How to properly sample truncated distributions? - python

I am trying to learn how to sample truncated distributions. To begin with I decided to try a simple example I found here example
I didn't really understand the division by the CDF, therefore I decided to tweak the algorithm a bit. Being sampled is an exponential distribution for values x>0 Here is an example python code:
# Sample exponential distribution for the case x>0
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
def pdf(x):
return x*np.exp(-x)
xvec=np.zeros(1000000)
x=1.
for i in range(1000000):
a=x+np.random.normal()
xs=x
if a > 0. :
xs=a
A=pdf(xs)/pdf(x)
if np.random.uniform()<A :
x=xs
xvec[i]=x
x=np.linspace(0,15,1000)
plt.plot(x,pdf(x))
plt.hist([x for x in xvec if x != 0],bins=150,normed=True)
plt.show()
Ant the output is:
The code above seems to work fine only for when using the condition if a > 0. :, i.e. positive x, choosing another condition (e.g. if a > 0.5 :) produces wrong results.
Since my final goal was to sample a 2D-Gaussian - pdf on a truncated interval I tried extending the simple example using the exponential distribution (see the code below). Unfortunately, since the simple case didn't work, I assume that the code given below would yield wrong results.
I assume that all this can be done using the advanced tools of python. However, since my primary idea was to understand the principle behind, I would greatly appreciate your help to understand my mistake.
Thank you for your help.
EDIT:
# code updated according to the answer of CrazyIvan
from scipy.stats import multivariate_normal
RANGE=100000
a=2.06072E-02
b=1.10011E+00
a_range=[0.001,0.5]
b_range=[0.01, 2.5]
cov=[[3.1313994E-05, 1.8013737E-03],[ 1.8013737E-03, 1.0421529E-01]]
x=a
y=b
j=0
for i in range(RANGE):
a_t,b_t=np.random.multivariate_normal([a,b],cov)
# accept if within bounds - all that is neded to truncate
if a_range[0]<a_t and a_t<a_range[1] and b_range[0]<b_t and b_t<b_range[1]:
print(dx,dy)
EDIT:
I changed the code by norming the analytic pdf according to this scheme, and according to the answers given by, #Crazy Ivan and #Leandro Caniglia , for the case where the bottom of the pdf is removed. That is dividing by (1-CDF(0.5)) since my accept condition is x>0.5. This seems again to show some discrepancies. Again the mystery prevails ..
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
def pdf(x):
return x*np.exp(-x)
# included the corresponding cdf
def cdf(x):
return 1. -np.exp(-x)-x*np.exp(-x)
xvec=np.zeros(1000000)
x=1.
for i in range(1000000):
a=x+np.random.normal()
xs=x
if a > 0.5 :
xs=a
A=pdf(xs)/pdf(x)
if np.random.uniform()<A :
x=xs
xvec[i]=x
x=np.linspace(0,15,1000)
# new part norm the analytic pdf to fix the area
plt.plot(x,pdf(x)/(1.-cdf(0.5)))
plt.hist([x for x in xvec if x != 0],bins=200,normed=True)
plt.savefig("test_exp.png")
plt.show()
It seems that this can be cured by choosing larger shift size
shift=15.
a=x+np.random.normal()*shift.
which is in general an issue of the Metropolis - Hastings. See the graph below:
I also checked shift=150
Bottom line is that changing the shift size definitely improves the convergence. The misery is why, since the Gaussian is unbounded.

