Styling long chains in Python - python

I've written a Python API that is "chain based" (similar to jQuery). So I can write:
myObject.doStuff().doMoreStuf().goRed().goBlue().die()
The problem is that I haven't found a way to keep the syntax clean with long chains. In JavaScript I could simply do
myOjbect
.doStuf()
.doMoreStuf()
.goRed()
.goBlue()
.die()
but Python has indentation restrictions...

PEP8-compliant solution: formatting the line
Actually PEP8 says:
Long lines can be
broken over multiple lines by wrapping expressions in parentheses. These
should be used in preference to using a backslash for line continuation.
Make sure to indent the continued line appropriately.
So I suppose your code should look like this:
(
myOjbect
.doStuf()
.doMoreStuf()
.goRed()
.goBlue()
.die()
)
Alternative solutions: splitting into separate statements
Judging from the syntax, there are two options possible regarding the values returned by each method call:
Every method (maybe except die(), which is not required, as its result is not being used) returns modified instance (the same instance, on which it was called).
Every method (still, die() is not required to do that) returns copy of the instance on which it was called.
Solution for mutable objects (methods return original instance)
In first case (when returning same instance), the solution to split longer lines into several statements is:
myObject.doStuf()
myObject.doMoreStuf()
myObject.goRed()
myObject.goBlue()
myObject.die()
Real world example involves mutable objects:
my_stuff = []
my_stuff.append('laptop') # my_stuff == ['laptop']
my_stuff.append('jacket') # my_stuff == ['laptop', 'jacket']
my_stuff.append('apple') # my_stuff == ['laptop', 'jacket', 'apple']
(although list.append() does not return anything, just for consistency and for stating explicitly that it is mutable)
Solution for immutable objects (methods return modified copy)
In the second case (when returning copy), the solution to do similar thing is:
myObject = myObject.doStuf()
myObject = myObject.doMoreStuf()
myObject = myObject.goRed()
myObject = myObject.goBlue()
myObject.die()
Real world example involves immutable objects:
name = '-Tadek-'
name = name.strip('-') # name == 'Tadek'
name = name.lower() # name == 'tadek'
name = name.replace('k', 'ck') # name == 'tadeck'

myOjbect \
.doStuf() \
.doMoreStuf() \
.goRed() \
.goBlue() \
.die()
(I feel sorry for myObject. That all sounds quite painful.)

Though I wouldn't call it "clean", it is possible to break inside the parenthesis:
myOjbect.doStuf(
).doMoreStuf(arg1, arg2
).goRed(
).goBlue(
).die()
Tastes vary though, so I'm putting it in an answer for completeness.

I found that a good way to make “chains” look nice is to simply type a bit more:
obj = myObject.doStuff()
obj = obj.doMoreStuf()
obj = obj.goRed()
obj = obj.goBlue()
obj = obj.die()
Or better: use meaningful names, making the code more obvious.
obj = myObject.doStuff().doMoreStuf()
colored_object = obj.goRed().goBlue()
colored_object.die()

I don't think chained methods like this are used very commonly in python (if at all). One option would be to use an API that looks like
myObject.do(
'Stuff',
'MoreStuff',
'Red',
'Blue',
'die',
)
though you might get more relevant advice if you give us a real example - it's hard to guess what kind of operations are being represented here. Maybe some of them should be combined, or placed in __init__ (for example, the colour could be set by passing an optional argument to __init__).

Related

I want a configurable python callable. Class versus function factory?

