find peaks location in a spectrum numpy - python

I have a TOF spectrum and I would like to implement an algorithm using python (numpy) that finds all the maxima of the spectrum and returns the corresponding x values.
I have looked up online and I found the algorithm reported below.
The assumption here is that near the maximum the difference between the value before and the value at the maximum is bigger than a number DELTA. The problem is that my spectrum is composed of points equally distributed, even near the maximum, so that DELTA is never exceeded and the function peakdet returns an empty array.
Do you have any idea how to overcome this problem? I would really appreciate comments to understand better the code since I am quite new in python.
Thanks!
import sys
from numpy import NaN, Inf, arange, isscalar, asarray, array
def peakdet(v, delta, x = None):
maxtab = []
mintab = []
if x is None:
x = arange(len(v))
v = asarray(v)
if len(v) != len(x):
sys.exit('Input vectors v and x must have same length')
if not isscalar(delta):
sys.exit('Input argument delta must be a scalar')
if delta <= 0:
sys.exit('Input argument delta must be positive')
mn, mx = Inf, -Inf
mnpos, mxpos = NaN, NaN
lookformax = True
for i in arange(len(v)):
this = v[i]
if this > mx:
mx = this
mxpos = x[i]
if this < mn:
mn = this
mnpos = x[i]
if lookformax:
if this < mx-delta:
maxtab.append((mxpos, mx))
mn = this
mnpos = x[i]
lookformax = False
else:
if this > mn+delta:
mintab.append((mnpos, mn))
mx = this
mxpos = x[i]
lookformax = True
return array(maxtab), array(mintab)
Below is shown part of the spectrum. I actually have more peaks than those shown here.

This, I think could work as a starting point. I'm not a signal-processing expert, but I tried this on a generated signal Y that looks quite like yours and one with much more noise:
from scipy.signal import convolve
import numpy as np
from matplotlib import pyplot as plt
#Obtaining derivative
kernel = [1, 0, -1]
dY = convolve(Y, kernel, 'valid')
#Checking for sign-flipping
S = np.sign(dY)
ddS = convolve(S, kernel, 'valid')
#These candidates are basically all negative slope positions
#Add one since using 'valid' shrinks the arrays
candidates = np.where(dY < 0)[0] + (len(kernel) - 1)
#Here they are filtered on actually being the final such position in a run of
#negative slopes
peaks = sorted(set(candidates).intersection(np.where(ddS == 2)[0] + 1))
plt.plot(Y)
#If you need a simple filter on peak size you could use:
alpha = -0.0025
peaks = np.array(peaks)[Y[peaks] < alpha]
plt.scatter(peaks, Y[peaks], marker='x', color='g', s=40)
The sample outcomes:
For the noisy one, I filtered peaks with alpha:
If the alpha needs more sophistication you could try dynamically setting alpha from the peaks discovered using e.g. assumptions about them being a mixed gaussian (my favourite being the Otsu threshold, exists in cv and skimage) or some sort of clustering (k-means could work).
And for reference, this I used to generate the signal:
Y = np.zeros(1000)
def peaker(Y, alpha=0.01, df=2, loc=-0.005, size=-.0015, threshold=0.001, decay=0.5):
peaking = False
for i, v in enumerate(Y):
if not peaking:
peaking = np.random.random() < alpha
if peaking:
Y[i] = loc + size * np.random.chisquare(df=2)
continue
elif Y[i - 1] < threshold:
peaking = False
if i > 0:
Y[i] = Y[i - 1] * decay
peaker(Y)
EDIT: Support for degrading base-line
I simulated a slanting base-line by doing this:
Z = np.log2(np.arange(Y.size) + 100) * 0.001
Y = Y + Z[::-1] - Z[-1]
Then to detect with a fixed alpha (note that I changed sign on alpha):
from scipy.signal import medfilt
alpha = 0.0025
Ybase = medfilt(Y, 51) # 51 should be large in comparison to your peak X-axis lengths and an odd number.
peaks = np.array(peaks)[Ybase[peaks] - Y[peaks] > alpha]
Resulting in the following outcome (the base-line is plotted as dashed black line):
EDIT 2: Simplification and a comment
I simplified the code to use one kernel for both convolves as #skymandr commented. This also removed the magic number in adjusting the shrinkage so that any size of the kernel should do.
For the choice of "valid" as option to convolve. It would probably have worked just as well with "same", but I choose "valid" so I didn't have to think about the edge-conditions and if the algorithm could detect spurios peaks there.

As of SciPy version 1.1, you can also use find_peaks:
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import find_peaks
np.random.seed(0)
Y = np.zeros(1000)
# insert #deinonychusaur's peaker function here
peaker(Y)
# make data noisy
Y = Y + 10e-4 * np.random.randn(len(Y))
# find_peaks gets the maxima, so we multiply our signal by -1
Y *= -1
# get the actual peaks
peaks, _ = find_peaks(Y, height=0.002)
# multiply back for plotting purposes
Y *= -1
plt.plot(Y)
plt.plot(peaks, Y[peaks], "x")
plt.show()
This will plot (note that we use height=0.002 which will only find peaks higher than 0.002):
In addition to height, we can also set the minimal distance between two peaks. If you use distance=100, the plot then looks as follows:
You can use
peaks, _ = find_peaks(Y, height=0.002, distance=100)
in the code above.

