Checking if float is equivalent to an integer value in python - python

In Python 3, I am checking whether a given value is triangular, that is, it can be represented as n * (n + 1) / 2 for some positive integer n.
Can I just write:
import math
def is_triangular1(x):
num = (1 / 2) * (math.sqrt(8 * x + 1) - 1)
return int(num) == num
Or do I need to do check within a tolerance instead?
epsilon = 0.000000000001
def is_triangular2(x):
num = (1 / 2) * (math.sqrt(8 * x + 1) - 1)
return abs(int(num) - num) < epsilon
I checked that both of the functions return same results for x up to 1,000,000. But I am not sure if generally speaking int(x) == x will always correctly determine whether a number is integer, because of the cases when for example 5 is represented as 4.99999999999997 etc.
As far as I know, the second way is the correct one if I do it in C, but I am not sure about Python 3.

There is is_integer function in python float type:
>>> float(1.0).is_integer()
True
>>> float(1.001).is_integer()
False
>>>

Both your implementations have problems. It actually can happen that you end up with something like 4.999999999999997, so using int() is not an option.
I'd go for a completely different approach: First assume that your number is triangular, and compute what n would be in that case. In that first step, you can round generously, since it's only necessary to get the result right if the number actually is triangular. Next, compute n * (n + 1) / 2 for this n, and compare the result to x. Now, you are comparing two integers, so there are no inaccuracies left.
The computation of n can be simplified by expanding
(1/2) * (math.sqrt(8*x+1)-1) = math.sqrt(2 * x + 0.25) - 0.5
and utilizing that
round(y - 0.5) = int(y)
for positive y.
def is_triangular(x):
n = int(math.sqrt(2 * x))
return x == n * (n + 1) / 2

You'll want to do the latter. In Programming in Python 3 the following example is given as the most accurate way to compare
def equal_float(a, b):
#return abs(a - b) <= sys.float_info.epsilon
return abs(a - b) <= chosen_value #see edit below for more info
Also, since epsilon is the "smallest difference the machine can distinguish between two floating-point numbers", you'll want to use <= in your function.
Edit: After reading the comments below I have looked back at the book and it specifically says "Here is a simple function for comparing floats for equality to the limit of the machines accuracy". I believe this was just an example for comparing floats to extreme precision but the fact that error is introduced with many float calculations this should rarely if ever be used. I characterized it as the "most accurate" way to compare in my answer, which in some sense is true, but rarely what is intended when comparing floats or integers to floats. Choosing a value (ex: 0.00000000001) based on the "problem domain" of the function instead of using sys.float_info.epsilon is the correct approach.
Thanks to S.Lott and Sven Marnach for their corrections, and I apologize if I led anyone down the wrong path.

Python does have a Decimal class (in the decimal module), which you could use to avoid the imprecision of floats.

floats can exactly represent all integers in their range - floating-point equality is only tricky if you care about the bit after the point. So, as long as all of the calculations in your formula return whole numbers for the cases you're interested in, int(num) == num is perfectly safe.
So, we need to prove that for any triangular number, every piece of maths you do can be done with integer arithmetic (and anything coming out as a non-integer must imply that x is not triangular):
To start with, we can assume that x must be an integer - this is required in the definition of 'triangular number'.
This being the case, 8*x + 1 will also be an integer, since the integers are closed under + and * .
math.sqrt() returns float; but if x is triangular, then the square root will be a whole number - ie, again exactly represented.
So, for all x that should return true in your functions, int(num) == num will be true, and so your istriangular1 will always work. The only sticking point, as mentioned in the comments to the question, is that Python 2 by default does integer division in the same way as C - int/int => int, truncating if the result can't be represented exactly as an int. So, 1/2 == 0. This is fixed in Python 3, or by having the line
from __future__ import division
near the top of your code.

I think the module decimal is what you need

You can round your number to e.g. 14 decimal places or less:
>>> round(4.999999999999997, 14)
5.0
PS: double precision is about 15 decimal places

It is hard to argue with standards.
In C99 and POSIX, the standard for rounding a float to an int is defined by nearbyint() The important concept is the direction of rounding and the locale specific rounding convention.
Assuming the convention is common rounding, this is the same as the C99 convention in Python:
#!/usr/bin/python
import math
infinity = math.ldexp(1.0, 1023) * 2
def nearbyint(x):
"""returns the nearest int as the C99 standard would"""
# handle NaN
if x!=x:
return x
if x >= infinity:
return infinity
if x <= -infinity:
return -infinity
if x==0.0:
return x
return math.floor(x + 0.5)
If you want more control over rounding, consider using the Decimal module and choose the rounding convention you wish to employ. You may want to use Banker's Rounding for example.
Once you have decided on the convention, round to an int and compare to the other int.