I want to write a number of related parse functions, that take text and return objects or raise exceptions, rather like int() and float() do. I do anticipate being able to supply these recursively to higher level parsers. I want to be able to configure these at run time, and have either their docstrings, or some other attribute, settable to report how they've been configured.
Python's 'There should be one—and preferably only one—obvious way to do it' has let me down here.
I appear to be able to do exactly the same thing with either a class with a call method, or a function that returns a function.
For instance, my two attempts at a toy range-constrained number parser are below.
class Parser():
def __init__(self, nType=int, nRange=None):
self.nType = nType
self.nRange = nRange
self.__doc__ = 'class - range is {}'.format(str(nRange))
def __call__(self, inStr):
x = self.nType(inStr)
if self.nRange:
if not self.nRange[0] <= x <= self.nRange[1]:
raise ValueError('{} is out of range (class)'.format(inStr))
return x
def parserFactory(nType=int, nRange=None):
def parser(inStr):
x = nType(inStr)
if nRange:
if not nRange[0] <= x <= nRange[1]:
raise ValueError('{} is out of range (factory)'.format(inStr))
return x
parser.__doc__ = 'factory - range is {}'.format(str(nRange))
return parser
a = Parser()
b = Parser(nRange=(3,6), nType=float)
c = parserFactory(nType=float)
d = parserFactory(nRange=(3, 6))
for string in ['4', '14']:
for x in [a,b,c,d,int]:
print(x.__doc__[:35])
try:
print(string, x(string))
except ValueError as error:
print(error)
Both do what I want. Both have more or less the same complexity, and essentially the same statements, albeit in a different order. The factory is slightly shorter. I don't anticipate needing to use any other class methods. I don't see any clear way to choose which is 'better'.
Is one or the other more pythonic?
Is one or the other more likely to run me into difficulty if (when) I try to modify them in yet unanticipated ways?
What do most people do?
I'm a fairly inexperienced programmer. I've read wikipedia's entry on 'factory method pattern' and the subtleties in it go straight over my head.
(edit) Having read comments, answers and links, I think one of the problems is that neither is a good fit. You would not expect a class to have so few methods, even though it can. You would not expect a function to be carrying an attribute, even though it can. As the syntax is so similar, it probably doesn't matter which I use initially, as I can switch without a change in behaviour. (/edit)
You can think of functions as syntactic sugar for classes with only a __init__ and __call__. That would also be true for generators vs classes, context managers vs classes, ...
If you are only passing the parser around and calling it someplace(i.e. doing function things), then you should use the factory. It also allows you to migrate to the class later easily, your factory can simply return the class.
If, besides calling it, you need to inspect or change the values of the parser in other parts of your code, then you should go with classes.
All that said, in this specific case you showed here, I think I would use functools.partial

