evenly over the sphere, so I am not using a meshgrid. This has led me to use plot_trisurf to plot my function. I have tested it with a trivial scalar function, and am having the problem that there are rendering artefacts along the edges of the faces:
The code I used to create the plot is below:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.tri as mtri
from scipy.spatial import ConvexHull
def points_on_sphere(N):
""" Generate N evenly distributed points on the unit sphere centered at
the origin. Uses the 'Golden Spiral'.
Code by Chris Colbert from the numpy-discussion list.
"""
phi = (1 + np.sqrt(5)) / 2 # the golden ratio
long_incr = 2*np.pi / phi # how much to increment the longitude
dz = 2.0 / float(N) # a unit sphere has diameter 2
bands = np.arange(N) # each band will have one point placed on it
z = bands * dz - 1 + (dz/2) # the height z of each band/point
r = np.sqrt(1 - z*z) # project onto xy-plane
az = bands * long_incr # azimuthal angle of point modulo 2 pi
x = r * np.cos(az)
y = r * np.sin(az)
return x, y, z
def average_g(triples):
return np.mean([triple[2] for triple in triples])
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y, Z = points_on_sphere(2**12)
Triples = np.array(list(zip(X, Y, Z)))
hull = ConvexHull(Triples)
triangles = hull.simplices
colors = np.array([average_g([Triples[idx] for idx in triangle]) for
triangle in triangles])
collec = ax.plot_trisurf(mtri.Triangulation(X, Y, triangles),
Z, shade=False, cmap=plt.get_cmap('Blues'), array=colors,
edgecolors='none')
collec.autoscale()
plt.show()
This problem appears to have been discussed in this question, but I can't seem to figure out how to set the edgecolors to match the facecolors. The two things I've tried are setting edgecolors='face' and calling collec.set_edgecolors() with a variety of arguments, but those throw AttributeError: 'Poly3DCollection' object has no attribute '_facecolors2d'.
How am I supposed to set the edgecolor equal to the facecolor in a trisurf plot?
You can set antialiased argument of plot_trisurf() to False. Here is the result:
I'd like to plot implicit equation F(x,y,z) = 0 in 3D. Is it possible in Matplotlib?
You can trick matplotlib into plotting implicit equations in 3D. Just make a one-level contour plot of the equation for each z value within the desired limits. You can repeat the process along the y and z axes as well for a more solid-looking shape.
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
def plot_implicit(fn, bbox=(-2.5,2.5)):
''' create a plot of an implicit function
fn ...implicit function (plot where fn==0)
bbox ..the x,y,and z limits of plotted interval'''
xmin, xmax, ymin, ymax, zmin, zmax = bbox*3
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
A = np.linspace(xmin, xmax, 100) # resolution of the contour
B = np.linspace(xmin, xmax, 15) # number of slices
A1,A2 = np.meshgrid(A,A) # grid on which the contour is plotted
for z in B: # plot contours in the XY plane
X,Y = A1,A2
Z = fn(X,Y,z)
cset = ax.contour(X, Y, Z+z, [z], zdir='z')
# [z] defines the only level to plot for this contour for this value of z
for y in B: # plot contours in the XZ plane
X,Z = A1,A2
Y = fn(X,y,Z)
cset = ax.contour(X, Y+y, Z, [y], zdir='y')
for x in B: # plot contours in the YZ plane
Y,Z = A1,A2
X = fn(x,Y,Z)
cset = ax.contour(X+x, Y, Z, [x], zdir='x')
# must set plot limits because the contour will likely extend
# way beyond the displayed level. Otherwise matplotlib extends the plot limits
# to encompass all values in the contour.
ax.set_zlim3d(zmin,zmax)
ax.set_xlim3d(xmin,xmax)
ax.set_ylim3d(ymin,ymax)
plt.show()
Here's the plot of the Goursat Tangle:
def goursat_tangle(x,y,z):
a,b,c = 0.0,-5.0,11.8
return x**4+y**4+z**4+a*(x**2+y**2+z**2)**2+b*(x**2+y**2+z**2)+c
plot_implicit(goursat_tangle)
You can make it easier to visualize by adding depth cues with creative colormapping:
Here's how the OP's plot looks:
def hyp_part1(x,y,z):
return -(x**2) - (y**2) + (z**2) - 1
plot_implicit(hyp_part1, bbox=(-100.,100.))
