Python dictionary.keys() error - python

I am trying to use the .keys() and instead of getting a list of the keys like
always have in the past. However I get this.
b = { 'video':0, 'music':23 }
k = b.keys()
print( k[0] )
>>>TypeError: 'dict_keys' object does not support indexing
print( k )
dict_keys(['music', 'video'])
it should just print ['music', 'video'] unless I'm going crazy.
What's going on?

Python 3 changed the behavior of dict.keys such that it now returns a dict_keys object, which is iterable but not indexable (it's like the old dict.iterkeys, which is gone now). You can get the Python 2 result back with an explicit call to list:
>>> b = { 'video':0, 'music':23 }
>>> k = list(b.keys())
>>> k
['music', 'video']
or just
>>> list(b)
['music', 'video']

If you assigned k like so:
k = list(b.keys())
your code will work.
As the error says, the dict_keys type does not support indexing.

This is one of the breaking changes between Python 2 and 3.
In Python 2:
>>> help(dict.keys)
keys(...)
D.keys() -> list of D's keys
In Python 3:
>>> help(dict.keys)
keys(...)
D.keys() -> a set-like object providing a view on D's keys
This change in behavior makes a lot of sense since a dict is semantically unordered and its keys are unique - just like a set.
This change means that you don't have to create a new list of keys every time you want to do some kind of set comparison with a dict's keys.
Getting the same behavior in 2 and 3
To help transition to Python 3, Python 2.7 has another dict method, viewkeys. The viewkeys method is most similar to Python 3's dict.keys method:
>>> d
{'a': None, 'c': None, 'b': None, 'd': None}
>>> for k in d.viewkeys(): print k
...
a
c
b
d
>>> d.viewkeys() & set('abc')
set(['a', 'c', 'b'])
In Python 3, the closest analog to the old behavior is to pass dict.keys() to list:
>>> d
{'d': None, 'a': None, 'c': None, 'b': None}
>>> list(d.keys())
['d', 'a', 'c', 'b']
Or just pass the dict to list, since a dict will iterate over its keys anyways:
>>> list(d)
['d', 'a', 'c', 'b']
You could create a utility functions to abstract the behavior over 2 and 3:
if hasattr(dict, 'viewkeys'): # Python 2.7
def keys(d):
return d.viewkeys()
else: # Python 3
def keys(d):
return d.keys()
And pass a dict to list to get the list form, and in both 2 and 3, you'll get the same output:
>>> d
{'b': None, 'a': None, 'c': None, 'd': None}
>>> keys(d)
dict_keys(['b', 'a', 'c', 'd'])
>>> list(d)
['b', 'a', 'c', 'd']

If you simply want a list of keys from a dictionary you can directly do like this:
b = {"name": "xyz", "class":"abc", "college": "qwert"}
key_list = list(b)
key_list will contain all the key names as a list, though, this will not repeats a key, if found more than once. Duplicate keys will be counted as one.

import random
b = { 'video':0, 'music':23,"picture":12 }
random.choice(tuple(b.items()))
# Returns a random dictionary entry as a tuple:
# ('music', 23)

Related

Looping over dictionary keys appends too many dictionary values [duplicate]