Too many if statements

I have some topic to discuss. I have a fragment of code with 24 ifs/elifs. Operation is my own class that represents functionality similar to Enum. Here is a fragment of code:
if operation == Operation.START:
strategy = strategy_objects.StartObject()
elif operation == Operation.STOP:
strategy = strategy_objects.StopObject()
elif operation == Operation.STATUS:
strategy = strategy_objects.StatusObject()
(...)
I have concerns from readability point of view. Is is better to change it into 24 classes and use polymorphism? I am not convinced that it will make my code maintainable... From one hand those ifs are pretty clear and it shouldn't be hard to follow, on the other hand there are too many ifs.
My question is rather general, however I'm writing code in Python so I cannot use constructions like switch.
What do you think?
UPDATE:
One important thing is that StartObject(), StopObject() and StatusObject() are constructors and I wanted to assign an object to strategy reference.
You could possibly use a dictionary. Dictionaries store references, which means functions are perfectly viable to use, like so:
operationFuncs = {
Operation.START: strategy_objects.StartObject
Operation.STOP: strategy_objects.StopObject
Operation.STATUS: strategy_objects.StatusObject
(...)
}
It's good to have a default operation just in case, so when you run it use a try except and handle the exception (ie. the equivalent of your else clause)
try:
strategy = operationFuncs[operation]()
except KeyError:
strategy = strategy_objects.DefaultObject()
Alternatively use a dictionary's get method, which allows you to specify a default if the key you provide isn't found.
strategy = operationFuncs.get(operation(), DefaultObject())
Note that you don't include the parentheses when storing them in the dictionary, you just use them when calling your dictionary. Also this requires that Operation.START be hashable, but that should be the case since you described it as a class similar to an ENUM.
Python's equivalent to a switch statement is to use a dictionary. Essentially you can store the keys like you would the cases and the values are what would be called for that particular case. Because functions are objects in Python you can store those as the dictionary values:
operation_dispatcher = {
Operation.START: strategy_objects.StartObject,
Operation.STOP: strategy_objects.StopObject,
}
Which can then be used as follows:
try:
strategy = operation_dispatcher[operation] #fetch the strategy
except KeyError:
strategy = default #this deals with the else-case (if you have one)
strategy() #call if needed
Or more concisely:
strategy = operation_dispatcher.get(operation, default)
strategy() #call if needed
This can potentially scale a lot better than having a mess of if-else statements. Note that if you don't have an else case to deal with you can just use the dictionary directly with operation_dispatcher[operation].
You could try something like this.
For instance:
def chooseStrategy(op):
return {
Operation.START: strategy_objects.StartObject
Operation.STOP: strategy_objects.StopObject
}.get(op, strategy_objects.DefaultValue)
Call it like this
strategy = chooseStrategy(operation)()
This method has the benefit of providing a default value (like a final else statement). Of course, if you only need to use this decision logic in one place in your code, you can always use strategy = dictionary.get(op, default) without the function.
Starting from python 3.10
match i:
case 1:
print("First case")
case 2:
print("Second case")
case _:
print("Didn't match a case")
https://pakstech.com/blog/python-switch-case/
You can use some introspection with getattr:
strategy = getattr(strategy_objects, "%sObject" % operation.capitalize())()
Let's say the operation is "STATUS", it will be capitalized as "Status", then prepended to "Object", giving "StatusObject". The StatusObject method will then be called on the strategy_objects, failing catastrophically if this attribute doesn't exist, or if it's not callable. :) (I.e. add error handling.)
The dictionary solution is probably more flexible though.
If the Operation.START, etc are hashable, you can use dictionary with keys as the condition and the values as the functions to call, example -
d = {Operation.START: strategy_objects.StartObject ,
Operation.STOP: strategy_objects.StopObject,
Operation.STATUS: strategy_objects.StatusObject}
And then you can do this dictionary lookup and call the function , Example -
d[operation]()
Here is a bastardized switch/case done using dictionaries:
For example:
# define the function blocks
def start():
strategy = strategy_objects.StartObject()
def stop():
strategy = strategy_objects.StopObject()
def status():
strategy = strategy_objects.StatusObject()
# map the inputs to the function blocks
options = {"start" : start,
"stop" : stop,
"status" : status,
}
Then the equivalent switch block is invoked:
options["string"]()

Computing a function name from another function name

In python 3.4, I want to be able to do a very simple dispatch table for testing purposes. The idea is to have a dictionary with the key being a string of the name of the function to be tested and the data item being the name of the test function.
For example:
myTestList = (
"myDrawFromTo",
"myDrawLineDir"
)
myTestDict = {
"myDrawFromTo": test_myDrawFromTo,
"myDrawLineDir": test_myDrawLineDir
}
for myTest in myTestList:
result = myTestDict[myTest]()
The idea is that I have a list of function names someplace. In this example, I manually create a dictionary that maps those names to the names of test functions. The test function names are a simple extension of the function name. I'd like to compute the entire dictionary from the list of function names (here it is myTestList).
Alternately, if I can do the same thing without the dictionary, that'd be fine, too. I tried just building a new string from the entries in myTestList and then using local() to set up the call, but didn't have any luck. The dictionary idea came from the Python 3.x documentation.
There are two parts to the problem.
The easy part is just prefixing 'text_' onto each string:
tests = {test: 'test_'+test for test in myTestDict}
The harder part is actually looking up the functions by name. That kind of thing is usually a bad idea, but you've hit on one of the cases (generating tests) where it often makes sense. You can do this by looking them up in your module's global dictionary, like this:
tests = {test: globals()['test_'+test] for test in myTestList}
There are variations on the same idea if the tests live somewhere other than the module's global scope. For example, it might be a good idea to make them all methods of a class, in which case you'd do:
tester = TestClass()
tests = {test: getattr(tester, 'test_'+test) for test in myTestList}
(Although more likely that code would be inside TestClass, so it would be using self rather than tester.)
If you don't actually need the dict, of course, you can change the comprehension to an explicit for statement:
for test in myTestList:
globals()['test_'+test]()
One more thing: Before reinventing the wheel, have you looked at the testing frameworks built into the stdlib, or available on PyPI?
Abarnert's answer seems to be useful but to answer your original question of how to call all test functions for a list of function names:
def test_f():
print("testing f...")
def test_g():
print("testing g...")
myTestList = ['f', 'g']
for funcname in myTestList:
eval('test_' + funcname + '()')