Consider using NumPy, they take care of everything under the hood.
import numpy as np
result_bool = np.isclose(float1, float2)

Python has unlimited integer precision, but only 53 bits of float precision. When you square a number, you double the number of bits it requires. This means that the ULP of the original number is (approximately) twice the ULP of the square root.
You start running into issues with numbers around 50 bits or so, because the difference between the fractional representation of an irrational root and the nearest integer can be smaller than the ULP. Even in this case, checking if you are within tolerance will do more harm than good (by increasing the number of false positives).
For example:
>>> x = (1 << 26) - 1
>>> (math.sqrt(x**2)).is_integer()
True
>>> (math.sqrt(x**2 + 1)).is_integer()
False
>>> (math.sqrt(x**2 - 1)).is_integer()
False
>>> y = (1 << 27) - 1
>>> (math.sqrt(y**2)).is_integer()
True
>>> (math.sqrt(y**2 + 1)).is_integer()
True
>>> (math.sqrt(y**2 - 1)).is_integer()
True
>>> (math.sqrt(y**2 + 2)).is_integer()
False
>>> (math.sqrt(y**2 - 2)).is_integer()
True
>>> (math.sqrt(y**2 - 3)).is_integer()
False
You can therefore rework the formulation of your problem slightly. If an integer x is a triangular number, there exists an integer n such that x = n * (n + 1) // 2. The resulting quadratic is n**2 + n - 2 * x = 0. All you need to know is if the discriminant 1 + 8 * x is a perfect square. You can compute the integer square root of an integer using math.isqrt starting with python 3.8. Prior to that, you could use one of the algorithms from Wikipedia, implemented on SO here.
You can therefore stay entirely in python's infinite-precision integer domain with the following one-liner:
def is_triangular(x):
return math.isqrt(k := 8 * x + 1)**2 == k
Now you can do something like this:
>>> x = 58686775177009424410876674976531835606028390913650409380075
>>> math.isqrt(k := 8 * x + 1)**2 == k
True
>>> math.isqrt(k := 8 * (x + 1) + 1)**2 == k
False
>>> math.sqrt(k := 8 * x + 1)**2 == k
False
The first result is correct: x in this example is a triangular number computed with n = 342598234604352345342958762349.

Python still uses the same floating point representation and operations C does, so the second one is the correct way.

Under the hood, Python's float type is a C double.
The most robust way would be to get the nearest integer to num, then test if that integers satisfies the property you're after:
import math
def is_triangular1(x):
num = (1/2) * (math.sqrt(8*x+1)-1 )
inum = int(round(num))
return inum*(inum+1) == 2*x # This line uses only integer arithmetic

Related

Python rounding 3.25 to 3.2 [duplicate]