After looking at the answers and suggestions I decided to offer a solution I often use because it is straightforward and easier to tweak.
It uses a sliding window and counts how many times a local peak appears as a maximum as window shifts along the x-axis. As #DrV suggested, no universal definition of "local maximum" exists, meaning that some tuning parameters are unavoidable. This function uses "window size" and "frequency" to fine tune the outcome. Window size is measured in number of data points of independent variable (x) and frequency counts how sensitive should peak detection be (also expressed as a number of data points; lower values of frequency produce more peaks and vice versa). The main function is here:
def peak_finder(x0, y0, window_size, peak_threshold):
# extend x, y using window size
y = numpy.concatenate([y0, numpy.repeat(y0[-1], window_size)])
x = numpy.concatenate([x0, numpy.arange(x0[-1], x0[-1]+window_size)])
local_max = numpy.zeros(len(x0))
for ii in range(len(x0)):
local_max[ii] = x[y[ii:(ii + window_size)].argmax() + ii]
u, c = numpy.unique(local_max, return_counts=True)
i_return = numpy.where(c>=peak_threshold)[0]
return(list(zip(u[i_return], c[i_return])))
along with a snippet used to produce the figure shown below:
import numpy
from matplotlib import pyplot
def plot_case(axx, w_f):
p = peak_finder(numpy.arange(0, len(Y)), -Y, w_f[0], w_f[1])
r = .9*min(Y)/10
axx.plot(Y)
for ip in p:
axx.text(ip[0], r + Y[int(ip[0])], int(ip[0]),
rotation=90, horizontalalignment='center')
yL = pyplot.gca().get_ylim()
axx.set_ylim([1.15*min(Y), yL[1]])
axx.set_xlim([-50, 1100])
axx.set_title(f'window: {w_f[0]}, count: {w_f[1]}', loc='left', fontsize=10)
return(None)
window_frequency = {1:(15, 15), 2:(100, 100), 3:(100, 5)}
f, ax = pyplot.subplots(1, 3, sharey='row', figsize=(9, 4),
gridspec_kw = {'hspace':0, 'wspace':0, 'left':.08,
'right':.99, 'top':.93, 'bottom':.06})
for k, v in window_frequency.items():
plot_case(ax[k-1], v)
pyplot.show()
Three cases show parameter values that render (from left to right panel):
(1) too many, (2) too few, and (3) an intermediate amount of peaks.
To generate Y data, I used the function #deinonychusaur gave above, and added some noise to it from #Cleb's answer.
I hope some might find this useful, but it's efficiency primarily depends on actual peak shapes and distances.

Finding a minimum or a maximum is not that simple, because there is no universal definition for "local maximum".
Your code seems to look for a miximum and then accept it as a maximum if the signal falls after the maximum below the maximum minus some delta value. After that it starts to look for a minimum with similar criteria. It does not really matter if your data falls or rises slowly, as the maximum is recorded when it is reached and appended to the list of maxima once the level fallse below the hysteresis threshold.
This is a possible way to find local minima and maxima, but it has several shortcomings. One of them is that the method is not symmetric, i.e. if the same data is run backwards, the results are not necessarily the same.
Unfortunately, I cannot help much more, because the correct method really depends on the data you are looking at, its shape and its noisiness. If you have some samples, then we might be able to come up with some suggestions.

