I am trying to find the best solution (perfomance/easy code) for the following situation:
Considering a database system with two tables, A (production table) and A'(cache table):
Future rows are added first into A' table in order to not disturb the production one.
When a timer says go (at midnight, for example) rows from A' are incorporated to A.
Dealing with duplicates, inexistent rows, etc have to be considerated.
I've been reading some about Materialized Views, Triggers, etc. The problem is that I should not introduce so much noise in the production table because is the reference table for a server (a PowerDNS server in fact).
So, what do you guys make of it? Should I better use triggers, MV, or programatically outside of the database?? (I'm using python, BTW)
Thanks in advance for helping me.
The "best" solution according to the criteria you've laid out so far would just be to insert into the production table.
...unless there's actually something extremely relevant you're not telling us
Related
Here is my situation. I used Python, Django and MySQL for a web development.
I have several tables for form posting, whose fields may change dynamically. Here is an example.
Like a table called Article, it has three fields now, called id INT, title VARCHAR(50), author VARCHAR(20), and it should be able store some other values dynamically in the future, like source VARCHAR(100) or something else.
How can I implement this gracefully? Is MySQL be able to handle it? Anyway, I don't want to give up MySQL totally, for that I'm not really familiar with NoSQL databases, and it may be risky to change technique plan in the process of development.
Any ideas welcome. Thanks in advance!
You might be interested in this post about FriendFeed's schemaless SQL approach.
Loosely:
Store documents in JSON, extracting the ID as a column but no other columns
Create new tables for any indexes you require
Populate the indexes via code
There are several drawbacks to this approach, such as indexes not necessarily reflecting the actual data. You'll also need to hack up django's ORM pretty heavily. Depending on your requirements you might be able to keep some of your fields as pure DB columns and store others as JSON?
I've never actually used it, but django-not-eav looks like the tool for the job.
"This app attempts the impossible: implement a bad idea the right way." I already love it :)
That said, this question sounds like a "rethink your approach" situation, for sure. But yes, sometimes that is simply not an option...
First off, this is my first project using SQLAlchemy, so I'm still fairly new.
I am making a system to work with GTFS data. I have a back end that seems to be able to query the data quite efficiently.
What I am trying to do though is allow for the GTFS files to update the database with new data. The problem that I am hitting is pretty obvious, if the data I'm trying to insert is already in the database, we have a conflict on the uniqueness of the primary keys.
For Efficiency reasons, I decided to use the following code for insertions, where model is the model object I would like to insert the data into, and data is a precomputed, cleaned list of dictionaries to insert.
for chunk in [data[i:i+chunk_size] for i in xrange(0, len(data), chunk_size)]:
engine.execute(model.__table__.insert(),chunk)
There are two solutions that come to mind.
I find a way to do the insert, such that if there is a collision, we don't care, and don't fail. I believe that the code above is using the TableClause, so I checked there first, hoping to find a suitable replacement, or flag, with no luck.
Before we perform the cleaning of the data, we get the list of primary key values, and if a given element matches on the primary keys, we skip cleaning and inserting the value. I found that I was able to get the PrimaryKeyConstraint from Table.primary_key, but I can't seem to get the Columns out, or find a way to query for only specific columns (in my case, the Primary Keys).
Either should be sufficient, if I can find a way to do it.
After looking into both of these for the last few hours, I can't seem to find either. I was hoping that someone might have done this previously, and point me in the right direction.
Thanks in advance for your help!
Update 1: There is a 3rd option I failed to mention above. That is to purge all the data from the database, and reinsert it. I would prefer not to do this, as even with small GTFS files, there are easily hundreds of thousands of elements to insert, and this seems to take about half an hour to perform, which means if this makes it to production, lots of downtime for updates.
With SQLAlchemy, you simply create a new instance of the model class, and merge it into the current session. SQLAlchemy will detect if it already knows about this object (from cache or the database) and will add a new row to the database if needed.
newentry = model(chunk)
session.merge(newentry)
Also see this question for context: Fastest way to insert object if it doesn't exist with SQLAlchemy
I've got a Django Web app that (potentially) processes millions of records per user. In a nutshell, users upload files which are mapped to database fields/tables and the data is ultimately loaded into one of 5 MySQL tables. I'm using the awesome DataTables library to display the data back to the user.