I want to remove digits from a float to have a fixed number of digits after the dot, like:
1.923328437452 → 1.923
I need to output as a string to another function, not print.
Also I want to ignore the lost digits, not round them.
round(1.923328437452, 3)
See Python's documentation on the standard types. You'll need to scroll down a bit to get to the round function. Essentially the second number says how many decimal places to round it to.
First, the function, for those who just want some copy-and-paste code:
def truncate(f, n):
'''Truncates/pads a float f to n decimal places without rounding'''
s = '{}'.format(f)
if 'e' in s or 'E' in s:
return '{0:.{1}f}'.format(f, n)
i, p, d = s.partition('.')
return '.'.join([i, (d+'0'*n)[:n]])
This is valid in Python 2.7 and 3.1+. For older versions, it's not possible to get the same "intelligent rounding" effect (at least, not without a lot of complicated code), but rounding to 12 decimal places before truncation will work much of the time:
def truncate(f, n):
'''Truncates/pads a float f to n decimal places without rounding'''
s = '%.12f' % f
i, p, d = s.partition('.')
return '.'.join([i, (d+'0'*n)[:n]])
Explanation
The core of the underlying method is to convert the value to a string at full precision and then just chop off everything beyond the desired number of characters. The latter step is easy; it can be done either with string manipulation
i, p, d = s.partition('.')
'.'.join([i, (d+'0'*n)[:n]])
or the decimal module
str(Decimal(s).quantize(Decimal((0, (1,), -n)), rounding=ROUND_DOWN))
The first step, converting to a string, is quite difficult because there are some pairs of floating point literals (i.e. what you write in the source code) which both produce the same binary representation and yet should be truncated differently. For example, consider 0.3 and 0.29999999999999998. If you write 0.3 in a Python program, the compiler encodes it using the IEEE floating-point format into the sequence of bits (assuming a 64-bit float)
0011111111010011001100110011001100110011001100110011001100110011
This is the closest value to 0.3 that can accurately be represented as an IEEE float. But if you write 0.29999999999999998 in a Python program, the compiler translates it into exactly the same value. In one case, you meant it to be truncated (to one digit) as 0.3, whereas in the other case you meant it to be truncated as 0.2, but Python can only give one answer. This is a fundamental limitation of Python, or indeed any programming language without lazy evaluation. The truncation function only has access to the binary value stored in the computer's memory, not the string you actually typed into the source code.1
If you decode the sequence of bits back into a decimal number, again using the IEEE 64-bit floating-point format, you get
0.2999999999999999888977697537484345957637...
so a naive implementation would come up with 0.2 even though that's probably not what you want. For more on floating-point representation error, see the Python tutorial.
It's very rare to be working with a floating-point value that is so close to a round number and yet is intentionally not equal to that round number. So when truncating, it probably makes sense to choose the "nicest" decimal representation out of all that could correspond to the value in memory. Python 2.7 and up (but not 3.0) includes a sophisticated algorithm to do just that, which we can access through the default string formatting operation.
'{}'.format(f)
The only caveat is that this acts like a g format specification, in the sense that it uses exponential notation (1.23e+4) if the number is large or small enough. So the method has to catch this case and handle it differently. There are a few cases where using an f format specification instead causes a problem, such as trying to truncate 3e-10 to 28 digits of precision (it produces 0.0000000002999999999999999980), and I'm not yet sure how best to handle those.
If you actually are working with floats that are very close to round numbers but intentionally not equal to them (like 0.29999999999999998 or 99.959999999999994), this will produce some false positives, i.e. it'll round numbers that you didn't want rounded. In that case the solution is to specify a fixed precision.
'{0:.{1}f}'.format(f, sys.float_info.dig + n + 2)
The number of digits of precision to use here doesn't really matter, it only needs to be large enough to ensure that any rounding performed in the string conversion doesn't "bump up" the value to its nice decimal representation. I think sys.float_info.dig + n + 2 may be enough in all cases, but if not that 2 might have to be increased, and it doesn't hurt to do so.
In earlier versions of Python (up to 2.6, or 3.0), the floating point number formatting was a lot more crude, and would regularly produce things like
>>> 1.1
1.1000000000000001
If this is your situation, if you do want to use "nice" decimal representations for truncation, all you can do (as far as I know) is pick some number of digits, less than the full precision representable by a float, and round the number to that many digits before truncating it. A typical choice is 12,
'%.12f' % f
but you can adjust this to suit the numbers you're using.
1Well... I lied. Technically, you can instruct Python to re-parse its own source code and extract the part corresponding to the first argument you pass to the truncation function. If that argument is a floating-point literal, you can just cut it off a certain number of places after the decimal point and return that. However this strategy doesn't work if the argument is a variable, which makes it fairly useless. The following is presented for entertainment value only:
def trunc_introspect(f, n):
'''Truncates/pads the float f to n decimal places by looking at the caller's source code'''
current_frame = None
caller_frame = None
s = inspect.stack()
try:
current_frame = s[0]
caller_frame = s[1]
gen = tokenize.tokenize(io.BytesIO(caller_frame[4][caller_frame[5]].encode('utf-8')).readline)
for token_type, token_string, _, _, _ in gen:
if token_type == tokenize.NAME and token_string == current_frame[3]:
next(gen) # left parenthesis
token_type, token_string, _, _, _ = next(gen) # float literal
if token_type == tokenize.NUMBER:
try:
cut_point = token_string.index('.') + n + 1
except ValueError: # no decimal in string
return token_string + '.' + '0' * n
else:
if len(token_string) < cut_point:
token_string += '0' * (cut_point - len(token_string))
return token_string[:cut_point]
else:
raise ValueError('Unable to find floating-point literal (this probably means you called {} with a variable)'.format(current_frame[3]))
break
finally:
del s, current_frame, caller_frame
Generalizing this to handle the case where you pass in a variable seems like a lost cause, since you'd have to trace backwards through the program's execution until you find the floating-point literal which gave the variable its value. If there even is one. Most variables will be initialized from user input or mathematical expressions, in which case the binary representation is all there is.
The result of round is a float, so watch out (example is from Python 2.6):
>>> round(1.923328437452, 3)
1.923
>>> round(1.23456, 3)
1.2350000000000001
You will be better off when using a formatted string:
>>> "%.3f" % 1.923328437452
'1.923'
>>> "%.3f" % 1.23456
'1.235'
n = 1.923328437452
str(n)[:4]
At my Python 2.7 prompt:
>>> int(1.923328437452 * 1000)/1000.0
1.923
The truely pythonic way of doing it is
from decimal import *
with localcontext() as ctx:
ctx.rounding = ROUND_DOWN
print Decimal('1.923328437452').quantize(Decimal('0.001'))
or shorter:
from decimal import Decimal as D, ROUND_DOWN
D('1.923328437452').quantize(D('0.001'), rounding=ROUND_DOWN)
Update
Usually the problem is not in truncating floats itself, but in the improper usage of float numbers before rounding.
For example: int(0.7*3*100)/100 == 2.09.