Related

Finding two linear fits on different domains in the same data

I'm trying to plot a 3rd-order polynomial, and two linear fits on the same set of data. My data looks like this:
,Frequency,Flux Density,log_freq,log_flux
0,1.25e+18,1.86e-07,18.096910013008056,-6.730487055782084
1,699000000000000.0,1.07e-06,14.84447717574568,-5.97061622231479
2,541000000000000.0,1.1e-06,14.73319726510657,-5.958607314841775
3,468000000000000.0,1e-06,14.670245853074125,-6.0
4,458000000000000.0,1.77e-06,14.660865478003869,-5.752026733638194
5,89400000000000.0,3.01e-05,13.951337518795917,-4.521433504406157
6,89400000000000.0,9.3e-05,13.951337518795917,-4.031517051446065
7,89400000000000.0,0.00187,13.951337518795917,-2.728158393463501
8,65100000000000.0,2.44e-05,13.813580988568193,-4.61261017366127
9,65100000000000.0,6.28e-05,13.813580988568193,-4.2020403562628035
10,65100000000000.0,0.00108,13.813580988568193,-2.96657624451305
11,25900000000000.0,0.000785,13.413299764081252,-3.1051303432547472
12,25900000000000.0,0.00106,13.413299764081252,-2.9746941347352296
13,25900000000000.0,0.000796,13.413299764081252,-3.099086932262331
14,13600000000000.0,0.00339,13.133538908370218,-2.469800301796918
15,13600000000000.0,0.00372,13.133538908370218,-2.4294570601181023
16,13600000000000.0,0.00308,13.133538908370218,-2.5114492834995557
17,12700000000000.0,0.00222,13.103803720955957,-2.653647025549361
18,12700000000000.0,0.00204,13.103803720955957,-2.6903698325741012
19,230000000000.0,0.133,11.361727836017593,-0.8761483590329142
22,90000000000.0,0.518,10.954242509439325,-0.28567024025476695
23,61000000000.0,1.0,10.785329835010767,0.0
24,61000000000.0,0.1,10.785329835010767,-1.0
25,61000000000.0,0.4,10.785329835010767,-0.3979400086720376
26,42400000000.0,0.8,10.627365856592732,-0.09691001300805639
27,41000000000.0,0.9,10.612783856719735,-0.045757490560675115
28,41000000000.0,0.7,10.612783856719735,-0.1549019599857432
29,41000000000.0,0.8,10.612783856719735,-0.09691001300805639
30,41000000000.0,0.6,10.612783856719735,-0.2218487496163564
31,41000000000.0,0.7,10.612783856719735,-0.1549019599857432
32,37000000000.0,1.0,10.568201724066995,0.0
33,36800000000.0,1.0,10.565847818673518,0.0
34,36800000000.0,0.98,10.565847818673518,-0.00877392430750515
35,33000000000.0,0.8,10.518513939877888,-0.09691001300805639
36,33000000000.0,1.0,10.518513939877888,0.0
37,31400000000.0,0.92,10.496929648073214,-0.036212172654444715
38,23000000000.0,1.4,10.361727836017593,0.146128035678238
39,23000000000.0,1.1,10.361727836017593,0.04139268515822508
40,23000000000.0,1.11,10.361727836017593,0.045322978786657475
41,23000000000.0,1.1,10.361727836017593,0.04139268515822508
42,22200000000.0,1.23,10.346352974450639,0.08990511143939793
43,22200000000.0,1.24,10.346352974450639,0.09342168516223506
44,21700000000.0,0.98,10.33645973384853,-0.00877392430750515
45,21700000000.0,1.07,10.33645973384853,0.029383777685209667
46,20000000000.0,1.44,10.301029995663981,0.15836249209524964
47,15400000000.0,1.32,10.187520720836464,0.12057393120584989
48,15000000000.0,1.5,10.176091259055681,0.17609125905568124
49,15000000000.0,1.5,10.176091259055681,0.17609125905568124
50,15000000000.0,1.42,10.176091259055681,0.15228834438305647
51,15000000000.0,1.43,10.176091259055681,0.1553360374650618
52,15000000000.0,1.42,10.176091259055681,0.15228834438305647
53,15000000000.0,1.47,10.176091259055681,0.1673173347481761
54,15000000000.0,1.38,10.176091259055681,0.13987908640123647
55,10700000000.0,2.59,10.02938377768521,0.4132997640812518
56,8870000000.0,2.79,9.947923619831727,0.44560420327359757
57,8460000000.0,2.69,9.927370363039023,0.42975228000240795
58,8400000000.0,2.8,9.924279286061882,0.4471580313422192
59,8400000000.0,2.53,9.924279286061882,0.40312052117581787
60,8400000000.0,2.06,9.924279286061882,0.31386722036915343
61,8300000000.0,2.58,9.919078092376074,0.41161970596323016
62,8080000000.0,2.76,9.907411360774587,0.4409090820652177
63,5010000000.0,3.68,9.699837725867246,0.5658478186735176
64,5000000000.0,0.81,9.698970004336019,-0.09151498112135022
65,5000000000.0,3.5,9.698970004336019,0.5440680443502757
66,5000000000.0,3.57,9.698970004336019,0.5526682161121932
67,4980000000.0,3.46,9.697229342759718,0.5390760987927766
68,4900000000.0,2.95,9.690196080028514,0.46982201597816303
69,4850000000.0,3.46,9.685741738602264,0.5390760987927766
70,4850000000.0,3.45,9.685741738602264,0.5378190950732742
71,4780000000.0,2.16,9.679427896612118,0.3344537511509309
72,4540000000.0,3.61,9.657055852857104,0.557507201905658
73,2700000000.0,3.5,9.431363764158988,0.5440680443502757
74,2700000000.0,3.7,9.431363764158988,0.568201724066995