My attempt to programmatically create a dictionary of lists is failing to allow me to individually address dictionary keys. Whenever I create the dictionary of lists and try to append to one key, all of them are updated. Here's a very simple test case:
data = {}
data = data.fromkeys(range(2),[])
data[1].append('hello')
print data
Actual result: {0: ['hello'], 1: ['hello']}
Expected result: {0: [], 1: ['hello']}
Here's what works
data = {0:[],1:[]}
data[1].append('hello')
print data
Actual and Expected Result: {0: [], 1: ['hello']}
Why is the fromkeys method not working as expected?
When [] is passed as the second argument to dict.fromkeys(), all values in the resulting dict will be the same list object.
In Python 2.7 or above, use a dict comprehension instead:
data = {k: [] for k in range(2)}
In earlier versions of Python, there is no dict comprehension, but a list comprehension can be passed to the dict constructor instead:
data = dict([(k, []) for k in range(2)])
In 2.4-2.6, it is also possible to pass a generator expression to dict, and the surrounding parentheses can be dropped:
data = dict((k, []) for k in range(2))
Try using a defaultdict instead:
from collections import defaultdict
data = defaultdict(list)
data[1].append('hello')
This way, the keys don't need to be initialized with empty lists ahead of time. The defaultdict() object instead calls the factory function given to it, every time a key is accessed that doesn't exist yet. So, in this example, attempting to access data[1] triggers data[1] = list() internally, giving that key a new empty list as its value.
The original code with .fromkeys shares one (mutable) list. Similarly,
alist = [1]
data = dict.fromkeys(range(2), alist)
alist.append(2)
print(data)
would output {0: [1, 2], 1: [1, 2]}. This is called out in the dict.fromkeys() documentation:
All of the values refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as an empty list.
Another option is to use the dict.setdefault() method, which retrieves the value for a key after first checking it exists and setting a default if it doesn't. .append can then be called on the result:
data = {}
data.setdefault(1, []).append('hello')
Finally, to create a dictionary from a list of known keys and a given "template" list (where each value should start with the same elements, but be a distinct list), use a dictionary comprehension and copy the initial list:
alist = [1]
data = {key: alist[:] for key in range(2)}
Here, alist[:] creates a shallow copy of alist, and this is done separately for each value. See How do I clone a list so that it doesn't change unexpectedly after assignment? for more techniques for copying the list.
You could use a dict comprehension:
>>> keys = ['a','b','c']
>>> value = [0, 0]
>>> {key: list(value) for key in keys}
{'a': [0, 0], 'b': [0, 0], 'c': [0, 0]}
This answer is here to explain this behavior to anyone flummoxed by the results they get of trying to instantiate a dict with fromkeys() with a mutable default value in that dict.
Consider:
#Python 3.4.3 (default, Nov 17 2016, 01:08:31)
# start by validating that different variables pointing to an
# empty mutable are indeed different references.
>>> l1 = []
>>> l2 = []
>>> id(l1)
140150323815176
>>> id(l2)
140150324024968
so any change to l1 will not affect l2 and vice versa.
this would be true for any mutable so far, including a dict.
# create a new dict from an iterable of keys
>>> dict1 = dict.fromkeys(['a', 'b', 'c'], [])
>>> dict1
{'c': [], 'b': [], 'a': []}
this can be a handy function.
here we are assigning to each key a default value which also happens to be an empty list.
# the dict has its own id.
>>> id(dict1)
140150327601160
# but look at the ids of the values.
>>> id(dict1['a'])
140150323816328
>>> id(dict1['b'])
140150323816328
>>> id(dict1['c'])
140150323816328
Indeed they are all using the same ref!
A change to one is a change to all, since they are in fact the same object!
>>> dict1['a'].append('apples')
>>> dict1
{'c': ['apples'], 'b': ['apples'], 'a': ['apples']}
>>> id(dict1['a'])
>>> 140150323816328
>>> id(dict1['b'])
140150323816328
>>> id(dict1['c'])
140150323816328
for many, this was not what was intended!
Now let's try it with making an explicit copy of the list being used as a the default value.
>>> empty_list = []
>>> id(empty_list)
140150324169864
and now create a dict with a copy of empty_list.
>>> dict2 = dict.fromkeys(['a', 'b', 'c'], empty_list[:])
>>> id(dict2)
140150323831432
>>> id(dict2['a'])
140150327184328
>>> id(dict2['b'])
140150327184328
>>> id(dict2['c'])
140150327184328
>>> dict2['a'].append('apples')
>>> dict2
{'c': ['apples'], 'b': ['apples'], 'a': ['apples']}
Still no joy!
I hear someone shout, it's because I used an empty list!
>>> not_empty_list = [0]
>>> dict3 = dict.fromkeys(['a', 'b', 'c'], not_empty_list[:])
>>> dict3
{'c': [0], 'b': [0], 'a': [0]}
>>> dict3['a'].append('apples')
>>> dict3
{'c': [0, 'apples'], 'b': [0, 'apples'], 'a': [0, 'apples']}
The default behavior of fromkeys() is to assign None to the value.
>>> dict4 = dict.fromkeys(['a', 'b', 'c'])
>>> dict4
{'c': None, 'b': None, 'a': None}
>>> id(dict4['a'])
9901984
>>> id(dict4['b'])
9901984
>>> id(dict4['c'])
9901984
Indeed, all of the values are the same (and the only!) None.
Now, let's iterate, in one of a myriad number of ways, through the dict and change the value.
>>> for k, _ in dict4.items():
... dict4[k] = []
>>> dict4
{'c': [], 'b': [], 'a': []}
Hmm. Looks the same as before!
>>> id(dict4['a'])
140150318876488
>>> id(dict4['b'])
140150324122824
>>> id(dict4['c'])
140150294277576
>>> dict4['a'].append('apples')
>>> dict4
>>> {'c': [], 'b': [], 'a': ['apples']}
But they are indeed different []s, which was in this case the intended result.
You can use this:
l = ['a', 'b', 'c']
d = dict((k, [0, 0]) for k in l)
You are populating your dictionaries with references to a single list so when you update it, the update is reflected across all the references. Try a dictionary comprehension instead. See
Create a dictionary with list comprehension in Python
d = {k : v for k in blah blah blah}
You could use this:
data[:1] = ['hello']