Bonus: You can use python to functionally combine these implicit functions:
def sphere(x,y,z):
return x**2 + y**2 + z**2 - 2.0**2
def translate(fn,x,y,z):
return lambda a,b,c: fn(x-a,y-b,z-c)
def union(*fns):
return lambda x,y,z: np.min(
[fn(x,y,z) for fn in fns], 0)
def intersect(*fns):
return lambda x,y,z: np.max(
[fn(x,y,z) for fn in fns], 0)
def subtract(fn1, fn2):
return intersect(fn1, lambda *args:-fn2(*args))
plot_implicit(union(sphere,translate(sphere, 1.,1.,1.)), (-2.,3.))
Update: I finally have found an easy way to render 3D implicit surface with matplotlib and scikit-image, see my other answer. I left this one for whom is interested in plotting parametric 3D surfaces.
Motivation
Late answer, I just needed to do the same and I found another way to do it at some extent. So I am sharing this another perspective.
This post does not answer: (1) How to plot any implicit function F(x,y,z)=0? But does answer: (2) How to plot parametric surfaces (not all implicit functions, but some of them) using mesh with matplotlib?
#Paul's method has the advantage to be non parametric, therefore we can plot almost anything we want using contour method on each axe, it fully addresses (1). But matplotlib cannot easily build a mesh from this method, so we cannot directly get a surface from it, instead we get plane curves in all directions. This is what motivated my answer, I wanted to address (2).
Rendering mesh
If we are able to parametrize (this may be hard or impossible), with at most 2 parameters, the surface we want to plot then we can plot it with matplotlib.plot_trisurf method.
That is, from an implicit equation F(x,y,z)=0, if we are able to get a parametric system S={x=f(u,v), y=g(u,v), z=h(u,v)} then we can plot it easily with matplotlib without having to resort to contour.
Then, rendering such a 3D surface boils down to:
# Render:
ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z, triangles=tri.triangles, cmap='jet', antialiased=True)
Where (x, y, z) are vectors (not meshgrid, see ravel) functionally computed from parameters (u, v) and triangles parameter is a Triangulation derived from (u,v) parameters to shoulder the mesh construction.
Imports
Required imports are:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from matplotlib.tri import Triangulation
Some surfaces
Lets parametrize some surfaces...
Sphere
# Parameters:
theta = np.linspace(0, 2*np.pi, 20)
phi = np.linspace(0, np.pi, 20)
theta, phi = np.meshgrid(theta, phi)
rho = 1
# Parametrization:
x = np.ravel(rho*np.cos(theta)*np.sin(phi))
y = np.ravel(rho*np.sin(theta)*np.sin(phi))
z = np.ravel(rho*np.cos(phi))
# Triangulation:
tri = Triangulation(np.ravel(theta), np.ravel(phi))
Cone
theta = np.linspace(0, 2*np.pi, 20)
rho = np.linspace(-2, 2, 20)
theta, rho = np.meshgrid(theta, rho)
x = np.ravel(rho*np.cos(theta))
y = np.ravel(rho*np.sin(theta))
z = np.ravel(rho)
tri = Triangulation(np.ravel(theta), np.ravel(rho))
Torus
a, c = 1, 4
u = np.linspace(0, 2*np.pi, 20)
v = u.copy()
u, v = np.meshgrid(u, v)
x = np.ravel((c + a*np.cos(v))*np.cos(u))
y = np.ravel((c + a*np.cos(v))*np.sin(u))
z = np.ravel(a*np.sin(v))
tri = Triangulation(np.ravel(u), np.ravel(v))
Möbius Strip
u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(-1, 1, 20)
u, v = np.meshgrid(u, v)
x = np.ravel((2 + (v/2)*np.cos(u/2))*np.cos(u))
y = np.ravel((2 + (v/2)*np.cos(u/2))*np.sin(u))
z = np.ravel(v/2*np.sin(u/2))
tri = Triangulation(np.ravel(u), np.ravel(v))
Limitation
Most of the time, Triangulation is required in order to coordinate mesh construction of plot_trisurf method, and this object only accepts two parameters, so we are limited to 2D parametric surfaces. It is unlikely we could represent the Goursat Tangle with this method.