75,2700000000.0,3.92,9.431363764158988,0.5932860670204573
76,2700000000.0,3.92,9.431363764158988,0.5932860670204573
77,2250000000.0,4.21,9.352182518111363,0.6242820958356683
78,1660000000.0,3.69,9.220108088040055,0.5670263661590603
79,1660000000.0,3.8,9.220108088040055,0.5797835966168101
80,1410000000.0,3.5,9.14921911265538,0.5440680443502757
81,1400000000.0,3.45,9.146128035678238,0.5378190950732742
82,1400000000.0,3.28,9.146128035678238,0.5158738437116791
83,1400000000.0,3.19,9.146128035678238,0.5037906830571811
84,1400000000.0,3.51,9.146128035678238,0.5453071164658241
85,1340000000.0,3.31,9.127104798364808,0.5198279937757188
86,1340000000.0,3.31,9.127104798364808,0.5198279937757188
87,750000000.0,3.14,8.8750612633917,0.49692964807321494
88,408000000.0,1.46,8.61066016308988,0.1643528557844371
89,408000000.0,1.46,8.61066016308988,0.1643528557844371
90,365000000.0,1.62,8.562292864456476,0.20951501454263097
91,365000000.0,1.56,8.562292864456476,0.1931245983544616
92,333000000.0,1.32,8.52244423350632,0.12057393120584989
93,302000000.0,1.23,8.48000694295715,0.08990511143939793
94,151000000.0,2.13,8.178976947293169,0.3283796034387377
95,73800000.0,3.58,7.868056361823042,0.5538830266438743
and my code is
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import numpy.polynomial.polynomial as poly
def find_extrema(poly, bounds):
'''
Finds the extrema of the polynomial; ensure real.
https://stackoverflow.com/questions/72932816/python-finding-local-maxima-minima-for-multiple-polynomials-efficiently
'''
deriv = poly.deriv()
extrema = deriv.roots()
# Filter out complex roots
extrema = extrema[np.isreal(extrema)]
# Get real part of root
extrema = np.real(extrema)
# Apply bounds check
lb, ub = bounds
extrema = extrema[(lb <= extrema) & (extrema <= ub)]
return extrema
def find_maximum(poly, bounds):
'''
Find the maximum point; returns the value of the turnover frequency.
https://stackoverflow.com/questions/72932816/python-finding-local-maxima-minima-for-multiple-polynomials-efficiently
'''
extrema = find_extrema(poly, bounds)
# Either bound could end up being the minimum. Check those too.
extrema = np.concatenate((extrema, bounds))
value_at_extrema = poly(extrema)
maximum_index = np.argmax(value_at_extrema)
return extrema[maximum_index]
# LOAD THE DATA FROM FILE HERE
# CARRY ON...
xvar = 'log_freq'
yvar = 'log_flux'
x, y = pks[xvar], pks[yvar]
lower = min(x)
upper = max(x)
# Find the 3rd-order polynomial which fits the SED
coefs = poly.polyfit(x, y, 3) # find the coeffs
x_new = np.linspace(lower, upper, num=len(x)*10) # space to plot the fit
ffit = poly.Polynomial(coefs) # find the polynomial
# Find turnover frequency and peak flux
nu_to = find_maximum(ffit, (lower, upper))
F_p = ffit(nu_to)
# HERE'S THE TRICKY BIT
# Find the straight line to fit to the left of nu_to
left_linefit = poly.polyfit(x, y, 1)
x_left = np.linspace(lower, nu_to, num=len(x)*10) # space to plot the fit
ffit_thin = poly.Polynomial(left_linefit,
domain = (lower, nu_to)
)
# PLOTS THE POLYNOMIAL WELL
ax1 = plt.subplot(1, 1, 1)
ax1.scatter(pks[xvar], pks[yvar], label = 'PKS 0742+10', c = 'b')
ax1.plot(x_new, ffit(x_new), color = 'r')
ax1.plot(x_left, ffit_left(x_left), color = 'gold')
ax1.set_yscale('linear')
ax1.set_xscale('linear')
ax1.legend()
ax1.set_xlabel(r'$\log\nu$ ($\nu$ in Hz)')
ax1.set_ylabel(r'$\log F_{\nu}$ ($F_{\nu}$ in Jy)')
ax1.grid(axis = 'both', which = 'major')
The code produces the poly fit well:
I'm trying to plot the straight-line fits for the points on either side of the maximum, as shown schematically below:
I thought I could do it with
ffit_left = poly.Polynomial(left_linefit,
domain = (lower, nu_to)
)
and similar for ffit_right, but that produces
which is actually the straight-line fit for the whole dataset, plotted only for that domain. I don't want to manipulate the dataset, because eventually I'll have to do it on a lot of datasets.
The fitting part of the code comes from an answer to this question .
How can I fit a straight line to just set of points without manipulating the dataset?
My guess is that I have to make left_linefit = poly.polyfit(x, y, 1) recognise a domain, but I can't see anything in the numpy polyfit docs.
Sorry for the long question!
I am not sure to well understand your request. If you want to fit a piecewise function made of three linear segments a method is described in https://fr.scribd.com/document/380941024/Regression-par-morceaux-Piecewise-Regression-pdf with theory and numerical examples.
Several cases are considered. Among them the case below might be convenient for you.
H(*) is the Heaviside step function.