Merge two dictionaries with keys only from the first dict

I want to merge two dictionaries so that the resulting dict has keys from the first dict and values from the first and second.
>>> A = {'AB': 'a', 'A': 'a'}
>>> B = {'AB': 'b', 'B': 'b'}
>>> merge_left(A, B)
{'AB': 'b', 'A': 'a'}
This is somewhat similar to a left outer join used in merging database tables in that one side is used as the "base" and the other side is compared to it.
Here is a table of what value each key should have in the resulting dict.
Possible Situations
Key in A
Key not in A
Key in B
Use B's value
Don't include
Key not in B
Use A's value
N/A
Is there a function merge_left or something similar that returns the dict above?
I used dict.get's ability to return a default value to make a fairly short merge_left function. This uses a dict-comprehension over key, value pairs of the first dict and checks them against the second.
def merge_left(defaults, override):
return {key, override.get(key, default) for key, default in defaults.items()}
Since this function is just returning a dict-comprehension, you can "inline" it directly into your code.
>>> A = {'AB': 'a', 'A': 'a'}
>>> B = {'AB': 'b', 'B': 'b'}
>>> {k: B.get(k, a) for k, a in A.items()}
{'AB': 'b', 'A': 'a'}

Appending to a list inside a dict value referring to only one key [duplicate]

