calculating cubic root in python - python

I'm trying to evaluate the following function in python:
f(x) = (1 + cos(x))^(1/3)
def eval( i ):
return math.pow( (1 + math.cos( i )), 1/3)
why is it always returning me 1?
I'm trying to calculate the Right and Left approximation of an integral, and latter apply Simpson's Rule, but Python does not seem to like that expression.
Help?
*Complete Code *
import math
min = 0
max = math.pi / 2
n = 4
delta = ( min + max ) / n
def eval( i ):
return math.pow( (1 + math.cos( i )), 1/3)
def right( ):
R = 0
for i in range(1, n+1):
R += eval( i )
return R
def left():
L = 0
for i in range(0, n):
print eval( i )
L += eval( i )

Use floating point math (1 / 3 truncates to zero). Also, no need for math.pow (** for exponentiation)...
(1 + math.cos(i)) ** (1 / 3.0)
Also, min, max and eval are built-in functions - you are shadowing them.
Also, the extra spaces you are adding in your function call arguments are against PEP-8 (Python Style Guide). Specifically this paragraph:
http://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements

Use
1/3.0
instead of
1/3
in your code. Otherwise your exponent will always be 0 due to integer truncation.
Whether to use ** or math.pow() is up to your preference, most would probably just use **.
It's probably not a good idea to define a function named eval since eval() is already in use by Python as a built-in function.
Background:
Note that you could also do 1.0 / 3 or 1.0 / 3.0 .. as long as one of the operands in the division is a float the result will be a float.
However, this float(1/3) would not work since it would convert the 0 resulting from the integer division 1/3 into a float giving you 0.0
Under Python 3.x the division operator / would have worked as you expected (ie it would give you a float value even with two integer operands). To get integer division you would have to use //.
So had you run this under Python 3.x you would not have encountered this particular problem.

New in Python 3.11
The math module now includes a built-in cbrt for cube roots, so your function can be implemented as:
def f(x):
return math.cbrt(1 + math.cos(x))

The 1/3 is an integer divide, evaluating to 0. Try 1./3

I think it's because you're performing integer arithmetic where you really intend to perform floating-point arithmetic. Try changing the [second] 1 to 1.0:
def eval( i ):
return math.pow( (1 + math.cos( i )), 1.0/3)

Related

How to change solution? (codecademy, median, python3.4)

I use python 3.4 for coding. Codecademy editor doesn't accept my solution. Task is to write a function to find the median of a list.
My code:
def median(nums):
a = sorted(nums)
if len(a)==1:
return a[0]
elif len(a) % 2 != 0:
return a[int((len(a) - 1)/2)]
else:
return (a[int((len(a))/2)] + a[int(((len(a))/2) - 1)])/2
So, how to change my code that it will be accepted?
From the information that you have provided so far, I believe it is probably a problem of integer division. In the case when there are an even number of elements in the list, you have to take the average. In python3.4, / does float division but in python2, it does integer division. So you should modifying your line to the following (2.0 instead of 2):
return (a[int((len(a))/2)] + a[int(((len(a))/2) - 1)]) / 2.0
This will force python to do float division instead of integer division