You say you want to learn the basic idea of sampling a truncated distribution, but your source is a blog post about
Metropolis–Hastings algorithm? Do you actually need this "method for obtaining a sequence of random samples from a probability distribution for which direct sampling is difficult"? Taking this as your starting point is like learning English by reading Shakespeare.
Truncated normal
For truncated normal, basic rejection sampling is all you need: generate samples for original distribution, reject those outside of bounds. As Leandro Caniglia noted, you should not expect truncated distribution to have the same PDF except on a shorter interval — this is plain impossible because the area under the graph of a PDF is always 1. If you cut off stuff from sides, there has to be more in the middle; the PDF gets rescaled.
It's quite inefficient to gather samples one by one, when you need 100000. I would grab 100000 normal samples at once, accept only those that fit; then repeat until I have enough. Example of sampling truncated normal between amin and amax:
import numpy as np
n_samples = 100000
amin, amax = -1, 2
samples = np.zeros((0,)) # empty for now
while samples.shape[0] < n_samples:
s = np.random.normal(0, 1, size=(n_samples,))
accepted = s[(s >= amin) & (s <= amax)]
samples = np.concatenate((samples, accepted), axis=0)
samples = samples[:n_samples] # we probably got more than needed, so discard extra ones
And here is the comparison with the PDF curve, rescaled by division by cdf(amax) - cdf(amin) as explained above.
from scipy.stats import norm
_ = plt.hist(samples, bins=50, density=True)
t = np.linspace(-2, 3, 500)
plt.plot(t, norm.pdf(t)/(norm.cdf(amax) - norm.cdf(amin)), 'r')
plt.show()
Truncated multivariate normal
Now we want to keep the first coordinate between amin and amax, and the second between bmin and bmax. Same story, except there will be a 2-column array and the comparison with bounds is done in a relatively sneaky way:
(np.min(s - [amin, bmin], axis=1) >= 0) & (np.max(s - [amax, bmax], axis=1) <= 0)
This means: subtract amin, bmin from each row and keep only the rows where both results are nonnegative (meaning we had a >= amin and b >= bmin). Also do a similar thing with amax, bmax. Accept only the rows that meet both criteria.
n_samples = 10
amin, amax = -1, 2
bmin, bmax = 0.2, 2.4
mean = [0.3, 0.5]
cov = [[2, 1.1], [1.1, 2]]
samples = np.zeros((0, 2)) # 2 columns now
while samples.shape[0] < n_samples:
s = np.random.multivariate_normal(mean, cov, size=(n_samples,))
accepted = s[(np.min(s - [amin, bmin], axis=1) >= 0) & (np.max(s - [amax, bmax], axis=1) <= 0)]
samples = np.concatenate((samples, accepted), axis=0)
samples = samples[:n_samples, :]
Not going to plot, but here are some values: naturally, within bounds.
array([[ 0.43150033, 1.55775629],
[ 0.62339265, 1.63506963],
[-0.6723598 , 1.58053835],
[-0.53347361, 0.53513105],
[ 1.70524439, 2.08226558],
[ 0.37474842, 0.2512812 ],
[-0.40986396, 0.58783193],
[ 0.65967087, 0.59755193],
[ 0.33383214, 2.37651975],
[ 1.7513789 , 1.24469918]])

To compute the truncated density function pdf_t from the entire density function pdf, do the following:
Let [a, b] be the truncation interval; (x axis)
Let A := cdf(a) and B := cdf(b); (cdf = non-truncated cumulative distribution function)
Then pdf_t(x) := pdf(x) / (B - A) if x in [a, b] and 0 elsewhere.
In cases where a = -infinity (resp. b = +infinity), take A := 0 (resp. B := 1).
As for the "mystery" you see
please note that your blue curve is wrong. It is not the pdf of your truncated distribution, it is just the pdf of the non-truncated one, scaled by the correct amount (division by 1-cdf(0.5)). The actual truncated pdf curve starts with a vertical line on x = 0.5 which goes up until it reaches your current blue curve. In other words, you only scaled the curve but forgot to truncate it, in this case to the left. Such a truncation corresponds to the "0 elsewhere" part of step 3 in the algorithm above.