If you are forced to use floats (say, you're accelerating your code with numba), it's better to use cents as "internal representation" of prices: (70*3 == 210) and multiply/divide the inputs/outputs.
Simple python script -
n = 1.923328437452
n = float(int(n * 1000))
n /=1000
def trunc(num, digits):
sp = str(num).split('.')
return '.'.join([sp[0], sp[1][:digits]])
This should work. It should give you the truncation you are looking for.
So many of the answers given for this question are just completely wrong. They either round up floats (rather than truncate) or do not work for all cases.
This is the top Google result when I search for 'Python truncate float', a concept which is really straightforward, and which deserves better answers. I agree with Hatchkins that using the decimal module is the pythonic way of doing this, so I give here a function which I think answers the question correctly, and which works as expected for all cases.
As a side-note, fractional values, in general, cannot be represented exactly by binary floating point variables (see here for a discussion of this), which is why my function returns a string.
from decimal import Decimal, localcontext, ROUND_DOWN
def truncate(number, places):
if not isinstance(places, int):
raise ValueError("Decimal places must be an integer.")
if places < 1:
raise ValueError("Decimal places must be at least 1.")
# If you want to truncate to 0 decimal places, just do int(number).
with localcontext() as context:
context.rounding = ROUND_DOWN
exponent = Decimal(str(10 ** - places))
return Decimal(str(number)).quantize(exponent).to_eng_string()
>>> from math import floor
>>> floor((1.23658945) * 10**4) / 10**4
1.2365
# divide and multiply by 10**number of desired digits
If you fancy some mathemagic, this works for +ve numbers:
>>> v = 1.923328437452
>>> v - v % 1e-3
1.923
I did something like this:
from math import trunc
def truncate(number, decimals=0):
if decimals < 0:
raise ValueError('truncate received an invalid value of decimals ({})'.format(decimals))
elif decimals == 0:
return trunc(number)
else:
factor = float(10**decimals)
return trunc(number*factor)/factor
You can do:
def truncate(f, n):
return math.floor(f * 10 ** n) / 10 ** n
testing:
>>> f=1.923328437452
>>> [truncate(f, n) for n in range(5)]
[1.0, 1.9, 1.92, 1.923, 1.9233]
Just wanted to mention that the old "make round() with floor()" trick of
round(f) = floor(f+0.5)
can be turned around to make floor() from round()
floor(f) = round(f-0.5)
Although both these rules break around negative numbers, so using it is less than ideal:
def trunc(f, n):
if f > 0:
return "%.*f" % (n, (f - 0.5*10**-n))
elif f == 0:
return "%.*f" % (n, f)
elif f < 0:
return "%.*f" % (n, (f + 0.5*10**-n))
def precision(value, precision):
"""
param: value: takes a float
param: precision: int, number of decimal places
returns a float
"""
x = 10.0**precision
num = int(value * x)/ x
return num
precision(1.923328437452, 3)
1.923
Short and easy variant
def truncate_float(value, digits_after_point=2):
pow_10 = 10 ** digits_after_point
return (float(int(value * pow_10))) / pow_10
>>> truncate_float(1.14333, 2)
>>> 1.14
>>> truncate_float(1.14777, 2)
>>> 1.14
>>> truncate_float(1.14777, 4)
>>> 1.1477
When using a pandas df this worked for me
import math
def truncate(number, digits) -> float:
stepper = 10.0 ** digits
return math.trunc(stepper * number) / stepper
df['trunc'] = df['float_val'].apply(lambda x: truncate(x,1))
df['trunc']=df['trunc'].map('{:.1f}'.format)
int(16.5);
this will give an integer value of 16, i.e. trunc, won't be able to specify decimals, but guess you can do that by
import math;
def trunc(invalue, digits):
return int(invalue*math.pow(10,digits))/math.pow(10,digits);
Here is an easy way:
def truncate(num, res=3):
return (floor(num*pow(10, res)+0.5))/pow(10, res)
for num = 1.923328437452, this outputs 1.923
def trunc(f,n):
return ('%.16f' % f)[:(n-16)]
A general and simple function to use:
def truncate_float(number, length):
"""Truncate float numbers, up to the number specified
in length that must be an integer"""
number = number * pow(10, length)
number = int(number)
number = float(number)
number /= pow(10, length)
return number
There is an easy workaround in python 3. Where to cut I defined with an help variable decPlace to make it easy to adapt.
f = 1.12345
decPlace= 4
f_cut = int(f * 10**decPlace) /10**decPlace
Output:
f = 1.1234
Hope it helps.
Most answers are way too complicated in my opinion, how about this?
digits = 2 # Specify how many digits you want
fnum = '122.485221'
truncated_float = float(fnum[:fnum.find('.') + digits + 1])
>>> 122.48
Simply scanning for the index of '.' and truncate as desired (no rounding).
Convert string to float as final step.
Or in your case if you get a float as input and want a string as output:
fnum = str(122.485221) # convert float to string first
truncated_float = fnum[:fnum.find('.') + digits + 1] # string output
I think a better version would be just to find the index of decimal point . and then to take the string slice accordingly:
def truncate(number, n_digits:int=1)->float:
'''
:param number: real number ℝ
:param n_digits: Maximum number of digits after the decimal point after truncation
:return: truncated floating point number with at least one digit after decimal point
'''
decimalIndex = str(number).find('.')
if decimalIndex == -1:
return float(number)
else:
return float(str(number)[:decimalIndex+n_digits+1])
int(1.923328437452 * 1000) / 1000
>>> 1.923
int(1.9239 * 1000) / 1000
>>> 1.923
By multiplying the number by 1000 (10 ^ 3 for 3 digits) we shift the decimal point 3 places to the right and get 1923.3284374520001. When we convert that to an int the fractional part 3284374520001 will be discarded. Then we undo the shifting of the decimal point again by dividing by 1000 which returns 1.923.
use numpy.round
import numpy as np
precision = 3
floats = [1.123123123, 2.321321321321]
new_float = np.round(floats, precision)
Something simple enough to fit in a list-comprehension, with no libraries or other external dependencies. For Python >=3.6, it's very simple to write with f-strings.
The idea is to let the string-conversion do the rounding to one more place than you need and then chop off the last digit.
>>> nout = 3 # desired number of digits in output
>>> [f'{x:.{nout+1}f}'[:-1] for x in [2/3, 4/5, 8/9, 9/8, 5/4, 3/2]]
['0.666', '0.800', '0.888', '1.125', '1.250', '1.500']
Of course, there is rounding happening here (namely for the fourth digit), but rounding at some point is unvoidable. In case the transition between truncation and rounding is relevant, here's a slightly better example:
>>> nacc = 6 # desired accuracy (maximum 15!)
>>> nout = 3 # desired number of digits in output
>>> [f'{x:.{nacc}f}'[:-(nacc-nout)] for x in [2.9999, 2.99999, 2.999999, 2.9999999]]
>>> ['2.999', '2.999', '2.999', '3.000']
Bonus: removing zeros on the right
>>> nout = 3 # desired number of digits in output
>>> [f'{x:.{nout+1}f}'[:-1].rstrip('0') for x in [2/3, 4/5, 8/9, 9/8, 5/4, 3/2]]
['0.666', '0.8', '0.888', '1.125', '1.25', '1.5']
The core idea given here seems to me to be the best approach for this problem.
Unfortunately, it has received less votes while the later answer that has more votes is not complete (as observed in the comments). Hopefully, the implementation below provides a short and complete solution for truncation.
def trunc(num, digits):
l = str(float(num)).split('.')
digits = min(len(l[1]), digits)
return l[0] + '.' + l[1][:digits]
which should take care of all corner cases found here and here.
Am also a python newbie and after making use of some bits and pieces here, I offer my two cents
print str(int(time.time()))+str(datetime.now().microsecond)[:3]
str(int(time.time())) will take the time epoch as int and convert it to string and join with...
str(datetime.now().microsecond)[:3] which returns the microseconds only, convert to string and truncate to first 3 chars
# value value to be truncated
# n number of values after decimal
value = 0.999782
n = 3
float(int(value*1en))*1e-n