My attempt to programmatically create a dictionary of lists is failing to allow me to individually address dictionary keys. Whenever I create the dictionary of lists and try to append to one key, all of them are updated. Here's a very simple test case:
data = {}
data = data.fromkeys(range(2),[])
data[1].append('hello')
print data
Actual result: {0: ['hello'], 1: ['hello']}
Expected result: {0: [], 1: ['hello']}
Here's what works
data = {0:[],1:[]}
data[1].append('hello')
print data
Actual and Expected Result: {0: [], 1: ['hello']}
Why is the fromkeys method not working as expected?
When [] is passed as the second argument to dict.fromkeys(), all values in the resulting dict will be the same list object.
In Python 2.7 or above, use a dict comprehension instead:
data = {k: [] for k in range(2)}
In earlier versions of Python, there is no dict comprehension, but a list comprehension can be passed to the dict constructor instead:
data = dict([(k, []) for k in range(2)])
In 2.4-2.6, it is also possible to pass a generator expression to dict, and the surrounding parentheses can be dropped:
data = dict((k, []) for k in range(2))
Try using a defaultdict instead:
from collections import defaultdict
data = defaultdict(list)
data[1].append('hello')
This way, the keys don't need to be initialized with empty lists ahead of time. The defaultdict() object instead calls the factory function given to it, every time a key is accessed that doesn't exist yet. So, in this example, attempting to access data[1] triggers data[1] = list() internally, giving that key a new empty list as its value.
The original code with .fromkeys shares one (mutable) list. Similarly,
alist = [1]
data = dict.fromkeys(range(2), alist)
alist.append(2)
print(data)
would output {0: [1, 2], 1: [1, 2]}. This is called out in the dict.fromkeys() documentation:
All of the values refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as an empty list.
Another option is to use the dict.setdefault() method, which retrieves the value for a key after first checking it exists and setting a default if it doesn't. .append can then be called on the result:
data = {}
data.setdefault(1, []).append('hello')
Finally, to create a dictionary from a list of known keys and a given "template" list (where each value should start with the same elements, but be a distinct list), use a dictionary comprehension and copy the initial list:
alist = [1]
data = {key: alist[:] for key in range(2)}
Here, alist[:] creates a shallow copy of alist, and this is done separately for each value. See How do I clone a list so that it doesn't change unexpectedly after assignment? for more techniques for copying the list.
You could use a dict comprehension:
>>> keys = ['a','b','c']
>>> value = [0, 0]
>>> {key: list(value) for key in keys}
{'a': [0, 0], 'b': [0, 0], 'c': [0, 0]}
This answer is here to explain this behavior to anyone flummoxed by the results they get of trying to instantiate a dict with fromkeys() with a mutable default value in that dict.
Consider:
#Python 3.4.3 (default, Nov 17 2016, 01:08:31)
# start by validating that different variables pointing to an
# empty mutable are indeed different references.
>>> l1 = []
>>> l2 = []
>>> id(l1)
140150323815176
>>> id(l2)
140150324024968
so any change to l1 will not affect l2 and vice versa.
this would be true for any mutable so far, including a dict.
# create a new dict from an iterable of keys
>>> dict1 = dict.fromkeys(['a', 'b', 'c'], [])
>>> dict1
{'c': [], 'b': [], 'a': []}
this can be a handy function.
here we are assigning to each key a default value which also happens to be an empty list.
# the dict has its own id.
>>> id(dict1)
140150327601160
# but look at the ids of the values.
>>> id(dict1['a'])
140150323816328
>>> id(dict1['b'])
140150323816328
>>> id(dict1['c'])
140150323816328
Indeed they are all using the same ref!
A change to one is a change to all, since they are in fact the same object!
>>> dict1['a'].append('apples')
>>> dict1
{'c': ['apples'], 'b': ['apples'], 'a': ['apples']}
>>> id(dict1['a'])
>>> 140150323816328
>>> id(dict1['b'])
140150323816328
>>> id(dict1['c'])
140150323816328
for many, this was not what was intended!
Now let's try it with making an explicit copy of the list being used as a the default value.
>>> empty_list = []
>>> id(empty_list)
140150324169864
and now create a dict with a copy of empty_list.
>>> dict2 = dict.fromkeys(['a', 'b', 'c'], empty_list[:])
>>> id(dict2)
140150323831432
>>> id(dict2['a'])
140150327184328
>>> id(dict2['b'])
140150327184328
>>> id(dict2['c'])
140150327184328
>>> dict2['a'].append('apples')
>>> dict2
{'c': ['apples'], 'b': ['apples'], 'a': ['apples']}
Still no joy!
I hear someone shout, it's because I used an empty list!
>>> not_empty_list = [0]
>>> dict3 = dict.fromkeys(['a', 'b', 'c'], not_empty_list[:])
>>> dict3
{'c': [0], 'b': [0], 'a': [0]}
>>> dict3['a'].append('apples')
>>> dict3
{'c': [0, 'apples'], 'b': [0, 'apples'], 'a': [0, 'apples']}
The default behavior of fromkeys() is to assign None to the value.
>>> dict4 = dict.fromkeys(['a', 'b', 'c'])
>>> dict4
{'c': None, 'b': None, 'a': None}
>>> id(dict4['a'])
9901984
>>> id(dict4['b'])
9901984
>>> id(dict4['c'])
9901984
Indeed, all of the values are the same (and the only!) None.
Now, let's iterate, in one of a myriad number of ways, through the dict and change the value.
>>> for k, _ in dict4.items():
... dict4[k] = []
>>> dict4
{'c': [], 'b': [], 'a': []}
Hmm. Looks the same as before!
>>> id(dict4['a'])
140150318876488
>>> id(dict4['b'])
140150324122824
>>> id(dict4['c'])
140150294277576
>>> dict4['a'].append('apples')
>>> dict4
>>> {'c': [], 'b': [], 'a': ['apples']}
But they are indeed different []s, which was in this case the intended result.
You can use this:
l = ['a', 'b', 'c']
d = dict((k, [0, 0]) for k in l)
You are populating your dictionaries with references to a single list so when you update it, the update is reflected across all the references. Try a dictionary comprehension instead. See
Create a dictionary with list comprehension in Python
d = {k : v for k in blah blah blah}
You could use this:
data[:1] = ['hello']