Related

Python: Kernel Density Estimation for positive values

I want to get kernel density estimation for positive data points. Using Python Scipy Stats package, I came up with the following code.
def get_pdf(data):
a = np.array(data)
ag = st.gaussian_kde(a)
x = np.linspace(0, max(data), max(data))
y = ag(x)
return x, y
This works perfectly for most data sets, but it gives an erroneous result for "all positive" data points. To make sure this works correctly, I use numerical integration to compute the area under this curve.
def trapezoidal_2(ag, a, b, n):
h = np.float(b - a) / n
s = 0.0
s += ag(a)[0]/2.0
for i in range(1, n):
s += ag(a + i*h)[0]
s += ag(b)[0]/2.0
return s * h
Since the data is spread in the region (0, int(max(data))), we should get a value close to 1, when executing the following line.
b = 1
data = st.pareto.rvs(b, size=10000)
data = list(data)
a = np.array(data)
ag = st.gaussian_kde(a)
trapezoidal_2(ag, 0, int(max(data)), int(max(data))*2)
But it gives a value close to 0.5 when I test.
But when I intergrate from -100 to max(data), it provides a value close to 1.
trapezoidal_2(ag, -100, int(max(data)), int(max(data))*2+200)
The reason is, ag (KDE) is defined for values less than 0, even though the original data set contains only positive values.
So how can I get a kernel density estimation that considers only positive values, such that area under the curve in the region (o, max(data)) is close to 1?
The choice of the bandwidth is quite important when performing kernel density estimation. I think the Scott's Rule and Silverman's Rule work well for distribution similar to a Gaussian. However, they do not work well for the Pareto distribution.
Quote from the doc:
Bandwidth selection strongly influences the estimate obtained from
the KDE (much more so than the actual shape of the kernel). Bandwidth selection
can be done by a "rule of thumb", by cross-validation, by "plug-in
methods" or by other means; see [3], [4] for reviews. gaussian_kde
uses a rule of thumb, the default is Scott's Rule.
Try with different bandwidth values, for example:
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
b = 1
sample = stats.pareto.rvs(b, size=3000)
kde_sample_scott = stats.gaussian_kde(sample, bw_method='scott')
kde_sample_scalar = stats.gaussian_kde(sample, bw_method=1e-3)
# Compute the integrale:
print('integrale scott:', kde_sample_scott.integrate_box_1d(0, np.inf))
print('integrale scalar:', kde_sample_scalar.integrate_box_1d(0, np.inf))
# Graph:
x_span = np.logspace(-2, 1, 550)
plt.plot(x_span, stats.pareto.pdf(x_span, b), label='theoretical pdf')
plt.plot(x_span, kde_sample_scott(x_span), label="estimated pdf 'scott'")
plt.plot(x_span, kde_sample_scalar(x_span), label="estimated pdf 'scalar'")
plt.xlabel('X'); plt.legend();
gives:
integrale scott: 0.5572130540733236
integrale scalar: 0.9999999999968957
and:
We see that the kde using the Scott method is wrong.

Eigen vectors in python giving seemingly random element-wise signs

I'm running the following code:
import numpy as np
import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
N = 100
t = 1
a1 = np.full((N-1,), -t)
a2 = np.full((N,), 2*t)
Hamiltonian = np.diag(a1, -1) + np.diag(a2) + np.diag(a1, 1)
eval, evec = np.linalg.eig(Hamiltonian)
idx = eval.argsort()[::-1]
eval, evec = eval[idx], evec[:,idx]
wave2 = evec[2] / np.sum(abs(evec[2]))
prob2 = evec[2]**2 / np.sum(evec[2]**2)
_ = plt.plot(wave2)
_ = plt.plot(prob2)
plt.show()
And the plot that comes out is this:
But I'd expect the blue line to be a sinoid as well. This has got me confused and I can't find what's causing the sudden sign changes. Plotting the function absolutely shows that the values associated with each x are fine, but the signs are screwed up.
Any ideas on what might cause this or how to solve it?
Here's a modified version of your script that does what you expected. The changes are:
Corrected the indexing for the eigenvectors; they are the columns of evec.
Use np.linalg.eigh instead of np.linalg.eig. This isn't strictly necessary, but you might as well use the more efficient code.
Don't reverse the order of the sorted eigenvalues. I keep the eigenvalues sorted from lowest to highest. Because eigh returns the eigenvalues in ascending order, I just commented out the code that sorts the eigenvalues.
(Only the first change is a required correction.)
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
N = 100
t = 1
a1 = np.full((N-1,), -t)
a2 = np.full((N,), 2*t)
Hamiltonian = np.diag(a1, -1) + np.diag(a2) + np.diag(a1, 1)
eval, evec = np.linalg.eigh(Hamiltonian)
#idx = eval.argsort()[::-1]
#eval, evec = eval[idx], evec[:,idx]
k = 2
wave2 = evec[:, k] / np.sum(abs(evec[:, k]))
prob2 = evec[:, k]**2 / np.sum(evec[:, k]**2)
_ = plt.plot(wave2)
_ = plt.plot(prob2)
plt.show()
The plot:
I may be wrong, but aren't they all valid eigen vectors/values? The sign shouldn't matter, as the definition of an eigen vector is:
In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that only changes by an overall scale when that linear transformation is applied to it.
Just because the scale is negative doesn't mean it isn't valid.
See this post about Matlab's eig that has a similar problem
One way to fix this is to simply pick a sign for the start, and multiply everthing by -1 that doesn't fit that sign (or take abs of every element and multiply by your expected sign). For your results this should work (nothing crosses 0).
Neither matlab nor numpy care about what you are trying to solve, its simple mathematics that dictates that both signed eigenvector/value combinations are valid, your values are sinusoidal, its just that there exists two sets of eigenvector/values that work (negative and positive)