empty function object in python

I've heard that python functions are objects, similar to lists or dictionaries, etc. However, what would be a similar way of performing this type of action with a function?
# Assigning empty list to 'a'
a = list()
# Assigning empty function to 'a'
a = lambda: pass
# ???
How would you do this? Further, is it necessary or proper?
Here is the sense in which I would like to use it for better context:
I have a QListWidget for selecting items which are associated with keys in a dictionary. The values in this dictionary are also dictionaries, which hold certain properties of the items, which I can add. These certain properties are stored as keys, and the values in them are initialized or updated by calling different functions. So, I'm storing a variable in the window which gets updated when a button is pressed to tell this script which property to update.
As you can see, I would like to store the function to map to the data using the correct function based on the situation.
# Get selection from the list
name = selected_item
# Initialize an empty function
f = lambda: pass
# Use property that is being added now, which was updated by the specific button that was pushed
property_list = items[name][self.property_currently_being_added]
if self.property_currently_being_added == "prop1":
f = make_property1()
elif self.property_currently_being_added == "prop2":
f = make_property2()
elif self.property_currently_being_added == "prop3":
f = make_property3()
elif self.property_currently_being_added == "prop4":
f = make_property4()
# map the certain function to the data which was retrieved earlier
added_property = map(f, data)
property_list.append(added_property)
First, the reason this doesn't work:
a = lamdba: pass
… is that lambda only allows an expression, and defines a function that returns the value of the expression. Since pass is a statement, not an expression, this is illegal.
However, this works just fine:
a = lambda: None
In Python, a function that falls off the end without a return statement always returns None. So, these are equivalent:
def a(): return None
def a(): pass
However, I don't see why you want to write this as a lambda and an assignment anyway; the def is shorter, and more readable, and gives you an introspectable function object with a nice name (a instead of <lambda>), and so on. The only reasons to ever use lambda are when you don't want to give the function a name, or when you need to define the function inside an expression. Obviously neither of those are true, because you use the lambda directly inside an assignment statement. So, just use def.
Meanwhile, this is in a sense an "empty function", or at least as empty as possible (as you can see by, e.g., calling dis.dis(a), it still takes two bytecodes to do nothing but fall off the end and return None), but it's not useful for your case. You don't want an "empty function". If you try passing your a to map, you're just going to get a TypeError, because you're trying to call a function of no arguments with one argument. (Because that's what map does.)
What you might want is an identity function, which just returns its argument as-is. Like this:
def a(x): return x
But I'm not sure that's what you want. Did you want to append data as-is in that case? Or did you want to do something different, like return early, or raise an exception, or not append anything, or …?
Finally, I don't see why you want a function at all. Why not just not call map if you have nothing to map? You have a perfectly good else clause that already catches that case (especially handy if what you want to do is return early or raise…). Or, if you prefer, you can start with f = None, and then use an if f: do decide whether to map or not. Or, if you really want:
added_property = [f(element) if f else element for element in data]
… or …
added_property = map(f, data) if f else data
As one last note, instead of a long if/elif chain that repeats the same thing over and over again, you might want a dict:
propfuncs = {'prop1': make_property1(),
'prop2': make_property2(),
'prop3': make_property3(),
'prop4': make_property4()}
Then, all that cruft turns into these two lines:
f = propfuncs.get(self.property_currently_being_added)
added_property = map(f, data) if f else data
Or course an even better design might be to replace all those make_propertyN functions with a single function that you call as make_property(1) or make_property('prop1')… but without seeing what they actually do, I can't be sure of that.
For completeness and since the title is "empty function object in python", more general case is an empty function object that takes any number of parameters, so you can use it in any callback. It's this one:
callback = lambda *_, **__: None
Explanation is here: http://echochamber.me/viewtopic.php?t=64825
I am surprised to learn that you can even do...
def a(): "This is a test"
a()
this feels so much like you're looking for a Nothing functor, I am guessing that if you had knowledge of Monads you wouldn't even need an empty function , as inspiration PyMonad has a nice Nothing implementation, I usually like to create my own, but it's a good starting point.