Trapezoid Rule in Python

I am trying to write a program using Python v. 2.7.5 that will compute the area under the curve y=sin(x) between x = 0 and x = pi. Perform this calculation varying the n divisions of the range of x between 1 and 10 inclusive and print the approximate value, the true value, and the percent error (in other words, increase the accuracy by increasing the number of trapezoids). Print all the values to three decimal places.
I am not sure what the code should look like. I was told that I should only have about 12 lines of code for these calculations to be done.
I am using Wing IDE.
This is what I have so far
# base_n = (b-a)/n
# h1 = a + ((n-1)/n)(b-a)
# h2 = a + (n/n)(b-a)
# Trap Area = (1/2)*base*(h1+h2)
# a = 0, b = pi
from math import pi, sin
def TrapArea(n):
for i in range(1, n):
deltax = (pi-0)/n
sum += (1.0/2.0)(((pi-0)/n)(sin((i-1)/n(pi-0))) + sin((i/n)(pi-0)))*deltax
return sum
for i in range(1, 11):
print TrapArea(i)
I am not sure if I am on the right track. I am getting an error that says "local variable 'sum' referenced before assignment. Any suggestions on how to improve my code?
Your original problem and problem with Shashank Gupta's answer was /n does integer division. You need to convert n to float first:
from math import pi, sin
def TrapArea(n):
sum = 0
for i in range(1, n):
deltax = (pi-0)/n
sum += (1.0/2.0)*(((pi-0)/float(n))*(sin((i-1)/float(n)*(pi-0))) + sin((i/float(n))*(pi-0)))*deltax
return sum
for i in range(1, 11):
print TrapArea(i)
Output:
0
0.785398163397
1.38175124526
1.47457409274
1.45836902046
1.42009115659
1.38070223089
1.34524797198
1.31450259385
1.28808354
Note that you can heavily simplify the sum += ... part.
First change all (pi-0) to pi:
sum += (1.0/2.0)*((pi/float(n))*(sin((i-1)/float(n)*pi)) + sin((i/float(n))*pi))*deltax
Then do pi/n wherever possible, which avoids needing to call float as pi is already a float:
sum += (1.0/2.0)*(pi/n * (sin((i-1) * pi/n)) + sin(i * pi/n))*deltax
Then change the (1.0/2.0) to 0.5 and remove some brackets:
sum += 0.5 * (pi/n * sin((i-1) * pi/n) + sin(i * pi/n)) * deltax
Much nicer, eh?
You have some indentation issues with your code but that could just be because of copy paste. Anyways adding a line sum = 0 at the beginning of your TrapArea function should solve your current error. But as #Blender pointed out in the comments, you have another issue, which is the lack of a multiplication operator (*) after your floating point division expression (1.0/2.0).
Remember that in Python expressions are not always evaluated as you would expect mathematically. Thus (a op b)(c) will not automatically multiply the result of a op b by c like you would expect with a mathematical expression. Instead this is the function call notation in Python.
Also remember that you must initialize all variables before using their values for assignment. Python has no default value for unnamed variables so when you reference the value of sum with sum += expr which is equivalent to sum = sum + expr you are trying to reference a name (sum) that is not binded to any object at all.
The following revision to your function should do the trick. Notice how I place multiplication operators (*) between every expression that you intend to multiply.
def TrapArea(n):
sum = 0
for i in range(1, n):
i = float(i)
deltax = (pi-0)/n
sum += (1.0/2.0)*(((pi-0)/n)*(sin((i-1)/n*(pi-0))) + sin((i/n)*(pi-0)))*deltax
return sum
EDIT: I also dealt with the float division issue by converting i to float(i) within every iteration of the loop. In Python 2.x, if you divide one integer type object with another integer type object, the expression evaluates to an integer regardless of the actual value.
A "nicer" way to do the trapezoid rule with equally-spaced points...
Let dx = pi/n be the width of the interval. Also, let f(i) be sin(i*dx) to shorten some expressions below. Then interval i (in range(1,n)) contributes:
dA = 0.5*dx*( f(i) + f(i-1) )
...to the sum (which is an area, so I'm using dA for "delta area"). Factoring out the 0.5*dx, makes the whole some look like:
A = 0.5*dx * ( (f(0) + f(1)) + (f(1) + f(2)) + .... + (f(n-1) + f(n)) )
Notice that there are two f(1) terms, two f(2) terms, on up to two f(n-1) terms. Combine those to get:
A = 0.5*dx * ( f(0) + 2*f(1) + 2*f(2) + ... + 2*f(n-1) + f(n) )
The 0.5 and 2 factors cancel except in the first and last terms:
A = 0.5*dx(f(0) + f(n)) + dx*(f(1) + f(2) + ... + f(n-1))
Finally, you can factor dx out entirely to do just one multiplication at the end. Converting back to sin() calls, then:
def TrapArea(n):
dx = pi/n
asum = 0.5*(sin(0) + sin(pi)) # this is 0 for this problem, but not others
for i in range(1, n-1):
asum += sin(i*dx)
return sum*dx
That changed "sum" to "asum", or maybe "area" would be better. That's mostly because sum() is a built-in function, which I'll use below the line.
Extra credit: The loop part of the sum can be done in one step with a generator expression and the sum builtin function:
def TrapArea2(n):
dx = pi/n
asum = 0.5*(sin(0) + sin(pi))
asum += sum(sin(i*dx) for i in range(1,n-1))
return asum*dx
Testing both of those:
>>> for n in [1, 10, 100, 1000, 10000]:
print n, TrapArea(n), TrapArea2(n)
1 1.92367069372e-16 1.92367069372e-16
10 1.88644298557 1.88644298557
100 1.99884870579 1.99884870579
1000 1.99998848548 1.99998848548
10000 1.99999988485 1.99999988485
That first line is a "numerical zero", since math.sin(math.pi) evaluates to about 1.2e-16 instead of exactly zero. Draw the single interval from 0 to pi and the endpoints are indeed both 0 (or nearly so.)