Autocorrelation code in Python produces errors (guitar pitch detection)

This link provides code for an autocorrelation-based pitch detection algorithm. I am using it to detect pitches in simple guitar melodies.
In general, it produces very good results. For example, for the melody C4, C#4, D4, D#4, E4 it outputs:
262.743653536
272.144441273
290.826273006
310.431336809
327.094621169
Which correlates to the correct notes.
However, in some cases like this audio file (E4, F4, F#4, G4, G#4, A4, A#4, B4) it produces errors:
325.861452246
13381.6439242
367.518651703
391.479384923
414.604661221
218.345286173
466.503751322
244.994090035
More specifically, there are three errors here: 13381Hz is wrongly detected instead of F4 (~350Hz) (weird error), and also 218Hz instead of A4 (440Hz) and 244Hz instead of B4 (~493Hz), which are octave errors.
I assume the two errors are caused by something different? Here is the code:
slices = segment_signal(y, sr)
for segment in slices:
pitch = freq_from_autocorr(segment, sr)
print pitch
def segment_signal(y, sr, onset_frames=None, offset=0.1):
if (onset_frames == None):
onset_frames = remove_dense_onsets(librosa.onset.onset_detect(y=y, sr=sr))
offset_samples = int(librosa.time_to_samples(offset, sr))
print onset_frames
slices = np.array([y[i : i + offset_samples] for i
in librosa.frames_to_samples(onset_frames)])
return slices
You can see the freq_from_autocorr function in the first link above.
The only think that I have changed is this line:
corr = corr[len(corr)/2:]
Which I have replaced with:
corr = corr[int(len(corr)/2):]
UPDATE:
I noticed the smallest the offset I use (the smallest the signal segment I use to detect each pitch), the more high-frequency (10000+ Hz) errors I get.
Specifically, I noticed that the part that goes differently in those cases (10000+ Hz) is the calculation of the i_peak value. When in cases with no error it is in the range of 50-150, in the case of the error it is 3-5.
The autocorrelation function in the code snippet that you linked is not particularly robust. In order to get the correct result, it needs to locate the first peak on the left hand side of the autocorrelation curve. The method that the other developer used (calling the numpy.argmax() function) does not always find the correct value.
I've implemented a slightly more robust version, using the peakutils package. I don't promise that it's perfectly robust either, but in any case it achieves a better result than the version of the freq_from_autocorr() function that you were previously using.
My example solution is listed below:
import librosa
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import fftconvolve
from pprint import pprint
import peakutils
def freq_from_autocorr(signal, fs):
# Calculate autocorrelation (same thing as convolution, but with one input
# reversed in time), and throw away the negative lags
signal -= np.mean(signal) # Remove DC offset
corr = fftconvolve(signal, signal[::-1], mode='full')
corr = corr[len(corr)//2:]
# Find the first peak on the left
i_peak = peakutils.indexes(corr, thres=0.8, min_dist=5)[0]
i_interp = parabolic(corr, i_peak)[0]
return fs / i_interp, corr, i_interp
def parabolic(f, x):
"""
Quadratic interpolation for estimating the true position of an
inter-sample maximum when nearby samples are known.
f is a vector and x is an index for that vector.
Returns (vx, vy), the coordinates of the vertex of a parabola that goes
through point x and its two neighbors.
Example:
Defining a vector f with a local maximum at index 3 (= 6), find local
maximum if points 2, 3, and 4 actually defined a parabola.