Python: Kernel Density Estimation for positive values

I want to get kernel density estimation for positive data points. Using Python Scipy Stats package, I came up with the following code.
def get_pdf(data):
a = np.array(data)
ag = st.gaussian_kde(a)
x = np.linspace(0, max(data), max(data))
y = ag(x)
return x, y
This works perfectly for most data sets, but it gives an erroneous result for "all positive" data points. To make sure this works correctly, I use numerical integration to compute the area under this curve.
def trapezoidal_2(ag, a, b, n):
h = np.float(b - a) / n
s = 0.0
s += ag(a)[0]/2.0
for i in range(1, n):
s += ag(a + i*h)[0]
s += ag(b)[0]/2.0
return s * h
Since the data is spread in the region (0, int(max(data))), we should get a value close to 1, when executing the following line.
b = 1
data = st.pareto.rvs(b, size=10000)
data = list(data)
a = np.array(data)
ag = st.gaussian_kde(a)
trapezoidal_2(ag, 0, int(max(data)), int(max(data))*2)
But it gives a value close to 0.5 when I test.
But when I intergrate from -100 to max(data), it provides a value close to 1.
trapezoidal_2(ag, -100, int(max(data)), int(max(data))*2+200)
The reason is, ag (KDE) is defined for values less than 0, even though the original data set contains only positive values.
So how can I get a kernel density estimation that considers only positive values, such that area under the curve in the region (o, max(data)) is close to 1?
The choice of the bandwidth is quite important when performing kernel density estimation. I think the Scott's Rule and Silverman's Rule work well for distribution similar to a Gaussian. However, they do not work well for the Pareto distribution.
Quote from the doc:
Bandwidth selection strongly influences the estimate obtained from
the KDE (much more so than the actual shape of the kernel). Bandwidth selection
can be done by a "rule of thumb", by cross-validation, by "plug-in
methods" or by other means; see [3], [4] for reviews. gaussian_kde
uses a rule of thumb, the default is Scott's Rule.
Try with different bandwidth values, for example:
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
b = 1
sample = stats.pareto.rvs(b, size=3000)
kde_sample_scott = stats.gaussian_kde(sample, bw_method='scott')
kde_sample_scalar = stats.gaussian_kde(sample, bw_method=1e-3)
# Compute the integrale:
print('integrale scott:', kde_sample_scott.integrate_box_1d(0, np.inf))
print('integrale scalar:', kde_sample_scalar.integrate_box_1d(0, np.inf))
# Graph:
x_span = np.logspace(-2, 1, 550)
plt.plot(x_span, stats.pareto.pdf(x_span, b), label='theoretical pdf')
plt.plot(x_span, kde_sample_scott(x_span), label="estimated pdf 'scott'")
plt.plot(x_span, kde_sample_scalar(x_span), label="estimated pdf 'scalar'")
plt.xlabel('X'); plt.legend();
gives:
integrale scott: 0.5572130540733236
integrale scalar: 0.9999999999968957
and:
We see that the kde using the Scott method is wrong.