Modulo operator in Python [duplicate]

This question already has answers here:
How does the modulo (%) operator work on negative numbers in Python?
(12 answers)
Closed last month.
What does modulo in the following piece of code do?
from math import *
3.14 % 2 * pi
How do we calculate modulo on a floating point number?
When you have the expression:
a % b = c
It really means there exists an integer n that makes c as small as possible, but non-negative.
a - n*b = c
By hand, you can just subtract 2 (or add 2 if your number is negative) over and over until the end result is the smallest positive number possible:
3.14 % 2
= 3.14 - 1 * 2
= 1.14
Also, 3.14 % 2 * pi is interpreted as (3.14 % 2) * pi. I'm not sure if you meant to write 3.14 % (2 * pi) (in either case, the algorithm is the same. Just subtract/add until the number is as small as possible).
In addition to the other answers, the fmod documentation has some interesting things to say on the subject:
math.fmod(x, y)
Return fmod(x, y), as defined by the platform C
library. Note that the Python expression x % y may not return the same
result. The intent of the C standard is that fmod(x, y) be exactly
(mathematically; to infinite precision) equal to x - n*y for some
integer n such that the result has the same sign as x and magnitude
less than abs(y). Python’s x % y returns a result with the sign of y
instead, and may not be exactly computable for float arguments. For
example, fmod(-1e-100, 1e100) is -1e-100, but the result of Python’s
-1e-100 % 1e100 is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising 1e100. For this reason,
function fmod() is generally preferred when working with floats, while
Python’s x % y is preferred when working with integers.
Same thing you'd expect from normal modulo .. e.g. 7 % 4 = 3, 7.3 % 4.0 = 3.3
Beware of floating point accuracy issues.
same as a normal modulo 3.14 % 6.28 = 3.14, just like 3.14%4 =3.14 3.14%2 = 1.14 (the remainder...)
you should use fmod(a,b)
While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff.
For example, and assuming a platform on which a Python float is an IEEE 754 double-precision number, in order that -1e-100 % 1e100 have the same sign as 1e100, the computed result is -1e-100 + 1e100, which is numerically exactly equal to 1e100.
Function fmod() in the math module returns a result whose sign matches the sign of the first argument instead, and so returns -1e-100 in this case. Which approach is more appropriate depends on the application.
where x = a%b is used for integer modulo