In many instances data will be loaded into the app and later discovered to be incorrect in the source file. For example, 500K records might be loaded, but in 400 records the first and last names were transposed. Users are able to manipulate/modify a record at a time, but it's not reasonable to expect them to change 400 records manually.
Clearly this can be solved by allowing them to delete the 400 offending records and reloading a fixed source file, but this gets to the root of my problem. How do you allow users to selectively delete (or modify) 400 records from a list of 500K based on some condition? I'm essentially asking, "how do I allow my users to execute restricted, but arbitrary, SQL against my database without having something horrible go wrong?"
I know I could construct some kind of "SQL builder" in the Web app, but that approach seems... wrong somehow. Is there something like a seriously restricted phpMyAdmin or SQL Buddy I could expose to my users? I've searched for Django apps along those lines, but I've come up with nothing. I suppose I could offer them some keyword search/filter and then allow them to delete anything that meets the criteria.
Anyone out there tackled this problem and have some guidance? I'm genuinely stumped as to the best approach.
Who are you're users, and how much do you trust them?
If your trust is low, you will need to expose some sort of API.
If your trust is high, take suggestions for an admin command such as "transpose names" and give them access to that table in Django admin. then they can select batches of records to apply this command against.
I'm making an app that has a need for reverse searches. By this, I mean that users of the app will enter search parameters and save them; then, when any new objects get entered onto the system, if they match the existing search parameters that a user has saved, a notification will be sent, etc.
I am having a hard time finding solutions for this type of problem.
I am using Django and thinking of building the searches and pickling them using Q objects as outlined here: http://www.djangozen.com/blog/the-power-of-q
The way I see it, when a new object is entered into the database, I will have to load every single saved query from the db and somehow run it against this one new object to see if it would match that search query... This doesn't seem ideal - has anyone tackled such a problem before?
At the database level, many databases offer 'triggers'.
Another approach is to have timed jobs that periodically fetch all items from the database that have a last-modified date since the last run; then these get filtered and alerts issued. You can perhaps put some of the filtering into the query statement in the database. However, this is a bit trickier if notifications need to be sent if items get deleted.
You can also put triggers manually into the code that submits data to the database, which is perhaps more flexible and certainly doesn't rely on specific features of the database.
A nice way for the triggers and the alerts to communicate is through message queues - queues such as RabbitMQ and other AMQP implementations will scale with your site.
The amount of effort you use to solve this problem is directly related to the number of stored queries you are dealing with.
Over 20 years ago we handled stored queries by treating them as minidocs and indexing them based on all of the must have and may have terms. A new doc's term list was used as a sort of query against this "database of queries" and that built a list of possibly interesting searches to run, and then only those searches were run against the new docs. This may sound convoluted, but when there are more than a few stored queries (say anywhere from 10,000 to 1,000,000 or more) and you have a complex query language that supports a hybrid of Boolean and similarity-based searching, it substantially reduced the number we had to execute as full-on queries -- often no more that 10 or 15 queries.
One thing that helped was that we were in control of the horizontal and the vertical of the whole thing. We used our query parser to build a parse tree and that was used to build the list of must/may have terms we indexed the query under. We warned the customer away from using certain types of wildcards in the stored queries because it could cause an explosion in the number of queries selected.
Update for comment:
Short answer: I don't know for sure.
Longer answer: We were dealing with a custom built text search engine and part of it's query syntax allowed slicing the doc collection in certain ways very efficiently, with special emphasis on date_added. We played a lot of games because we were ingesting 4-10,000,000 new docs a day and running them against up to 1,000,000+ stored queries on a DEC Alphas with 64MB of main memory. (This was in the late 80's/early 90's.)
I'm guessing that filtering on something equivalent to date_added could be done used in combination the date of the last time you ran your queries, or maybe the highest id at last query run time. If you need to re-run the queries against a modified record you could use its id as part of the query.
For me to get any more specific, you're going to have to get a lot more specific about exactly what problem you are trying to solve and the scale of the solution you are trying accomplishing.
