I'm making an app that has a need for reverse searches. By this, I mean that users of the app will enter search parameters and save them; then, when any new objects get entered onto the system, if they match the existing search parameters that a user has saved, a notification will be sent, etc.
I am having a hard time finding solutions for this type of problem.
I am using Django and thinking of building the searches and pickling them using Q objects as outlined here: http://www.djangozen.com/blog/the-power-of-q
The way I see it, when a new object is entered into the database, I will have to load every single saved query from the db and somehow run it against this one new object to see if it would match that search query... This doesn't seem ideal - has anyone tackled such a problem before?
At the database level, many databases offer 'triggers'.
Another approach is to have timed jobs that periodically fetch all items from the database that have a last-modified date since the last run; then these get filtered and alerts issued. You can perhaps put some of the filtering into the query statement in the database. However, this is a bit trickier if notifications need to be sent if items get deleted.
You can also put triggers manually into the code that submits data to the database, which is perhaps more flexible and certainly doesn't rely on specific features of the database.
A nice way for the triggers and the alerts to communicate is through message queues - queues such as RabbitMQ and other AMQP implementations will scale with your site.
The amount of effort you use to solve this problem is directly related to the number of stored queries you are dealing with.
Over 20 years ago we handled stored queries by treating them as minidocs and indexing them based on all of the must have and may have terms. A new doc's term list was used as a sort of query against this "database of queries" and that built a list of possibly interesting searches to run, and then only those searches were run against the new docs. This may sound convoluted, but when there are more than a few stored queries (say anywhere from 10,000 to 1,000,000 or more) and you have a complex query language that supports a hybrid of Boolean and similarity-based searching, it substantially reduced the number we had to execute as full-on queries -- often no more that 10 or 15 queries.
One thing that helped was that we were in control of the horizontal and the vertical of the whole thing. We used our query parser to build a parse tree and that was used to build the list of must/may have terms we indexed the query under. We warned the customer away from using certain types of wildcards in the stored queries because it could cause an explosion in the number of queries selected.
Update for comment:
Short answer: I don't know for sure.
Longer answer: We were dealing with a custom built text search engine and part of it's query syntax allowed slicing the doc collection in certain ways very efficiently, with special emphasis on date_added. We played a lot of games because we were ingesting 4-10,000,000 new docs a day and running them against up to 1,000,000+ stored queries on a DEC Alphas with 64MB of main memory. (This was in the late 80's/early 90's.)
I'm guessing that filtering on something equivalent to date_added could be done used in combination the date of the last time you ran your queries, or maybe the highest id at last query run time. If you need to re-run the queries against a modified record you could use its id as part of the query.
For me to get any more specific, you're going to have to get a lot more specific about exactly what problem you are trying to solve and the scale of the solution you are trying accomplishing.
If you stored the type(s) of object(s) involved in each stored search as a generic relation, you could add a post-save signal to all involved objects. When the signal fires, it looks up only the searches that involve its object type and runs those. That probably will still run into scaling issues if you have a ton of writes to the db and a lot of saved searches, but it would be a straightforward Django approach.
Related
I'm trying to think of an algorithm to solve this problem I have. It's not a HW problem, but for a side project I'm working on.
There's a table A that has about (order of) 10^5 rows and adds new in the order of 10^2 every day.
Table B has on the order of 10^6 rows and adds new at 10^3 every day. There's a one to many relation from A to B (many B rows for some row in A).
I was wondering how I could do continuous aggregates for this kind of data. I would like to have a job that runs every ~10mins and does this: For every row in A, find every row in B related to it that were created in the last day, week and month (and then sort by count) and save them in a different DB or cache them.
If this is confusing, here's a practical example: Say table A has Amazon products and table B has product reviews. We would like to show a sorted list of products with highest reviews in the last 4hrs, day, week etc. New products and reviews are added at a fast pace, and we'd like the said list to be as up-to-date as possible.
Current implementation I have is just a for loop (pseudo-code):
result = []
for product in db_products:
reviews = db_reviews(product_id=product.id, create>=some_time)
reviews_count = len(reviews)
result[product]['reviews'] = reviews
result[product]['reviews_count'] = reviews_count
sort(result, by=reviews_count)
return result
I do this every hour, and save the result in a json file to serve. The problem is that this doesn't really scale well, and takes a long time to compute.
So, where could I look to solve this problem?
UPDATE:
Thank you for your answers. But I ended up learning and using Apache Storm.
Summary of requirements
Having two bigger tables in a database, you need regularly creating some aggregates for past time periods (hour, day, week etc.) and store the results in another database.
I will assume, that once a time period is past, there are no changes to related records, in other words, the aggregate for past period has always the same result.
Proposed solution: Luigi
Luigi is framework for plumbing dependent tasks and one of typical uses is calculating aggregates for past periods.
The concept is as follows:
write simple Task instance, which defines required input data, output data (called Target) and process to create the target output.