How to properly sample truncated distributions?

I am trying to learn how to sample truncated distributions. To begin with I decided to try a simple example I found here example
I didn't really understand the division by the CDF, therefore I decided to tweak the algorithm a bit. Being sampled is an exponential distribution for values x>0 Here is an example python code:
# Sample exponential distribution for the case x>0
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
def pdf(x):
return x*np.exp(-x)
xvec=np.zeros(1000000)
x=1.
for i in range(1000000):
a=x+np.random.normal()
xs=x
if a > 0. :
xs=a
A=pdf(xs)/pdf(x)
if np.random.uniform()<A :
x=xs
xvec[i]=x
x=np.linspace(0,15,1000)
plt.plot(x,pdf(x))
plt.hist([x for x in xvec if x != 0],bins=150,normed=True)
plt.show()
Ant the output is:
The code above seems to work fine only for when using the condition if a > 0. :, i.e. positive x, choosing another condition (e.g. if a > 0.5 :) produces wrong results.
Since my final goal was to sample a 2D-Gaussian - pdf on a truncated interval I tried extending the simple example using the exponential distribution (see the code below). Unfortunately, since the simple case didn't work, I assume that the code given below would yield wrong results.
I assume that all this can be done using the advanced tools of python. However, since my primary idea was to understand the principle behind, I would greatly appreciate your help to understand my mistake.
Thank you for your help.
EDIT:
# code updated according to the answer of CrazyIvan
from scipy.stats import multivariate_normal
RANGE=100000
a=2.06072E-02
b=1.10011E+00
a_range=[0.001,0.5]
b_range=[0.01, 2.5]
cov=[[3.1313994E-05, 1.8013737E-03],[ 1.8013737E-03, 1.0421529E-01]]
x=a
y=b
j=0
for i in range(RANGE):
a_t,b_t=np.random.multivariate_normal([a,b],cov)
# accept if within bounds - all that is neded to truncate
if a_range[0]<a_t and a_t<a_range[1] and b_range[0]<b_t and b_t<b_range[1]:
print(dx,dy)
EDIT:
I changed the code by norming the analytic pdf according to this scheme, and according to the answers given by, #Crazy Ivan and #Leandro Caniglia , for the case where the bottom of the pdf is removed. That is dividing by (1-CDF(0.5)) since my accept condition is x>0.5. This seems again to show some discrepancies. Again the mystery prevails ..
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
def pdf(x):
return x*np.exp(-x)
# included the corresponding cdf
def cdf(x):
return 1. -np.exp(-x)-x*np.exp(-x)
xvec=np.zeros(1000000)
x=1.
for i in range(1000000):
a=x+np.random.normal()
xs=x
if a > 0.5 :
xs=a
A=pdf(xs)/pdf(x)
if np.random.uniform()<A :
x=xs
xvec[i]=x
x=np.linspace(0,15,1000)
# new part norm the analytic pdf to fix the area
plt.plot(x,pdf(x)/(1.-cdf(0.5)))
plt.hist([x for x in xvec if x != 0],bins=200,normed=True)
plt.savefig("test_exp.png")
plt.show()
It seems that this can be cured by choosing larger shift size
shift=15.
a=x+np.random.normal()*shift.
which is in general an issue of the Metropolis - Hastings. See the graph below:
I also checked shift=150
Bottom line is that changing the shift size definitely improves the convergence. The misery is why, since the Gaussian is unbounded.
You say you want to learn the basic idea of sampling a truncated distribution, but your source is a blog post about
Metropolis–Hastings algorithm? Do you actually need this "method for obtaining a sequence of random samples from a probability distribution for which direct sampling is difficult"? Taking this as your starting point is like learning English by reading Shakespeare.
Truncated normal
For truncated normal, basic rejection sampling is all you need: generate samples for original distribution, reject those outside of bounds. As Leandro Caniglia noted, you should not expect truncated distribution to have the same PDF except on a shorter interval — this is plain impossible because the area under the graph of a PDF is always 1. If you cut off stuff from sides, there has to be more in the middle; the PDF gets rescaled.
It's quite inefficient to gather samples one by one, when you need 100000. I would grab 100000 normal samples at once, accept only those that fit; then repeat until I have enough. Example of sampling truncated normal between amin and amax:
import numpy as np
n_samples = 100000
amin, amax = -1, 2
samples = np.zeros((0,)) # empty for now
while samples.shape[0] < n_samples:
s = np.random.normal(0, 1, size=(n_samples,))
accepted = s[(s >= amin) & (s <= amax)]
samples = np.concatenate((samples, accepted), axis=0)
samples = samples[:n_samples] # we probably got more than needed, so discard extra ones
And here is the comparison with the PDF curve, rescaled by division by cdf(amax) - cdf(amin) as explained above.
from scipy.stats import norm
_ = plt.hist(samples, bins=50, density=True)
t = np.linspace(-2, 3, 500)
plt.plot(t, norm.pdf(t)/(norm.cdf(amax) - norm.cdf(amin)), 'r')
plt.show()
Truncated multivariate normal
Now we want to keep the first coordinate between amin and amax, and the second between bmin and bmax. Same story, except there will be a 2-column array and the comparison with bounds is done in a relatively sneaky way:
(np.min(s - [amin, bmin], axis=1) >= 0) & (np.max(s - [amax, bmax], axis=1) <= 0)
This means: subtract amin, bmin from each row and keep only the rows where both results are nonnegative (meaning we had a >= amin and b >= bmin). Also do a similar thing with amax, bmax. Accept only the rows that meet both criteria.
n_samples = 10
amin, amax = -1, 2
bmin, bmax = 0.2, 2.4
mean = [0.3, 0.5]
cov = [[2, 1.1], [1.1, 2]]
samples = np.zeros((0, 2)) # 2 columns now
while samples.shape[0] < n_samples:
s = np.random.multivariate_normal(mean, cov, size=(n_samples,))
accepted = s[(np.min(s - [amin, bmin], axis=1) >= 0) & (np.max(s - [amax, bmax], axis=1) <= 0)]
samples = np.concatenate((samples, accepted), axis=0)
samples = samples[:n_samples, :]
Not going to plot, but here are some values: naturally, within bounds.
array([[ 0.43150033, 1.55775629],
[ 0.62339265, 1.63506963],
[-0.6723598 , 1.58053835],
[-0.53347361, 0.53513105],
[ 1.70524439, 2.08226558],
[ 0.37474842, 0.2512812 ],
[-0.40986396, 0.58783193],
[ 0.65967087, 0.59755193],
[ 0.33383214, 2.37651975],
[ 1.7513789 , 1.24469918]])
To compute the truncated density function pdf_t from the entire density function pdf, do the following:
Let [a, b] be the truncation interval; (x axis)
Let A := cdf(a) and B := cdf(b); (cdf = non-truncated cumulative distribution function)
Then pdf_t(x) := pdf(x) / (B - A) if x in [a, b] and 0 elsewhere.
In cases where a = -infinity (resp. b = +infinity), take A := 0 (resp. B := 1).
As for the "mystery" you see
please note that your blue curve is wrong. It is not the pdf of your truncated distribution, it is just the pdf of the non-truncated one, scaled by the correct amount (division by 1-cdf(0.5)). The actual truncated pdf curve starts with a vertical line on x = 0.5 which goes up until it reaches your current blue curve. In other words, you only scaled the curve but forgot to truncate it, in this case to the left. Such a truncation corresponds to the "0 elsewhere" part of step 3 in the algorithm above.