In [3]: f = [2, 3, 1, 6, 4, 2, 3, 1]
In [4]: parabolic(f, argmax(f))
Out[4]: (3.2142857142857144, 6.1607142857142856)
"""
xv = 1/2. * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x
yv = f[x] - 1/4. * (f[x-1] - f[x+1]) * (xv - x)
return (xv, yv)
# Time window after initial onset (in units of seconds)
window = 0.1
# Open the file and obtain the sampling rate
y, sr = librosa.core.load("./Vocaroo_s1A26VqpKgT0.mp3")
idx = np.arange(len(y))
# Set the window size in terms of number of samples
winsamp = int(window * sr)
# Calcualte the onset frames in the usual way
onset_frames = librosa.onset.onset_detect(y=y, sr=sr)
onstm = librosa.frames_to_time(onset_frames, sr=sr)
fqlist = [] # List of estimated frequencies, one per note
crlist = [] # List of autocorrelation arrays, one array per note
iplist = [] # List of peak interpolated peak indices, one per note
for tm in onstm:
startidx = int(tm * sr)
freq, corr, ip = freq_from_autocorr(y[startidx:startidx+winsamp], sr)
fqlist.append(freq)
crlist.append(corr)
iplist.append(ip)
pprint(fqlist)
# Choose which notes to plot (it's set to show all 8 notes in this case)
plidx = [0, 1, 2, 3, 4, 5, 6, 7]
# Plot amplitude curves of all notes in the plidx list
fgwin = plt.figure(figsize=[8, 10])
fgwin.subplots_adjust(bottom=0.0, top=0.98, hspace=0.3)
axwin = []
ii = 1
for tm in onstm[plidx]:
axwin.append(fgwin.add_subplot(len(plidx)+1, 1, ii))
startidx = int(tm * sr)
axwin[-1].plot(np.arange(startidx, startidx+winsamp), y[startidx:startidx+winsamp])
ii += 1
axwin[-1].set_xlabel('Sample ID Number', fontsize=18)
fgwin.show()
# Plot autocorrelation function of all notes in the plidx list
fgcorr = plt.figure(figsize=[8,10])
fgcorr.subplots_adjust(bottom=0.0, top=0.98, hspace=0.3)
axcorr = []
ii = 1
for cr, ip in zip([crlist[ii] for ii in plidx], [iplist[ij] for ij in plidx]):
if ii == 1:
shax = None
else:
shax = axcorr[0]
axcorr.append(fgcorr.add_subplot(len(plidx)+1, 1, ii, sharex=shax))
axcorr[-1].plot(np.arange(500), cr[0:500])
# Plot the location of the leftmost peak
axcorr[-1].axvline(ip, color='r')
ii += 1
axcorr[-1].set_xlabel('Time Lag Index (Zoomed)', fontsize=18)
fgcorr.show()
The printed output looks like:
In [1]: %run autocorr.py
[325.81996740236065,
346.43374761017725,
367.12435233192753,
390.17291696559079,
412.9358117076161,
436.04054933498134,
465.38986619237039,
490.34120132405866]
The first figure produced by my code sample depicts the amplitude curves for the next 0.1 seconds following each detected onset time:
The second figure produced by the code shows the autocorrelation curves, as computed inside of the freq_from_autocorr() function. The vertical red lines depict the location of the first peak on the left for each curve, as estimated by the peakutils package. The method used by the other developer was getting incorrect results for some of these red lines; that's why his version of that function was occasionally returning the wrong frequencies.
My suggestion would be to test the revised version of the freq_from_autocorr() function on other recordings, see if you can find more challenging examples where even the improved version still gives incorrect results, and then get creative and try to develop an even more robust peak finding algorithm that never, ever mis-fires.
The autocorrelation method is not always right. You may want to implement a more sophisticated method like YIN:
http://audition.ens.fr/adc/pdf/2002_JASA_YIN.pdf
or MPM:
http://www.cs.otago.ac.nz/tartini/papers/A_Smarter_Way_to_Find_Pitch.pdf
Both of the above papers are good reads.