Tasks can be parametrized, typical parameter is time period (specific day, hour, week etc.)
Luigi can stop tasks in the middle and start later. It will consider any task, for which is target already existing to be completed and will not rerun it (you would have to delete the target content to let it rerun).
In short: if the target exists, the task is done.
This works for multiple types of targets like files in local file system, on hadoop, at AWS S3, and also in database.
To prevent half done results, target implementations take care of atomicity, so e.g. files are first created in temporary location and are moved to final destination just after they are completed.
In databases there are structures to denote, that some database import is completed.
You are free to create your own target implementations (it has to create something and provide method exists to check, the result exists.
Using Luigi for your task
For the task you describe you will probably find everything you need already present. Just few tips:
class luigi.postgres.CopyToTable allowing to store records into Postgres database. The target will automatically create so called "marker table" where it will mark all completed tasks.
There are similar classes for other types of databases, one of them using SqlAlchemy which shall probably cover the database you use, see class luigi.contrib.sqla.CopyToTable
At Luigi doc is working example of importing data into sqlite database
Complete implementation is beyond extend feasible in StackOverflow answer, but I am sure, you will experience following:
The code to do the task is really clear - no boilerplate coding, just write only what has to be done.
nice support for working with time periods - even from command line, see e.g. Efficiently triggering recurring tasks. It even takes care of not going too far in past, to prevent generating too many tasks possibly overloading your servers (default values are very reasonably set and can be changed).
Option to run the task on multiple servers (using central scheduler, which is provided with Luigi implementation).
I have processed huge amounts of XML files with Luigi and also made some tasks, importing aggregated data into database and can recommend it (I am not author of Luigi, I am just happy user).
Speeding up database operations (queries)
If your task suffers from too long execution time to perform the database query, you have few options:
if you are counting reviews per product by Python, consider trying SQL query - it is often much faster. It shall be possible to create SQL query which uses count on proper records and returns directly the number you need. With group by you shall even get summary information for all products in one run.
set up proper index, probably on "reviews" table on "product" and "time period" column. This shall speed up the query, but make sure, it does not slow down inserting new records too much (too many indexes can cause that).
It might happen, that with optimized SQL query you will get working solution even without using Luigi.
Data Warehousing? Summary tables are the right way to go.
Does the data change (once it is written)? If it does, then incrementally updating Summary Tables becomes a challenge. Most DW applications do not have that problem
Update the summary table (day + dimension(s) + count(s) + sum(s)) as you insert into the raw data table(s). Since you are getting only one insert per minute, INSERT INTO SummaryTable ... ON DUPLICATE KEY UPDATE ... would be quite adequate, and simpler than running a script every 10 minutes.
Do any reporting from a summary table, not the raw data (the Fact table). It will be a lot faster.
My Blog on Summary Tables discusses details. (It is aimed at bigger DW applications, but should be useful reading.)
I agree with Rick, summary tables make the most sense for you. Update the summary tables every 10 minutes and just pull data from it, as user's request summaries.
Also, make sure that your DB is indexed properly for performance. I'm sure db_products.id set as a unique index. but, also make sure that db_products.create is defined as a DATE or DATETIME and also indexed since you are using it in your WHERE statement.
I wrote an app to record the user interactions with the website search box,
the query string is saved as an object of the model SearchQuery. Whenever a user enters some data in the search box, I can save the search query and some info related to the query on the database.
This is for the idea of getting the search trends,
the fields in my database models are,
A Character Field (max_length=30)
A PositiveIntegerField
A BooleanField
My Questions are,
How many objects can be instantiated from the model SearchQuery? If there is a limit on numbers?
As the objects are not related (no db relationships) should I use MongoDB or some kind of NoSQLs for performance?
Is this a good design or should I do some more work to make it efficient?
Django version 1.6.5
Python version 2.7
How many objects can be instantiated from the model SearchQuery? If there is a limit on numbers?
As many as your chosen database can handle, this is probably in the millions. If you are concerned you can use a scheduler to delete older queries when they are no longer useful.
As the objects are not related (no db relationships) should I use MongoDB or some kind of NoSQLs for performance?
Could you, but its unlikely to give you much (if any efficiency gains). Because you are doing frequent writes and (presumably) infrequent reads, then its unlikely to hit the database very hard at all.
Is this a good design or should I do some more work to make it efficient?
There are probably two recommendations I'd make.
a. If you are going to be doing frequent reads on the Search log, look at using multiple databases. One for your log, and one for everything else.
b. Consider just using a regular log file for this information. Again, you will probably only be examining this data infrequently. So there are strng arguments to piping it into a log file, probably CSV-like, to make data analysis of it easier.
I'm working on a project that allows users to enter SQL queries with parameters, that SQL query will be executed over a period of time they decide (say every 2 hours for 6 months) and then get the results back to their email address.