Autocorrelation code in Python produces errors (guitar pitch detection)

This link provides code for an autocorrelation-based pitch detection algorithm. I am using it to detect pitches in simple guitar melodies.
In general, it produces very good results. For example, for the melody C4, C#4, D4, D#4, E4 it outputs:
262.743653536
272.144441273
290.826273006
310.431336809
327.094621169
Which correlates to the correct notes.
However, in some cases like this audio file (E4, F4, F#4, G4, G#4, A4, A#4, B4) it produces errors:
325.861452246
13381.6439242
367.518651703
391.479384923
414.604661221
218.345286173
466.503751322
244.994090035
More specifically, there are three errors here: 13381Hz is wrongly detected instead of F4 (~350Hz) (weird error), and also 218Hz instead of A4 (440Hz) and 244Hz instead of B4 (~493Hz), which are octave errors.
I assume the two errors are caused by something different? Here is the code:
slices = segment_signal(y, sr)
for segment in slices:
pitch = freq_from_autocorr(segment, sr)
print pitch
def segment_signal(y, sr, onset_frames=None, offset=0.1):
if (onset_frames == None):
onset_frames = remove_dense_onsets(librosa.onset.onset_detect(y=y, sr=sr))
offset_samples = int(librosa.time_to_samples(offset, sr))
print onset_frames
slices = np.array([y[i : i + offset_samples] for i
in librosa.frames_to_samples(onset_frames)])
return slices
You can see the freq_from_autocorr function in the first link above.
The only think that I have changed is this line:
corr = corr[len(corr)/2:]
Which I have replaced with:
corr = corr[int(len(corr)/2):]
UPDATE:
I noticed the smallest the offset I use (the smallest the signal segment I use to detect each pitch), the more high-frequency (10000+ Hz) errors I get.
Specifically, I noticed that the part that goes differently in those cases (10000+ Hz) is the calculation of the i_peak value. When in cases with no error it is in the range of 50-150, in the case of the error it is 3-5.
The autocorrelation function in the code snippet that you linked is not particularly robust. In order to get the correct result, it needs to locate the first peak on the left hand side of the autocorrelation curve. The method that the other developer used (calling the numpy.argmax() function) does not always find the correct value.
I've implemented a slightly more robust version, using the peakutils package. I don't promise that it's perfectly robust either, but in any case it achieves a better result than the version of the freq_from_autocorr() function that you were previously using.
My example solution is listed below:
import librosa
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import fftconvolve
from pprint import pprint
import peakutils
def freq_from_autocorr(signal, fs):
# Calculate autocorrelation (same thing as convolution, but with one input
# reversed in time), and throw away the negative lags
signal -= np.mean(signal) # Remove DC offset
corr = fftconvolve(signal, signal[::-1], mode='full')
corr = corr[len(corr)//2:]
# Find the first peak on the left
i_peak = peakutils.indexes(corr, thres=0.8, min_dist=5)[0]
i_interp = parabolic(corr, i_peak)[0]
return fs / i_interp, corr, i_interp
def parabolic(f, x):
"""
Quadratic interpolation for estimating the true position of an
inter-sample maximum when nearby samples are known.
f is a vector and x is an index for that vector.
Returns (vx, vy), the coordinates of the vertex of a parabola that goes
through point x and its two neighbors.
Example:
Defining a vector f with a local maximum at index 3 (= 6), find local
maximum if points 2, 3, and 4 actually defined a parabola.
In [3]: f = [2, 3, 1, 6, 4, 2, 3, 1]
In [4]: parabolic(f, argmax(f))
Out[4]: (3.2142857142857144, 6.1607142857142856)
"""
xv = 1/2. * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x
yv = f[x] - 1/4. * (f[x-1] - f[x+1]) * (xv - x)
return (xv, yv)
# Time window after initial onset (in units of seconds)
window = 0.1
# Open the file and obtain the sampling rate
y, sr = librosa.core.load("./Vocaroo_s1A26VqpKgT0.mp3")
idx = np.arange(len(y))
# Set the window size in terms of number of samples
winsamp = int(window * sr)
# Calcualte the onset frames in the usual way
onset_frames = librosa.onset.onset_detect(y=y, sr=sr)
onstm = librosa.frames_to_time(onset_frames, sr=sr)
fqlist = [] # List of estimated frequencies, one per note
crlist = [] # List of autocorrelation arrays, one array per note
iplist = [] # List of peak interpolated peak indices, one per note
for tm in onstm:
startidx = int(tm * sr)
freq, corr, ip = freq_from_autocorr(y[startidx:startidx+winsamp], sr)
fqlist.append(freq)
crlist.append(corr)
iplist.append(ip)
pprint(fqlist)
# Choose which notes to plot (it's set to show all 8 notes in this case)
plidx = [0, 1, 2, 3, 4, 5, 6, 7]
# Plot amplitude curves of all notes in the plidx list
fgwin = plt.figure(figsize=[8, 10])
fgwin.subplots_adjust(bottom=0.0, top=0.98, hspace=0.3)
axwin = []
ii = 1
for tm in onstm[plidx]:
axwin.append(fgwin.add_subplot(len(plidx)+1, 1, ii))
startidx = int(tm * sr)
axwin[-1].plot(np.arange(startidx, startidx+winsamp), y[startidx:startidx+winsamp])
ii += 1
axwin[-1].set_xlabel('Sample ID Number', fontsize=18)
fgwin.show()
# Plot autocorrelation function of all notes in the plidx list
fgcorr = plt.figure(figsize=[8,10])
fgcorr.subplots_adjust(bottom=0.0, top=0.98, hspace=0.3)
axcorr = []
ii = 1
for cr, ip in zip([crlist[ii] for ii in plidx], [iplist[ij] for ij in plidx]):
if ii == 1:
shax = None
else:
shax = axcorr[0]
axcorr.append(fgcorr.add_subplot(len(plidx)+1, 1, ii, sharex=shax))
axcorr[-1].plot(np.arange(500), cr[0:500])
# Plot the location of the leftmost peak
axcorr[-1].axvline(ip, color='r')
ii += 1
axcorr[-1].set_xlabel('Time Lag Index (Zoomed)', fontsize=18)
fgcorr.show()
The printed output looks like:
In [1]: %run autocorr.py
[325.81996740236065,
346.43374761017725,
367.12435233192753,
390.17291696559079,
412.9358117076161,
436.04054933498134,
465.38986619237039,
490.34120132405866]
The first figure produced by my code sample depicts the amplitude curves for the next 0.1 seconds following each detected onset time:
The second figure produced by the code shows the autocorrelation curves, as computed inside of the freq_from_autocorr() function. The vertical red lines depict the location of the first peak on the left for each curve, as estimated by the peakutils package. The method used by the other developer was getting incorrect results for some of these red lines; that's why his version of that function was occasionally returning the wrong frequencies.
My suggestion would be to test the revised version of the freq_from_autocorr() function on other recordings, see if you can find more challenging examples where even the improved version still gives incorrect results, and then get creative and try to develop an even more robust peak finding algorithm that never, ever mis-fires.
The autocorrelation method is not always right. You may want to implement a more sophisticated method like YIN:
http://audition.ens.fr/adc/pdf/2002_JASA_YIN.pdf
or MPM:
http://www.cs.otago.ac.nz/tartini/papers/A_Smarter_Way_to_Find_Pitch.pdf
Both of the above papers are good reads.