Python: object variable vs standalone variable [duplicate]

My attempt to programmatically create a dictionary of lists is failing to allow me to individually address dictionary keys. Whenever I create the dictionary of lists and try to append to one key, all of them are updated. Here's a very simple test case:
data = {}
data = data.fromkeys(range(2),[])
data[1].append('hello')
print data
Actual result: {0: ['hello'], 1: ['hello']}
Expected result: {0: [], 1: ['hello']}
Here's what works
data = {0:[],1:[]}
data[1].append('hello')
print data
Actual and Expected Result: {0: [], 1: ['hello']}
Why is the fromkeys method not working as expected?
When [] is passed as the second argument to dict.fromkeys(), all values in the resulting dict will be the same list object.
In Python 2.7 or above, use a dict comprehension instead:
data = {k: [] for k in range(2)}
In earlier versions of Python, there is no dict comprehension, but a list comprehension can be passed to the dict constructor instead:
data = dict([(k, []) for k in range(2)])
In 2.4-2.6, it is also possible to pass a generator expression to dict, and the surrounding parentheses can be dropped:
data = dict((k, []) for k in range(2))
Try using a defaultdict instead:
from collections import defaultdict
data = defaultdict(list)
data[1].append('hello')
This way, the keys don't need to be initialized with empty lists ahead of time. The defaultdict() object instead calls the factory function given to it, every time a key is accessed that doesn't exist yet. So, in this example, attempting to access data[1] triggers data[1] = list() internally, giving that key a new empty list as its value.
The original code with .fromkeys shares one (mutable) list. Similarly,
alist = [1]
data = dict.fromkeys(range(2), alist)
alist.append(2)
print(data)
would output {0: [1, 2], 1: [1, 2]}. This is called out in the dict.fromkeys() documentation:
All of the values refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as an empty list.
Another option is to use the dict.setdefault() method, which retrieves the value for a key after first checking it exists and setting a default if it doesn't. .append can then be called on the result:
data = {}
data.setdefault(1, []).append('hello')
Finally, to create a dictionary from a list of known keys and a given "template" list (where each value should start with the same elements, but be a distinct list), use a dictionary comprehension and copy the initial list:
alist = [1]
data = {key: alist[:] for key in range(2)}
Here, alist[:] creates a shallow copy of alist, and this is done separately for each value. See How do I clone a list so that it doesn't change unexpectedly after assignment? for more techniques for copying the list.
You could use a dict comprehension:
>>> keys = ['a','b','c']
>>> value = [0, 0]
>>> {key: list(value) for key in keys}
{'a': [0, 0], 'b': [0, 0], 'c': [0, 0]}
This answer is here to explain this behavior to anyone flummoxed by the results they get of trying to instantiate a dict with fromkeys() with a mutable default value in that dict.
Consider:
#Python 3.4.3 (default, Nov 17 2016, 01:08:31)
# start by validating that different variables pointing to an
# empty mutable are indeed different references.
>>> l1 = []
>>> l2 = []
>>> id(l1)
140150323815176
>>> id(l2)
140150324024968
so any change to l1 will not affect l2 and vice versa.
this would be true for any mutable so far, including a dict.
# create a new dict from an iterable of keys
>>> dict1 = dict.fromkeys(['a', 'b', 'c'], [])
>>> dict1
{'c': [], 'b': [], 'a': []}
this can be a handy function.