If you stored the type(s) of object(s) involved in each stored search as a generic relation, you could add a post-save signal to all involved objects. When the signal fires, it looks up only the searches that involve its object type and runs those. That probably will still run into scaling issues if you have a ton of writes to the db and a lot of saved searches, but it would be a straightforward Django approach.
I have a project with 2 applications ( books and reader ).
Books application has a table with 4 milions of rows with this fields:
book_title = models.CharField(max_length=40)
book_description = models.CharField(max_length=400)
To avoid to query the database with 4 milions of rows, I am thinking to divide it by subject ( 20 models with 20 tables with 200.000 rows ( book_horror, book_drammatic, ecc ).
In "reader" application, I am thinking to insert this fields:
reader_name = models.CharField(max_length=20, blank=True)
book_subject = models.IntegerField()
book_id = models.IntegerField()
So instead of ForeignKey, I am thinking to use a integer "book_subject" (which allows to access the appropriate table) and "book_id" (which allows to access the book in the table specified in "book_subject").
Is a good solution to avoid to query a table with 4 milions of rows ?
Is there an alternative solution?
Like many have said, it's a bit premature to split your table up into smaller tables (horizontal partitioning or even sharding). Databases are made to handle tables of this size, so your performance problem is probably somewhere else.
Indexes are the first step, it sounds like you've done this though. 4 million rows should be ok for the db to handle with an index.
Second, check the number of queries you're running. You can do this with something like the django debug toolbar, and you'll often be surprised how many unnecessary queries are being made.
Caching is the next step, use memcached for pages or parts of pages that are unchanged for most users. This is where you will see your biggest performance boost for the little effort required.
If you really, really need to split up the tables, the latest version of django (1.2 alpha) can handle sharding (eg multi-db), and you should be able to hand write a horizontal partitioning solution (postgres offers an in-db way to do this). Please don't use genre to split the tables! pick something that you wont ever, ever change and that you'll always know when making a query. Like author and divide by first letter of the surname or something. This is a lot of effort and has a number of drawbacks for a database which isn't particularly big --- this is why most people here are advising against it!
[edit]
I left out denormalisation! Put common counts, sums etc in the eg author table to prevent joins on common queries. The downside is that you have to maintain it yourself (until django adds a DenormalizedField). I would look at this during development for clear, straightforward cases or after caching has failed you --- but well before sharding or horizontal partitioning.
ForeignKey is implemented as IntegerField in the database, so you save little to nothing at the cost of crippling your model.
Edit:
And for pete's sake, keep it in one table and use indexes as appropriate.
You haven't mentioned which database you're using. Some databases - like MySQL and PostgreSQL - have extremely conservative settings out-of-the-box, which are basically unusable for anything except tiny databases on tiny servers.
If you tell us which database you're using, and what hardware it's running on, and whether that hardware is shared with other applications (is it also serving the web application, for example) then we may be able to give you some specific tuning advice.
For example, with MySQL, you will probably need to tune the InnoDB settings; for PostgreSQL, you'll need to alter shared_buffers and a number of other settings.
I'm not familiar with Django, but I have a general understanding of DB.
When you have large databases, it's pretty normal to index your database. That way, retrieving data, should be pretty quick.
When it comes to associate a book with a reader, you should create another table, that links reader to books.
It's not a bad idea to divide the books into subjects. But I'm not sure what you mean by having 20 applications.
Are you having performance problems? If so, you might need to add a few indexes.
One way to get an idea where an index would help is by looking at your db server's query log (instructions here if you're on MySQL).
If you're not having performance problems, then just go with it. Databases are made to handle millions of records, and django is pretty good at generating sensible queries.
A common approach to this type of problem is Sharding. Unfortunately it's mostly up to the ORM to implement it (Hibernate does it wonderfully) and Django does not support this. However, I'm not sure 4 million rows is really all that bad. Your queries should still be entirely manageable.
Perhaps you should look in to caching with something like memcached. Django supports this quite well.
You can use a server-side datatable. If you can implement a server-side datatable, you will be able to have more than 4 million records in less than a second.