scipy.interpolate.UnivariateSpline not smoothing regardless of parameters

I'm having trouble getting scipy.interpolate.UnivariateSpline to use any smoothing when interpolating. Based on the function's page as well as some previous posts, I believe it should provide smoothing with the s parameter.
Here is my code:
# Imports
import scipy
import pylab
# Set up and plot actual data
x = [0, 5024.2059124920379, 7933.1645067836089, 7990.4664106277542, 9879.9717114947653, 13738.60563208926, 15113.277958924193]
y = [0.0, 3072.5653360000988, 5477.2689107965398, 5851.6866463790966, 6056.3852496014106, 7895.2332350173638, 9154.2956175610598]
pylab.plot(x, y, "o", label="Actual")
# Plot estimates using splines with a range of degrees
for k in range(1, 4):
mySpline = scipy.interpolate.UnivariateSpline(x=x, y=y, k=k, s=2)
xi = range(0, 15100, 20)
yi = mySpline(xi)
pylab.plot(xi, yi, label="Predicted k=%d" % k)
# Show the plot
pylab.grid(True)
pylab.xticks(rotation=45)
pylab.legend( loc="lower right" )
pylab.show()
Here is the result:
I have tried this with a range of s values (0.01, 0.1, 1, 2, 5, 50), as well as explicit weights, set to either the same thing (1.0) or randomized. I still can't get any smoothing, and the number of knots is always the same as the number of data points. In particular, I'm looking for outliers like that 4th point (7990.4664106277542, 5851.6866463790966) to be smoothed over.
Is it because I don't have enough data? If so, is there a similar spline function or cluster technique I can apply to achieve smoothing with this few datapoints?
Short answer: you need to choose the value for s more carefully.
The documentation for UnivariateSpline states that:
Positive smoothing factor used to choose the number of knots. Number of
knots will be increased until the smoothing condition is satisfied:
sum((w[i]*(y[i]-s(x[i])))**2,axis=0) <= s
From this one can deduce that "reasonable" values for smoothing, if you don't pass in explicit weights, are around s = m * v where m is the number of data points and v the variance of the data. In this case, s_good ~ 5e7.
EDIT: sensible values for s depend of course also on the noise level in the data. The docs seem to recommend choosing s in the range (m - sqrt(2*m)) * std**2 <= s <= (m + sqrt(2*m)) * std**2 where std is the standard deviation associated with the "noise" you want to smooth over.
#Zhenya's answer of manually setting knots in between datapoints was too rough to deliver good results in noisy data without being selective about how this technique is applied. However, inspired by his/her suggestion, I have had success with Mean-Shift clustering from the scikit-learn package. It performs auto-determination of the cluster count and seems to do a fairly good smoothing job (very smooth in fact).
# Imports
import numpy
import pylab
import scipy
import sklearn.cluster
# Set up original data - note that it's monotonically increasing by X value!
data = {}
data['original'] = {}
data['original']['x'] = [0, 5024.2059124920379, 7933.1645067836089, 7990.4664106277542, 9879.9717114947653, 13738.60563208926, 15113.277958924193]
data['original']['y'] = [0.0, 3072.5653360000988, 5477.2689107965398, 5851.6866463790966, 6056.3852496014106, 7895.2332350173638, 9154.2956175610598]
# Cluster data, sort it and and save
inputNumpy = numpy.array([[data['original']['x'][i], data['original']['y'][i]] for i in range(0, len(data['original']['x']))])
meanShift = sklearn.cluster.MeanShift()
meanShift.fit(inputNumpy)
clusteredData = [[pair[0], pair[1]] for pair in meanShift.cluster_centers_]
clusteredData.sort(lambda pair1, pair2: cmp(pair1[0],pair2[0]))
data['clustered'] = {}
data['clustered']['x'] = [pair[0] for pair in clusteredData]
data['clustered']['y'] = [pair[1] for pair in clusteredData]
# Build a spline using the clustered data and predict
mySpline = scipy.interpolate.UnivariateSpline(x=data['clustered']['x'], y=data['clustered']['y'], k=1)
xi = range(0, round(max(data['original']['x']), -3) + 3000, 20)
yi = mySpline(xi)
# Plot the datapoints
pylab.plot(data['clustered']['x'], data['clustered']['y'], "D", label="Datapoints (%s)" % 'clustered')
pylab.plot(xi, yi, label="Predicted (%s)" % 'clustered')
pylab.plot(data['original']['x'], data['original']['y'], "o", label="Datapoints (%s)" % 'original')
# Show the plot
pylab.grid(True)
pylab.xticks(rotation=45)
pylab.legend( loc="lower right" )
pylab.show()
While I'm not aware of any library which will do it for you off-hand, I'd try a bit more DIY approach: I'd start from making a spline with knots in between the raw data points, in both x and y. In your particular example, having a single knot in between the 4th and 5th points should do the trick, since it'd remove the huge derivative at around x=8000.
I had trouble getting BigChef's answer running, here is a variation that works on python 3.6:
# Imports
import pylab
import scipy
import sklearn.cluster
# Set up original data - note that it's monotonically increasing by X value!
data = {}
data['original'] = {}
data['original']['x'] = [0, 5024.2059124920379, 7933.1645067836089, 7990.4664106277542, 9879.9717114947653, 13738.60563208926, 15113.277958924193]
data['original']['y'] = [0.0, 3072.5653360000988, 5477.2689107965398, 5851.6866463790966, 6056.3852496014106, 7895.2332350173638, 9154.2956175610598]
# Cluster data, sort it and and save
import numpy
inputNumpy = numpy.array([[data['original']['x'][i], data['original']['y'][i]] for i in range(0, len(data['original']['x']))])
meanShift = sklearn.cluster.MeanShift()
meanShift.fit(inputNumpy)
clusteredData = [[pair[0], pair[1]] for pair in meanShift.cluster_centers_]
clusteredData.sort(key=lambda li: li[0])
data['clustered'] = {}
data['clustered']['x'] = [pair[0] for pair in clusteredData]
data['clustered']['y'] = [pair[1] for pair in clusteredData]
# Build a spline using the clustered data and predict
mySpline = scipy.interpolate.UnivariateSpline(x=data['clustered']['x'], y=data['clustered']['y'], k=1)
xi = range(0, int(round(max(data['original']['x']), -3)) + 3000, 20)
yi = mySpline(xi)
# Plot the datapoints
pylab.plot(data['clustered']['x'], data['clustered']['y'], "D", label="Datapoints (%s)" % 'clustered')
pylab.plot(xi, yi, label="Predicted (%s)" % 'clustered')
pylab.plot(data['original']['x'], data['original']['y'], "o", label="Datapoints (%s)" % 'original')
# Show the plot
pylab.grid(True)
pylab.xticks(rotation=45)
pylab.show()

Categories

Resources