Matplotlib expects a series of points; it will do the plotting if you can figure out how to render your equation.
Referring to Is it possible to plot implicit equations using Matplotlib? Mike Graham's answer suggests using scipy.optimize to numerically explore the implicit function.
There is an interesting gallery at http://xrt.wikidot.com/gallery:implicit showing a variety of raytraced implicit functions - if your equation matches one of these, it might give you a better idea what you are looking at.
Failing that, if you care to share the actual equation, maybe someone can suggest an easier approach.
As far as I know, it is not possible. You have to solve this equation numerically by yourself. Using scipy.optimize is a good idea. The simplest case is that you know the range of the surface that you want to plot, and just make a regular grid in x and y, and try to solve equation F(xi,yi,z)=0 for z, giving a starting point of z. Following is a very dirty code that might help you
from scipy import *
from scipy import optimize
xrange = (0,1)
yrange = (0,1)
density = 100
startz = 1
def F(x,y,z):
return x**2+y**2+z**2-10
x = linspace(xrange[0],xrange[1],density)
y = linspace(yrange[0],yrange[1],density)
points = []
for xi in x:
for yi in y:
g = lambda z:F(xi,yi,z)
res = optimize.fsolve(g, startz, full_output=1)
if res[2] == 1:
zi = res[0]
points.append([xi,yi,zi])
points = array(points)
Actually there is an easy way to plot implicit 3D surface with the scikit-image package. The key is the marching_cubes method.
import numpy as np
from skimage import measure
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
Then we compute the function over a 3D meshgrid, in this example we use the goursat_tangle method #Paul defined in its answer:
xl = np.linspace(-3, 3, 50)
X, Y, Z = np.meshgrid(xl, xl, xl)
F = goursat_tangle(X, Y, Z)
The magic is happening here with marching_cubes:
verts, faces, normals, values = measure.marching_cubes(F, 0, spacing=[np.diff(xl)[0]]*3)
verts -= 3
We just need to correct vertices coordinates as they are expressed in Voxel coordinates (hence scaling using spacing switch and the subsequent origin shift).
Finally it is just about rendering the iso-surface using tri_surface:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(verts[:, 0], verts[:, 1], faces, verts[:, 2], cmap='jet', lw=0)
Which returns:
Have you looked at mplot3d on matplotlib?
Finally, I did it (I updated my matplotlib to 1.0.1).
Here is code:
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
def hyp_part1(x,y,z):
return -(x**2) - (y**2) + (z**2) - 1
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x_range = np.arange(-100,100,10)
y_range = np.arange(-100,100,10)
X,Y = np.meshgrid(x_range,y_range)
A = np.linspace(-100, 100, 15)
A1,A2 = np.meshgrid(A,A)
for z in A:
X,Y = A1, A2
Z = hyp_part1(X,Y,z)
ax.contour(X, Y, Z+z, [z], zdir='z')
for y in A:
X,Z= A1, A2
Y = hyp_part1(X,y,Z)
ax.contour(X, Y+y, Z, [y], zdir='y')
for x in A:
Y,Z = A1, A2
X = hyp_part1(x,Y,Z)
ax.contour(X+x, Y, Z, [x], zdir='x')
ax.set_zlim3d(-100,100)
ax.set_xlim3d(-100,100)
ax.set_ylim3d(-100,100)
Here is result:
Thank You, Paul!
MathGL (GPL plotting library) can plot it easily. Just create a data mesh with function values f[i,j,k] and use Surf3() function to make isosurface at value f[i,j,k]=0. See this sample.