Stop Approximation in Complex Division in Python

I've been writing some code to list the Gaussian integer divisors of rational integers in Python. (Relating to Project Euler problem 153)
I seem to have reached some trouble with certain numbers and I believe it's to do with Python approximating the division of complex numbers.
Here is my code for the function:
def IsGaussian(z):
#returns True if the complex number is a Gaussian integer
return complex(int(z.real), int(z.imag)) == z
def Divisors(n):
divisors = []
#Firstly, append the rational integer divisors
for x in range(1, int(n / 2 + 1)):
if n % x == 0:
divisors.append(x)
#Secondly, two for loops are used to append the complex Guassian integer divisors
for x in range(1, int(n / 2 + 1)):
for y in range(1, int(n / 2 + 1)):
if IsGaussian(n / complex(x, y)) == n:
divisors.append(complex(x, y))
divisors.append(complex(x, -y))
divisors.append(n)
return divisors
When I run Divisors(29) I get [1, 29], but this is missing out four other divisors, one of which being (5 + 2j), which can clearly be seen to divide into 29.
On running 29 / complex(5, 2), Python gives (5 - 2.0000000000000004j)
This result is incorrect, as it should be (5 - 2j). Is there any way to somehow bypass Python's approximation? And why is it that this problem has not risen for many other rational integers under 100?
Thanks in advance for your help.
Internally, CPython uses a pair of double-precision floats for complex numbers. The behavior of numerical solutions in general is too complicated to summarize here, but some error is unavoidable in numerical calculations.
EG:
>>>print(.3/3)
0.09999999999999999
As such, it is often correct to use approximate equality rather than actual equality when testing solutions of this kind.
The isclose function in the cmath module is available for this exact reason.
>>>print(.3/3 == .1)
False
>>>print(isclose(.3/3, .1))
True
This kind of question is the domain of Numerical Analysis; this may be a useful tag for further questions on this subject.
Note that it is considered 'pythonic' for function identifiers to be in snake_case.
from cmath import isclose
def is_gaussian(z):
#returns True if the complex number is a Gaussian integer
rounded = complex(round(z.real), round(z.imag))
return isclose(rounded, z)
You could define an epsilon, by using round to round to the desired number of decimal places/precision (e.g. 10):
def IsGaussian(z, prec=10):
# returns True if the complex number is a Gaussian integer
# rounds the input number to the `prec` number of digits
z = complex(round(z.real,prec), round(z.imag,prec))
return complex(int(z.real), int(z.imag)) == z
Your code has another issue though:
if IsGaussian(n / complex(x, y)) == n:
This will only give results for n = 0 or n = 1. You probably want to remove the check for equality.