Checking if float is equivalent to an integer value in python

In Python 3, I am checking whether a given value is triangular, that is, it can be represented as n * (n + 1) / 2 for some positive integer n.
Can I just write:
import math
def is_triangular1(x):
num = (1 / 2) * (math.sqrt(8 * x + 1) - 1)
return int(num) == num
Or do I need to do check within a tolerance instead?
epsilon = 0.000000000001
def is_triangular2(x):
num = (1 / 2) * (math.sqrt(8 * x + 1) - 1)
return abs(int(num) - num) < epsilon
I checked that both of the functions return same results for x up to 1,000,000. But I am not sure if generally speaking int(x) == x will always correctly determine whether a number is integer, because of the cases when for example 5 is represented as 4.99999999999997 etc.
As far as I know, the second way is the correct one if I do it in C, but I am not sure about Python 3.
There is is_integer function in python float type:
>>> float(1.0).is_integer()
True
>>> float(1.001).is_integer()
False
>>>
Both your implementations have problems. It actually can happen that you end up with something like 4.999999999999997, so using int() is not an option.
I'd go for a completely different approach: First assume that your number is triangular, and compute what n would be in that case. In that first step, you can round generously, since it's only necessary to get the result right if the number actually is triangular. Next, compute n * (n + 1) / 2 for this n, and compare the result to x. Now, you are comparing two integers, so there are no inaccuracies left.
The computation of n can be simplified by expanding
(1/2) * (math.sqrt(8*x+1)-1) = math.sqrt(2 * x + 0.25) - 0.5
and utilizing that
round(y - 0.5) = int(y)
for positive y.
def is_triangular(x):
n = int(math.sqrt(2 * x))
return x == n * (n + 1) / 2
You'll want to do the latter. In Programming in Python 3 the following example is given as the most accurate way to compare
def equal_float(a, b):
#return abs(a - b) <= sys.float_info.epsilon
return abs(a - b) <= chosen_value #see edit below for more info
Also, since epsilon is the "smallest difference the machine can distinguish between two floating-point numbers", you'll want to use <= in your function.
Edit: After reading the comments below I have looked back at the book and it specifically says "Here is a simple function for comparing floats for equality to the limit of the machines accuracy". I believe this was just an example for comparing floats to extreme precision but the fact that error is introduced with many float calculations this should rarely if ever be used. I characterized it as the "most accurate" way to compare in my answer, which in some sense is true, but rarely what is intended when comparing floats or integers to floats. Choosing a value (ex: 0.00000000001) based on the "problem domain" of the function instead of using sys.float_info.epsilon is the correct approach.
Thanks to S.Lott and Sven Marnach for their corrections, and I apologize if I led anyone down the wrong path.
Python does have a Decimal class (in the decimal module), which you could use to avoid the imprecision of floats.
floats can exactly represent all integers in their range - floating-point equality is only tricky if you care about the bit after the point. So, as long as all of the calculations in your formula return whole numbers for the cases you're interested in, int(num) == num is perfectly safe.
So, we need to prove that for any triangular number, every piece of maths you do can be done with integer arithmetic (and anything coming out as a non-integer must imply that x is not triangular):
To start with, we can assume that x must be an integer - this is required in the definition of 'triangular number'.
This being the case, 8*x + 1 will also be an integer, since the integers are closed under + and * .
math.sqrt() returns float; but if x is triangular, then the square root will be a whole number - ie, again exactly represented.
So, for all x that should return true in your functions, int(num) == num will be true, and so your istriangular1 will always work. The only sticking point, as mentioned in the comments to the question, is that Python 2 by default does integer division in the same way as C - int/int => int, truncating if the result can't be represented exactly as an int. So, 1/2 == 0. This is fixed in Python 3, or by having the line
from __future__ import division
near the top of your code.
I think the module decimal is what you need
You can round your number to e.g. 14 decimal places or less:
>>> round(4.999999999999997, 14)
5.0
PS: double precision is about 15 decimal places
It is hard to argue with standards.
In C99 and POSIX, the standard for rounding a float to an int is defined by nearbyint() The important concept is the direction of rounding and the locale specific rounding convention.
Assuming the convention is common rounding, this is the same as the C99 convention in Python:
#!/usr/bin/python
import math
infinity = math.ldexp(1.0, 1023) * 2
def nearbyint(x):
"""returns the nearest int as the C99 standard would"""
# handle NaN
if x!=x:
return x
if x >= infinity:
return infinity
if x <= -infinity:
return -infinity
if x==0.0:
return x
return math.floor(x + 0.5)
If you want more control over rounding, consider using the Decimal module and choose the rounding convention you wish to employ. You may want to use Banker's Rounding for example.
Once you have decided on the convention, round to an int and compare to the other int.
Consider using NumPy, they take care of everything under the hood.
import numpy as np
result_bool = np.isclose(float1, float2)
Python has unlimited integer precision, but only 53 bits of float precision. When you square a number, you double the number of bits it requires. This means that the ULP of the original number is (approximately) twice the ULP of the square root.
You start running into issues with numbers around 50 bits or so, because the difference between the fractional representation of an irrational root and the nearest integer can be smaller than the ULP. Even in this case, checking if you are within tolerance will do more harm than good (by increasing the number of false positives).
For example:
>>> x = (1 << 26) - 1
>>> (math.sqrt(x**2)).is_integer()
True
>>> (math.sqrt(x**2 + 1)).is_integer()
False
>>> (math.sqrt(x**2 - 1)).is_integer()
False
>>> y = (1 << 27) - 1
>>> (math.sqrt(y**2)).is_integer()
True
>>> (math.sqrt(y**2 + 1)).is_integer()
True
>>> (math.sqrt(y**2 - 1)).is_integer()
True
>>> (math.sqrt(y**2 + 2)).is_integer()
False
>>> (math.sqrt(y**2 - 2)).is_integer()
True
>>> (math.sqrt(y**2 - 3)).is_integer()
False
You can therefore rework the formulation of your problem slightly. If an integer x is a triangular number, there exists an integer n such that x = n * (n + 1) // 2. The resulting quadratic is n**2 + n - 2 * x = 0. All you need to know is if the discriminant 1 + 8 * x is a perfect square. You can compute the integer square root of an integer using math.isqrt starting with python 3.8. Prior to that, you could use one of the algorithms from Wikipedia, implemented on SO here.
You can therefore stay entirely in python's infinite-precision integer domain with the following one-liner:
def is_triangular(x):
return math.isqrt(k := 8 * x + 1)**2 == k
Now you can do something like this:
>>> x = 58686775177009424410876674976531835606028390913650409380075
>>> math.isqrt(k := 8 * x + 1)**2 == k
True
>>> math.isqrt(k := 8 * (x + 1) + 1)**2 == k
False
>>> math.sqrt(k := 8 * x + 1)**2 == k
False
The first result is correct: x in this example is a triangular number computed with n = 342598234604352345342958762349.
Python still uses the same floating point representation and operations C does, so the second one is the correct way.
Under the hood, Python's float type is a C double.
The most robust way would be to get the nearest integer to num, then test if that integers satisfies the property you're after:
import math
def is_triangular1(x):
num = (1/2) * (math.sqrt(8*x+1)-1 )
inum = int(round(num))
return inum*(inum+1) == 2*x # This line uses only integer arithmetic