They'll get it in the form of an HTML-email message, so what the system basically does is run the queries, and generate HTML that is then sent to the user.
I also want to save those results, so that a user can go on our website and look at previous results.
My question is - what data do I save?
Do I save the SQL query with those parameters (i.e the date parameters, so he can see the results relevant to that specific date). This means that when the user clicks on this specific result, I need to execute the query again.
Save the HTML that was generated back then, and simply display it when the user wishes to see this result?
I'd appreciate it if somebody would explain the pros and cons of each solution, and which one is considered the best & the most efficient.
The archive will probably be 1-2 months old, and I can't really predict the amount of rows each query will return.
Thanks!
Specifically regarding retrieving the results from queries that have been run previously I would suggest saving the results to be able to view later rather than running the queries again and again. The main benefits of this approach are:
You save unnecessary computational work re-running the same queries;
You guarantee that the result set will be the same as the original report. For example if you save just the SQL then the records queried may have changed since the query was last run or records may have been added / deleted.
The disadvantage of this approach is that it will probably use more disk space, but this is unlikely to be an issue unless you have queries returning millions of rows (in which case html is probably not such a good idea anyway).
If I would create such type of application then
I will have some common queries like get by current date,current time , date ranges, time ranges, n others based on my application for the user to select easily.
Some autocompletions for common keywords.
If the data gets changed frequently there is no use saving html, generating new one is good option
The crucial difference is that if data changes, new query will return different result than what was saved some time ago, so you have to decide if the user should get the up to date data or a snapshot of what the data used to be.
If relevant data does not change, it's a matter of whether the queries will be expensive, how many users will run them and how often, then you may decide to save them instead of re-running queries, to improve performance.
After enabling Appstats and profiling my application, I went on a panic rage trying to figure out how to reduce costs by any means. A lot of my costs per request came from queries, so I sought out to eliminate querying as much as possible.
For example, I had one query where I wanted to get a User's StatusUpdates after a certain date X. I used a query to fetch: statusUpdates = StatusUpdates.query(StatusUpdates.date > X).
So I thought I might outsmart the system and avoid a query, but incur higher write costs for the sake of lower read costs. I thought that every time a user writes a Status, I store the key to that status in a list property of the user. So instead of querying, I would just do ndb.get_multi(user.list_of_status_keys).
The question is, what is the difference for the system between these two approaches? Sure I avoid a query with the second case, but what is happening behind the scenes here? Is what I'm doing in the second case, where I'm collecting keys, just me doing a manual indexing that GAE would have done for me with queries?
In general, what is the difference between get_multi(keys) and a query? Which is more efficient? Which is less costly?
Check the docs on billing:
https://developers.google.com/appengine/docs/billing
It's pretty straightforward. Reads are $0.07/100k, smalls are $0.01/100k, so you want to do smalls.
A query is 1 read + 1 small / entity
A get is 1 read. If you are getting more than 1 entity back with a query, it's cheaper to do a query than reading entities from keys.
Query is likely more efficient too. The only benefit from doing the gets is that they'll be fully consistent (whereas a query is eventually consistent).
Storing the keys does not query, as you cannot do anything with just the keys. You will still have to fetch the Status objects from memory. Also, since you want to query on the date of the Status object, you will need to fetch all the Status objects into memory and compare their dates yourself. If you use a Query, appengine will fetch only the Status with the required date. Since you fetch less, your read costs will be lower.
As this is basically the same question as you have posed here, I suggest that you look at the answer I gave there.
Apologies for the longish description.
I want to run a transform on every doc in a large-ish Mongodb collection with 10 million records approx 10G. Specifically I want to apply a geoip transform to the ip field in every doc and either append the result record to that doc or just create a whole other record linked to this one by say id (the linking is not critical, I can just create a whole separate record). Then I want to count and group by say city - (I do know how to do the last part).
The major reason I believe I cant use map-reduce is I can't call out to the geoip library in my map function (or at least that's the constraint I believe exists).
So I the central question is how do I run through each record in the collection apply the transform - using the most efficient way to do that.
Batching via Limit/skip is out of question as it does a "table scan" and it is going to get progressively slower.
Any suggestions?
Python or Js preferred just bec I have these geoip libs but code examples in other languages welcome.
Since you have to go over "each record", you'll do one full table scan anyway, then a simple cursor (find()) + maybe only fetching few fields (_id, ip) should do it. python driver will do the batching under the hood, so maybe you can give a hint on what's the optimal batch size (batch_size) if the default is not good enough.
If you add a new field and it doesn't fit the previously allocated space, mongo will have to move it to another place, so you might be better off creating a new document.
Actually I am also attempting another approach in parallel (as plan B) which is to use mongoexport. I use it with --csv to dump a large csv file with just the (id, ip) fields. Then the plan is to use a python script to do a geoip lookup and then post back to mongo as a new doc on which map-reduce can now be run for count etc. Not sure if this is faster or the cursor is. We'll see.