find peaks location in a spectrum numpy

I have a TOF spectrum and I would like to implement an algorithm using python (numpy) that finds all the maxima of the spectrum and returns the corresponding x values.
I have looked up online and I found the algorithm reported below.
The assumption here is that near the maximum the difference between the value before and the value at the maximum is bigger than a number DELTA. The problem is that my spectrum is composed of points equally distributed, even near the maximum, so that DELTA is never exceeded and the function peakdet returns an empty array.
Do you have any idea how to overcome this problem? I would really appreciate comments to understand better the code since I am quite new in python.
Thanks!
import sys
from numpy import NaN, Inf, arange, isscalar, asarray, array
def peakdet(v, delta, x = None):
maxtab = []
mintab = []
if x is None:
x = arange(len(v))
v = asarray(v)
if len(v) != len(x):
sys.exit('Input vectors v and x must have same length')
if not isscalar(delta):
sys.exit('Input argument delta must be a scalar')
if delta <= 0:
sys.exit('Input argument delta must be positive')
mn, mx = Inf, -Inf
mnpos, mxpos = NaN, NaN
lookformax = True
for i in arange(len(v)):
this = v[i]
if this > mx:
mx = this
mxpos = x[i]
if this < mn:
mn = this
mnpos = x[i]
if lookformax:
if this < mx-delta:
maxtab.append((mxpos, mx))
mn = this
mnpos = x[i]
lookformax = False
else:
if this > mn+delta:
mintab.append((mnpos, mn))
mx = this
mxpos = x[i]
lookformax = True
return array(maxtab), array(mintab)
Below is shown part of the spectrum. I actually have more peaks than those shown here.
This, I think could work as a starting point. I'm not a signal-processing expert, but I tried this on a generated signal Y that looks quite like yours and one with much more noise:
from scipy.signal import convolve
import numpy as np
from matplotlib import pyplot as plt
#Obtaining derivative
kernel = [1, 0, -1]
dY = convolve(Y, kernel, 'valid')
#Checking for sign-flipping
S = np.sign(dY)
ddS = convolve(S, kernel, 'valid')
#These candidates are basically all negative slope positions
#Add one since using 'valid' shrinks the arrays
candidates = np.where(dY < 0)[0] + (len(kernel) - 1)
#Here they are filtered on actually being the final such position in a run of
#negative slopes
peaks = sorted(set(candidates).intersection(np.where(ddS == 2)[0] + 1))
plt.plot(Y)
#If you need a simple filter on peak size you could use:
alpha = -0.0025
peaks = np.array(peaks)[Y[peaks] < alpha]
plt.scatter(peaks, Y[peaks], marker='x', color='g', s=40)
The sample outcomes:
For the noisy one, I filtered peaks with alpha:
If the alpha needs more sophistication you could try dynamically setting alpha from the peaks discovered using e.g. assumptions about them being a mixed gaussian (my favourite being the Otsu threshold, exists in cv and skimage) or some sort of clustering (k-means could work).
And for reference, this I used to generate the signal:
Y = np.zeros(1000)
def peaker(Y, alpha=0.01, df=2, loc=-0.005, size=-.0015, threshold=0.001, decay=0.5):
peaking = False
for i, v in enumerate(Y):
if not peaking:
peaking = np.random.random() < alpha
if peaking:
Y[i] = loc + size * np.random.chisquare(df=2)
continue
elif Y[i - 1] < threshold:
peaking = False
if i > 0:
Y[i] = Y[i - 1] * decay
peaker(Y)
EDIT: Support for degrading base-line
I simulated a slanting base-line by doing this:
Z = np.log2(np.arange(Y.size) + 100) * 0.001
Y = Y + Z[::-1] - Z[-1]
Then to detect with a fixed alpha (note that I changed sign on alpha):
from scipy.signal import medfilt
alpha = 0.0025
Ybase = medfilt(Y, 51) # 51 should be large in comparison to your peak X-axis lengths and an odd number.
peaks = np.array(peaks)[Ybase[peaks] - Y[peaks] > alpha]
Resulting in the following outcome (the base-line is plotted as dashed black line):
EDIT 2: Simplification and a comment
I simplified the code to use one kernel for both convolves as #skymandr commented. This also removed the magic number in adjusting the shrinkage so that any size of the kernel should do.
For the choice of "valid" as option to convolve. It would probably have worked just as well with "same", but I choose "valid" so I didn't have to think about the edge-conditions and if the algorithm could detect spurios peaks there.