Perfect integer evaluation fails with input 343

Perfect power is a positive integer that can be expressed as an integer power of another positive integer.
The task is to check whether a given integer is a perfect power.
Here is my code:
def isPP2(x):
c=[]
for z in range(2,int(x/2)+1):
if (x**(1./float(z)))*10%10==0:
c.append(int(x**(1./float(z)))), c.append(z)
if len(c)>=2:
return c[0:2]
else:
return None
It works perfect with all numbers, for example:
isPP2(81)
[9, 2]
isPP2(2187)
[3, 7]
But it doesn't work with 343 (73).
Because 343**(1.0/float(3)) is not 7.0, it's 6.99999999999999. You're trying to solve an integer problem with floating point math.
As explained in this link, floating point numbers are not stored perfectly in computers. You are most likely experiencing some error in calculation based off of this very small difference that persists in floating point calculations.
When I run your function, the equation ((x ** (1./float(z))) * 10 % 10) results in 9.99999999999999986, not 10 as is expected. This is due to the slight error involved in floating point arithmetic.
If you must calculate the value as a float (which may or may not be useful in your overall goal), you can define an accuracy range for your result. A simple check would look something like this:
precision = 1.e-6
check = (x ** (1./float(z))) * 10 % 10
if check == 0:
# No changes to previous code
elif 10 - check < precision:
c.append(int(x**(1./float(z))) + 1)
c.append(z)
precision is defined in scientific notation, being equal to 1 x 10^(-6) or 0.000001, but it can be decreased in magnitude if this large range of precision introduces other errors, which is not likely but entirely possible. I added 1 to the result since the original number was less than the target.
As the other answers have already explained why your algorithm fails, I will concentrate on providing an alternative algorithm that avoids the issue.
import math
def isPP2(x):
# exp2 = log_2(x) i.e. 2**exp2 == x
# is a much better upper bound for the exponents to test,
# as 2 is the smallest base exp2 is the biggest exponent we can expect.
exp2 = math.log(x, 2)
for exp in range(2, int(exp2)):
# to avoid floating point issues we simply round the base we get
# and then test it against x by calculating base**exp
# side note:
# according to the docs ** and the build in pow()
# work integer based as long as all arguments are integer.
base = round( x**(1./float(exp)) )
if base**exp == x:
return base, exp
return None
print( isPP2(81) ) # (9, 2)
print( isPP2(2187) ) # (3, 7)
print( isPP2(343) ) # (7, 3)
print( isPP2(232**34) ) # (53824, 17)
As with your algorithm this only returns the first solution if there is more than one.

Modulo operator in Python [duplicate]

This question already has answers here:
How does the modulo (%) operator work on negative numbers in Python?
(12 answers)
Closed last month.
What does modulo in the following piece of code do?
from math import *
3.14 % 2 * pi
How do we calculate modulo on a floating point number?
When you have the expression:
a % b = c
It really means there exists an integer n that makes c as small as possible, but non-negative.
a - n*b = c
By hand, you can just subtract 2 (or add 2 if your number is negative) over and over until the end result is the smallest positive number possible:
3.14 % 2
= 3.14 - 1 * 2
= 1.14
Also, 3.14 % 2 * pi is interpreted as (3.14 % 2) * pi. I'm not sure if you meant to write 3.14 % (2 * pi) (in either case, the algorithm is the same. Just subtract/add until the number is as small as possible).
In addition to the other answers, the fmod documentation has some interesting things to say on the subject:
math.fmod(x, y)
Return fmod(x, y), as defined by the platform C
library. Note that the Python expression x % y may not return the same
result. The intent of the C standard is that fmod(x, y) be exactly
(mathematically; to infinite precision) equal to x - n*y for some
integer n such that the result has the same sign as x and magnitude
less than abs(y). Python’s x % y returns a result with the sign of y
instead, and may not be exactly computable for float arguments. For
example, fmod(-1e-100, 1e100) is -1e-100, but the result of Python’s
-1e-100 % 1e100 is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising 1e100. For this reason,
function fmod() is generally preferred when working with floats, while
Python’s x % y is preferred when working with integers.
Same thing you'd expect from normal modulo .. e.g. 7 % 4 = 3, 7.3 % 4.0 = 3.3
Beware of floating point accuracy issues.
same as a normal modulo 3.14 % 6.28 = 3.14, just like 3.14%4 =3.14 3.14%2 = 1.14 (the remainder...)
you should use fmod(a,b)
While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff.
For example, and assuming a platform on which a Python float is an IEEE 754 double-precision number, in order that -1e-100 % 1e100 have the same sign as 1e100, the computed result is -1e-100 + 1e100, which is numerically exactly equal to 1e100.
Function fmod() in the math module returns a result whose sign matches the sign of the first argument instead, and so returns -1e-100 in this case. Which approach is more appropriate depends on the application.
where x = a%b is used for integer modulo

How to truncate float values?