how to exit recursive math formula and still get an answer

i wrote this python code, which from wolfram alpha says that its supposed to return the factorial of any positive value (i probably messed up somewhere), integer or not:
from math import *
def double_factorial(n):
if int(n) == n:
n = int(n)
if [0,1].__contains__(n):
return 1
a = (n&1) + 2
b = 1
while a<=n:
b*=a
a+= 2
return float(b)
else:
return factorials(n/2) * 2**(n/2) *(pi/2)**(.25 *(-1+cos(n * pi)))
def factorials(n):
return pi**(.5 * sin(n*pi)**2) * 2**(-n + .25 * (-1 + cos(2*n*pi))) * double_factorial(2*n)
the problem is , say i input pi to 6 decimal places. 2*n will not become a float with 0 as its decimals any time soon, so the equation turns out to be
pi**(.5 * sin(n*pi)**2) * 2**(-n + .25 * (-1 + cos(2*n*pi))) * double_factorial(loop(loop(loop(...)))))
how would i stop the recursion and still get the answer?
ive had suggestions to add an index to the definitions or something, but the problem is, if the code stops when it reaches an index, there is still no answer to put back into the previous "nests" or whatever you call them
You defined f in terms of g and g in terms of f. But you don't just have a circular definition with no base point to start the recursion. You have something worse. The definition of f is actually the definition of g inverted. f is precisely undoing what g did and vice versa. If you're trying to implement gamma yourself (ie. not using the one that's already there in the libraries) then you need to use a formula that expresses gamma in terms of something else that you know how to evaluate. Just using one formula and its inversion like that is a method that will fail for almost any problem you apply it to.
In your code, you define double_factorial like
double_factorial(n) = factorial(n/2) * f(n) ... (1)
and in the factorial you define it as
factorial(n) = double_factorial(2*n) / f(2*n) ... (2)
which is equivalent to equation (1), so you created a circular reference without an exit point. Even math can't help. You have to define either factorial or double_factorial, e.g.
def factorials(n):
return tgamma(n + 1)

Categories

Resources