As of SciPy version 1.1, you can also use find_peaks:
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import find_peaks
np.random.seed(0)
Y = np.zeros(1000)
# insert #deinonychusaur's peaker function here
peaker(Y)
# make data noisy
Y = Y + 10e-4 * np.random.randn(len(Y))
# find_peaks gets the maxima, so we multiply our signal by -1
Y *= -1
# get the actual peaks
peaks, _ = find_peaks(Y, height=0.002)
# multiply back for plotting purposes
Y *= -1
plt.plot(Y)
plt.plot(peaks, Y[peaks], "x")
plt.show()
This will plot (note that we use height=0.002 which will only find peaks higher than 0.002):
In addition to height, we can also set the minimal distance between two peaks. If you use distance=100, the plot then looks as follows:
You can use
peaks, _ = find_peaks(Y, height=0.002, distance=100)
in the code above.
After looking at the answers and suggestions I decided to offer a solution I often use because it is straightforward and easier to tweak.
It uses a sliding window and counts how many times a local peak appears as a maximum as window shifts along the x-axis. As #DrV suggested, no universal definition of "local maximum" exists, meaning that some tuning parameters are unavoidable. This function uses "window size" and "frequency" to fine tune the outcome. Window size is measured in number of data points of independent variable (x) and frequency counts how sensitive should peak detection be (also expressed as a number of data points; lower values of frequency produce more peaks and vice versa). The main function is here:
def peak_finder(x0, y0, window_size, peak_threshold):
# extend x, y using window size
y = numpy.concatenate([y0, numpy.repeat(y0[-1], window_size)])
x = numpy.concatenate([x0, numpy.arange(x0[-1], x0[-1]+window_size)])
local_max = numpy.zeros(len(x0))
for ii in range(len(x0)):
local_max[ii] = x[y[ii:(ii + window_size)].argmax() + ii]
u, c = numpy.unique(local_max, return_counts=True)
i_return = numpy.where(c>=peak_threshold)[0]
return(list(zip(u[i_return], c[i_return])))
along with a snippet used to produce the figure shown below:
import numpy
from matplotlib import pyplot
def plot_case(axx, w_f):
p = peak_finder(numpy.arange(0, len(Y)), -Y, w_f[0], w_f[1])
r = .9*min(Y)/10
axx.plot(Y)
for ip in p:
axx.text(ip[0], r + Y[int(ip[0])], int(ip[0]),
rotation=90, horizontalalignment='center')
yL = pyplot.gca().get_ylim()
axx.set_ylim([1.15*min(Y), yL[1]])
axx.set_xlim([-50, 1100])
axx.set_title(f'window: {w_f[0]}, count: {w_f[1]}', loc='left', fontsize=10)
return(None)
window_frequency = {1:(15, 15), 2:(100, 100), 3:(100, 5)}
f, ax = pyplot.subplots(1, 3, sharey='row', figsize=(9, 4),
gridspec_kw = {'hspace':0, 'wspace':0, 'left':.08,
'right':.99, 'top':.93, 'bottom':.06})
for k, v in window_frequency.items():
plot_case(ax[k-1], v)
pyplot.show()
Three cases show parameter values that render (from left to right panel):
(1) too many, (2) too few, and (3) an intermediate amount of peaks.
To generate Y data, I used the function #deinonychusaur gave above, and added some noise to it from #Cleb's answer.
I hope some might find this useful, but it's efficiency primarily depends on actual peak shapes and distances.
Finding a minimum or a maximum is not that simple, because there is no universal definition for "local maximum".
Your code seems to look for a miximum and then accept it as a maximum if the signal falls after the maximum below the maximum minus some delta value. After that it starts to look for a minimum with similar criteria. It does not really matter if your data falls or rises slowly, as the maximum is recorded when it is reached and appended to the list of maxima once the level fallse below the hysteresis threshold.
This is a possible way to find local minima and maxima, but it has several shortcomings. One of them is that the method is not symmetric, i.e. if the same data is run backwards, the results are not necessarily the same.
Unfortunately, I cannot help much more, because the correct method really depends on the data you are looking at, its shape and its noisiness. If you have some samples, then we might be able to come up with some suggestions.