Is there a reason not to send super().__init__() a dictionary instead of **kwds?

I just started building a text based game yesterday as an exercise in learning Python (I'm using 3.3). I say "text based game," but I mean more of a MUD than a choose-your-own adventure. Anyway, I was really excited when I figured out how to handle inheritance and multiple inheritance using super() yesterday, but I found that the argument-passing really cluttered up the code, and required juggling lots of little loose variables. Also, creating save files seemed pretty nightmarish.
So, I thought, "What if certain class hierarchies just took one argument, a dictionary, and just passed the dictionary back?" To give you an example, here are two classes trimmed down to their init methods:
class Actor:
def __init__(self, in_dict,**kwds):
super().__init__(**kwds)
self._everything = in_dict
self._name = in_dict["name"]
self._size = in_dict["size"]
self._location = in_dict["location"]
self._triggers = in_dict["triggers"]
self._effects = in_dict["effects"]
self._goals = in_dict["goals"]
self._action_list = in_dict["action list"]
self._last_action = ''
self._current_action = '' # both ._last_action and ._current_action get updated by .update_action()
class Item(Actor):
def __init__(self,in_dict,**kwds)
super().__init__(in_dict,**kwds)
self._can_contain = in_dict("can contain") #boolean entry
self._inventory = in_dict("can contain") #either a list or dict entry
class Player(Actor):
def __init__(self, in_dict,**kwds):
super().__init__(in_dict,**kwds)
self._inventory = in_dict["inventory"] #entry should be a Container object
self._stats = in_dict["stats"]
Example dict that would be passed:
playerdict = {'name' : '', 'size' : '0', 'location' : '', 'triggers' : None, 'effects' : None, 'goals' : None, 'action list' = None, 'inventory' : Container(), 'stats' : None,}
(The None's get replaced by {} once the dictionary has been passed.)
So, in_dict gets passed to the previous class instead of a huge payload of **kwds.
I like this because:
It makes my code a lot neater and more manageable.
As long as the dicts have at least some entry for the key called, it doesn't break the code. Also, it doesn't matter if a given argument never gets used.
It seems like file IO just got a lot easier (dictionaries of player data stored as dicts, dictionaries of item data stored as dicts, etc.)
I get the point of **kwds (EDIT: apparently I didn't), and it hasn't seemed cumbersome when passing fewer arguments. This just appears to be a comfortable way of dealing with a need for a large number of attributes at the the creation of each instance.
That said, I'm still a major python noob. So, my question is this: Is there an underlying reason why passing the same dict repeatedly through super() to the base class would be a worse idea than just toughing it out with nasty (big and cluttered) **kwds passes? (e.g. issues with the interpreter that someone at my level would be ignorant of.)
EDIT:
Previously, creating a new Player might have looked like this, with an argument passed for each attribute.
bob = Player('bob', Location = 'here', ... etc.)
The number of arguments needed blew up, and I only included the attributes that really needed to be present to not break method calls from the Engine object.
This is the impression I'm getting from the answers and comments thus far:
There's nothing "wrong" with sending the same dictionary along, as long as nothing has the opportunity to modify its contents (Kirk Strauser) and the dictionary always has what it's supposed to have (goncalopp). The real answer is that the question was amiss, and using in_dict instead of **kwds is redundant.
Would this be correct? (Also, thanks for the great and varied feedback!)
I'm not sure I understand your question exactly, because I don't see how the code looked before you made the change to use in_dict. It sounds like you have been listing out dozens of keywords in the call to super (which is understandably not what you want), but this is not necessary. If your child class has a dict with all of this information, it can be turned into kwargs when you make the call with **in_dict. So:
class Actor:
def __init__(self, **kwds):
class Item(Actor):
def __init__(self, **kwds)
self._everything = kwds
super().__init__(**kwds)
I don't see a reason to add another dict for this, since you can just manipulate and pass the dict created for kwds anyway
Edit:
As for the question of the efficiency of using the ** expansion of the dict versus listing the arguments explicitly, I did a very unscientific timing test with this code:
import time
def some_func(**kwargs):
for k,v in kwargs.items():
pass
def main():
name = 'felix'
location = 'here'
user_type = 'player'
kwds = {'name': name,
'location': location,
'user_type': user_type}
start = time.time()
for i in range(10000000):
some_func(**kwds)
end = time.time()
print 'Time using expansion:\t{0}s'.format(start - end)
start = time.time()
for i in range(10000000):
some_func(name=name, location=location, user_type=user_type)
end = time.time()
print 'Time without expansion:\t{0}s'.format(start - end)
if __name__ == '__main__':
main()
Running this 10,000,000 times gives a slight (and probably statistically meaningless) advantage passing around a dict and using **.
Time using expansion: -7.9877269268s
Time without expansion: -8.06108212471s
If we print the IDs of the dict objects (kwds outside and kwargs inside the function), you will see that python creates a new dict for the function to use in either case, but in fact the function only gets one dict forever. After the initial definition of the function (where the kwargs dict is created) all subsequent calls are just updating the values of that dict belonging to the function, no matter how you call it. (See also this enlightening SO question about how mutable default parameters are handled in python, which is somewhat related)
So from a performance perspective, you can pick whichever makes sense to you. It should not meaningfully impact how python operates behind the scenes.
I've done that myself where in_dict was a dict with lots of keys, or a settings object, or some other "blob" of something with lots of interesting attributes. That's perfectly OK if it makes your code cleaner, particularly if you name it clearly like settings_object or config_dict or similar.
That shouldn't be the usual case, though. Normally it's better to explicitly pass a small set of individual variables. It makes the code much cleaner and easier to reason about. It's possible that a client could pass in_dict = None by accident and you wouldn't know until some method tried to access it. Suppose Actor.__init__ didn't peel apart in_dict but just stored it like self.settings = in_dict. Sometime later, Actor.method comes along and tries to access it, then boom! Dead process. If you're calling Actor.__init__(var1, var2, ...), then the caller will raise an exception much earlier and provide you with more context about what actually went wrong.
So yes, by all means: feel free to do that when it's appropriate. Just be aware that it's not appropriate very often, and the desire to do it might be a smell telling you to restructure your code.
This is not python specific, but the greatest problem I can see with passing arguments like this is that it breaks encapsulation. Any class may modify the arguments, and it's much more difficult to tell which arguments are expected in each class - making your code difficult to understand, and harder to debug.
Consider explicitly consuming the arguments in each class, and calling the super's __init__ on the remaining. You don't need to make them explicit:
class ClassA( object ):
def __init__(self, arg1, arg2=""):
pass
class ClassB( ClassA ):
def __init__(self, arg3, arg4="", *args, **kwargs):
ClassA.__init__(self, *args, **kwargs)
ClassB(3,4,1,2)
You can also leave the variables uninitialized and use methods to set them. You can then use different methods in the different classes, and all subclasses will have access to the superclass methods.

Categories

Resources