here we are assigning to each key a default value which also happens to be an empty list.
# the dict has its own id.
>>> id(dict1)
140150327601160
# but look at the ids of the values.
>>> id(dict1['a'])
140150323816328
>>> id(dict1['b'])
140150323816328
>>> id(dict1['c'])
140150323816328
Indeed they are all using the same ref!
A change to one is a change to all, since they are in fact the same object!
>>> dict1['a'].append('apples')
>>> dict1
{'c': ['apples'], 'b': ['apples'], 'a': ['apples']}
>>> id(dict1['a'])
>>> 140150323816328
>>> id(dict1['b'])
140150323816328
>>> id(dict1['c'])
140150323816328
for many, this was not what was intended!
Now let's try it with making an explicit copy of the list being used as a the default value.
>>> empty_list = []
>>> id(empty_list)
140150324169864
and now create a dict with a copy of empty_list.
>>> dict2 = dict.fromkeys(['a', 'b', 'c'], empty_list[:])
>>> id(dict2)
140150323831432
>>> id(dict2['a'])
140150327184328
>>> id(dict2['b'])
140150327184328
>>> id(dict2['c'])
140150327184328
>>> dict2['a'].append('apples')
>>> dict2
{'c': ['apples'], 'b': ['apples'], 'a': ['apples']}
Still no joy!
I hear someone shout, it's because I used an empty list!
>>> not_empty_list = [0]
>>> dict3 = dict.fromkeys(['a', 'b', 'c'], not_empty_list[:])
>>> dict3
{'c': [0], 'b': [0], 'a': [0]}
>>> dict3['a'].append('apples')
>>> dict3
{'c': [0, 'apples'], 'b': [0, 'apples'], 'a': [0, 'apples']}
The default behavior of fromkeys() is to assign None to the value.
>>> dict4 = dict.fromkeys(['a', 'b', 'c'])
>>> dict4
{'c': None, 'b': None, 'a': None}
>>> id(dict4['a'])
9901984
>>> id(dict4['b'])
9901984
>>> id(dict4['c'])
9901984
Indeed, all of the values are the same (and the only!) None.
Now, let's iterate, in one of a myriad number of ways, through the dict and change the value.
>>> for k, _ in dict4.items():
... dict4[k] = []
>>> dict4
{'c': [], 'b': [], 'a': []}
Hmm. Looks the same as before!
>>> id(dict4['a'])
140150318876488
>>> id(dict4['b'])
140150324122824
>>> id(dict4['c'])
140150294277576
>>> dict4['a'].append('apples')
>>> dict4
>>> {'c': [], 'b': [], 'a': ['apples']}
But they are indeed different []s, which was in this case the intended result.
You can use this:
l = ['a', 'b', 'c']
d = dict((k, [0, 0]) for k in l)
You are populating your dictionaries with references to a single list so when you update it, the update is reflected across all the references. Try a dictionary comprehension instead. See
Create a dictionary with list comprehension in Python
d = {k : v for k in blah blah blah}
You could use this:
data[:1] = ['hello']

Python dict.fromkeys return same id element

When i do this on python i update all keys in one time.
>>> base = {}
>>> keys = ['a', 'b', 'c']
>>> base.update(dict.fromkeys(keys, {}))
>>> base.get('a')['d'] = {}
>>> base
{'a': {'d': {}}, 'c': {'d': {}}, 'b': {'d': {}}}
>>> map(id, base.values())
[140536040273352, 140536040273352, 140536040273352]
If instead of .get i use [] operator this not happen:
>>> base['a']['d'] = {}
>>> base
{'a': {'d': {}}, 'c': {}, 'b': {}}
Why?
When you initialize the value for the new keys as {} a new dictionary is created and a reference to this dictionary is becoming the values. There is only one dictionary and so if you change one, you will change "all".
I tried it with both Python 2.7.6 and 3.4.3. I get the same answer when either get('a') or ['a'] is used. Appreciate if you can verify this at your end. Python does object reuse. Thus, dict.fromkeys() reuses the same empty dict is to initialize. To make each one a separate object, you can do this:
base.update(zip(keys, ({} for _ in keys)))

Categories

Resources