statistics for histogram of periodic data

For a series of angle values in (-pi, pi) range, I make a histogram. Is there an effective way to calculate a mean and modal (post probable) value? Consider following examples:
import numpy as N, cmath
deg = N.pi/180.
d = N.array([-175., 170, 175, 179, -179])*deg
i = N.sum(N.exp(1j*d))
ave = cmath.phase(i)
i /= float(d.size)
stdev = -2. * N.log(N.sqrt(i.real**2 + i.imag**2))
print ave/deg, stdev/deg
Now, let's have a histogram:
counts, bins = N.histogram(data, N.linspace(-N.pi, N.pi, 360))
Is it possible to calculate mean, mode having counts and bins? For non-periodic data, calculation of a mean is straightforward:
ave = sum(counts*bins[:-1])
Calculations of a modal value requires more effort. Actually, I'm not sure my code below is correct: firstly, I identify bins which occur most frequently and then I calculate an arithmetic mean:
cmax = bins[N.argmax(counts)]
mode = N.mean(N.take(bins, N.nonzero(counts == cmax)[0]))
I have no idea, how to calculate standard deviation from such data, though. One obvious solution to all my problems (at least those described above) is to convert histogram data to a data series and then use it in calculations. This is not elegant, however, and inefficient.
Any hints will be very appreciated.
This is the partial solution I wrote.
import numpy as N, cmath
import scipy.stats as ST
d = [-175, 170.2, 175.57, 179, -179, 170.2, 175.57, 170.2]
deg = N.pi/180.
data = N.array(d)*deg
i = N.sum(N.exp(1j*data))
ave = cmath.phase(i) # correct and exact mean for periodic data
wrong_ave = N.mean(d)
i /= float(data.size)
stdev = -2. * N.log(N.sqrt(i.real**2 + i.imag**2))
wrong_stdev = N.std(d)
bins = N.linspace(-N.pi, N.pi, 360)
counts, bins = N.histogram(data, bins, normed=False)
# consider it weighted vector addition
nz = N.nonzero(counts)[0]
weight = counts[nz]
i = N.sum(weight * N.exp(1j*bins[nz])/len(nz))
pave = cmath.phase(i) # correct and approximated mean for periodic data
i /= sum(weight)/float(len(nz))
pstdev = -2. * N.log(N.sqrt(i.real**2 + i.imag**2))
print
print 'scipy: %12.3f (mean) %12.3f (stdev)' % (ST.circmean(data)/deg, \
ST.circstd(data)/deg)
When run, it gives following results:
mean: 175.840 85.843 175.360
stdev: 0.472 151.785 0.430
scipy: 175.840 (mean) 3.673 (stdev)
A few comments now: the first column gives mean/stdev calculated. As can be seen, the mean agrees well with scipy.stats.circmean (thanks JoeKington for pointing it out). Unfortunately stdev differs. I will look at it later. The second column gives completely wrong results (non-periodic mean/std from numpy obviously does not work here). The 3rd column gives sth I wanted to obtain from the histogram data (#JoeKington: my raw data won't fit memory of my computer.., #dmytro: thanks for your input: of course, bin size will influence result but in my application I don't have much choice, i.e. I have to reduce data somehow). As can be seen, the mean (3rd column) is properly calculated, stdev needs further attention :)
Have a look at scipy.stats.circmean and scipy.stats.circstd.
Or do you only have the histogram counts, and not the "raw" data? If so, you could fit a Von Mises distribution to your histogram counts and approximate the mean and stddev in that way.
Here's how to get an approximation.
Since Var(x) = <x^2> - <x>^2, we have:
meanX = N.sum(counts * bins[:-1]) / N.sum(counts)
meanX2 = N.sum(counts * bins[:-1]**2) / N.sum(counts)
std = N.sqrt(meanX2 - meanX**2)

Categories

Resources