I want to remove digits from a float to have a fixed number of digits after the dot, like:
1.923328437452 → 1.923
I need to output as a string to another function, not print.
Also I want to ignore the lost digits, not round them.
round(1.923328437452, 3)
See Python's documentation on the standard types. You'll need to scroll down a bit to get to the round function. Essentially the second number says how many decimal places to round it to.
First, the function, for those who just want some copy-and-paste code:
def truncate(f, n):
'''Truncates/pads a float f to n decimal places without rounding'''
s = '{}'.format(f)
if 'e' in s or 'E' in s:
return '{0:.{1}f}'.format(f, n)
i, p, d = s.partition('.')
return '.'.join([i, (d+'0'*n)[:n]])
This is valid in Python 2.7 and 3.1+. For older versions, it's not possible to get the same "intelligent rounding" effect (at least, not without a lot of complicated code), but rounding to 12 decimal places before truncation will work much of the time:
def truncate(f, n):
'''Truncates/pads a float f to n decimal places without rounding'''
s = '%.12f' % f
i, p, d = s.partition('.')
return '.'.join([i, (d+'0'*n)[:n]])
Explanation
The core of the underlying method is to convert the value to a string at full precision and then just chop off everything beyond the desired number of characters. The latter step is easy; it can be done either with string manipulation
i, p, d = s.partition('.')
'.'.join([i, (d+'0'*n)[:n]])
or the decimal module
str(Decimal(s).quantize(Decimal((0, (1,), -n)), rounding=ROUND_DOWN))
The first step, converting to a string, is quite difficult because there are some pairs of floating point literals (i.e. what you write in the source code) which both produce the same binary representation and yet should be truncated differently. For example, consider 0.3 and 0.29999999999999998. If you write 0.3 in a Python program, the compiler encodes it using the IEEE floating-point format into the sequence of bits (assuming a 64-bit float)
0011111111010011001100110011001100110011001100110011001100110011
This is the closest value to 0.3 that can accurately be represented as an IEEE float. But if you write 0.29999999999999998 in a Python program, the compiler translates it into exactly the same value. In one case, you meant it to be truncated (to one digit) as 0.3, whereas in the other case you meant it to be truncated as 0.2, but Python can only give one answer. This is a fundamental limitation of Python, or indeed any programming language without lazy evaluation. The truncation function only has access to the binary value stored in the computer's memory, not the string you actually typed into the source code.1
If you decode the sequence of bits back into a decimal number, again using the IEEE 64-bit floating-point format, you get
0.2999999999999999888977697537484345957637...
so a naive implementation would come up with 0.2 even though that's probably not what you want. For more on floating-point representation error, see the Python tutorial.
It's very rare to be working with a floating-point value that is so close to a round number and yet is intentionally not equal to that round number. So when truncating, it probably makes sense to choose the "nicest" decimal representation out of all that could correspond to the value in memory. Python 2.7 and up (but not 3.0) includes a sophisticated algorithm to do just that, which we can access through the default string formatting operation.
'{}'.format(f)
The only caveat is that this acts like a g format specification, in the sense that it uses exponential notation (1.23e+4) if the number is large or small enough. So the method has to catch this case and handle it differently. There are a few cases where using an f format specification instead causes a problem, such as trying to truncate 3e-10 to 28 digits of precision (it produces 0.0000000002999999999999999980), and I'm not yet sure how best to handle those.
If you actually are working with floats that are very close to round numbers but intentionally not equal to them (like 0.29999999999999998 or 99.959999999999994), this will produce some false positives, i.e. it'll round numbers that you didn't want rounded. In that case the solution is to specify a fixed precision.
'{0:.{1}f}'.format(f, sys.float_info.dig + n + 2)
The number of digits of precision to use here doesn't really matter, it only needs to be large enough to ensure that any rounding performed in the string conversion doesn't "bump up" the value to its nice decimal representation. I think sys.float_info.dig + n + 2 may be enough in all cases, but if not that 2 might have to be increased, and it doesn't hurt to do so.
In earlier versions of Python (up to 2.6, or 3.0), the floating point number formatting was a lot more crude, and would regularly produce things like
>>> 1.1
1.1000000000000001
If this is your situation, if you do want to use "nice" decimal representations for truncation, all you can do (as far as I know) is pick some number of digits, less than the full precision representable by a float, and round the number to that many digits before truncating it. A typical choice is 12,
'%.12f' % f
but you can adjust this to suit the numbers you're using.
1Well... I lied. Technically, you can instruct Python to re-parse its own source code and extract the part corresponding to the first argument you pass to the truncation function. If that argument is a floating-point literal, you can just cut it off a certain number of places after the decimal point and return that. However this strategy doesn't work if the argument is a variable, which makes it fairly useless. The following is presented for entertainment value only:
def trunc_introspect(f, n):
'''Truncates/pads the float f to n decimal places by looking at the caller's source code'''
current_frame = None
caller_frame = None
s = inspect.stack()
try:
current_frame = s[0]
caller_frame = s[1]
gen = tokenize.tokenize(io.BytesIO(caller_frame[4][caller_frame[5]].encode('utf-8')).readline)
for token_type, token_string, _, _, _ in gen:
if token_type == tokenize.NAME and token_string == current_frame[3]:
next(gen) # left parenthesis
token_type, token_string, _, _, _ = next(gen) # float literal
if token_type == tokenize.NUMBER:
try:
cut_point = token_string.index('.') + n + 1
except ValueError: # no decimal in string
return token_string + '.' + '0' * n
else:
if len(token_string) < cut_point:
token_string += '0' * (cut_point - len(token_string))
return token_string[:cut_point]
else:
raise ValueError('Unable to find floating-point literal (this probably means you called {} with a variable)'.format(current_frame[3]))
break
finally:
del s, current_frame, caller_frame
Generalizing this to handle the case where you pass in a variable seems like a lost cause, since you'd have to trace backwards through the program's execution until you find the floating-point literal which gave the variable its value. If there even is one. Most variables will be initialized from user input or mathematical expressions, in which case the binary representation is all there is.
The result of round is a float, so watch out (example is from Python 2.6):
>>> round(1.923328437452, 3)
1.923
>>> round(1.23456, 3)
1.2350000000000001
You will be better off when using a formatted string:
>>> "%.3f" % 1.923328437452
'1.923'
>>> "%.3f" % 1.23456
'1.235'
n = 1.923328437452
str(n)[:4]
At my Python 2.7 prompt:
>>> int(1.923328437452 * 1000)/1000.0
1.923
The truely pythonic way of doing it is
from decimal import *
with localcontext() as ctx:
ctx.rounding = ROUND_DOWN
print Decimal('1.923328437452').quantize(Decimal('0.001'))
or shorter:
from decimal import Decimal as D, ROUND_DOWN
D('1.923328437452').quantize(D('0.001'), rounding=ROUND_DOWN)
Update
Usually the problem is not in truncating floats itself, but in the improper usage of float numbers before rounding.
For example: int(0.7*3*100)/100 == 2.09.
If you are forced to use floats (say, you're accelerating your code with numba), it's better to use cents as "internal representation" of prices: (70*3 == 210) and multiply/divide the inputs/outputs.
Simple python script -
n = 1.923328437452
n = float(int(n * 1000))
n /=1000
def trunc(num, digits):
sp = str(num).split('.')
return '.'.join([sp[0], sp[1][:digits]])
This should work. It should give you the truncation you are looking for.
So many of the answers given for this question are just completely wrong. They either round up floats (rather than truncate) or do not work for all cases.
This is the top Google result when I search for 'Python truncate float', a concept which is really straightforward, and which deserves better answers. I agree with Hatchkins that using the decimal module is the pythonic way of doing this, so I give here a function which I think answers the question correctly, and which works as expected for all cases.
As a side-note, fractional values, in general, cannot be represented exactly by binary floating point variables (see here for a discussion of this), which is why my function returns a string.
from decimal import Decimal, localcontext, ROUND_DOWN
def truncate(number, places):
if not isinstance(places, int):
raise ValueError("Decimal places must be an integer.")
if places < 1:
raise ValueError("Decimal places must be at least 1.")
# If you want to truncate to 0 decimal places, just do int(number).
with localcontext() as context:
context.rounding = ROUND_DOWN
exponent = Decimal(str(10 ** - places))
return Decimal(str(number)).quantize(exponent).to_eng_string()
>>> from math import floor
>>> floor((1.23658945) * 10**4) / 10**4
1.2365
# divide and multiply by 10**number of desired digits
If you fancy some mathemagic, this works for +ve numbers:
>>> v = 1.923328437452
>>> v - v % 1e-3
1.923
I did something like this:
from math import trunc
def truncate(number, decimals=0):
if decimals < 0:
raise ValueError('truncate received an invalid value of decimals ({})'.format(decimals))
elif decimals == 0:
return trunc(number)
else:
factor = float(10**decimals)
return trunc(number*factor)/factor
You can do:
def truncate(f, n):
return math.floor(f * 10 ** n) / 10 ** n
testing:
>>> f=1.923328437452
>>> [truncate(f, n) for n in range(5)]
[1.0, 1.9, 1.92, 1.923, 1.9233]
Just wanted to mention that the old "make round() with floor()" trick of
round(f) = floor(f+0.5)
can be turned around to make floor() from round()
floor(f) = round(f-0.5)
Although both these rules break around negative numbers, so using it is less than ideal:
def trunc(f, n):
if f > 0:
return "%.*f" % (n, (f - 0.5*10**-n))
elif f == 0:
return "%.*f" % (n, f)
elif f < 0:
return "%.*f" % (n, (f + 0.5*10**-n))
def precision(value, precision):
"""
param: value: takes a float
param: precision: int, number of decimal places
returns a float
"""
x = 10.0**precision
num = int(value * x)/ x
return num
precision(1.923328437452, 3)
1.923
Short and easy variant
def truncate_float(value, digits_after_point=2):
pow_10 = 10 ** digits_after_point
return (float(int(value * pow_10))) / pow_10
>>> truncate_float(1.14333, 2)
>>> 1.14
>>> truncate_float(1.14777, 2)
>>> 1.14
>>> truncate_float(1.14777, 4)
>>> 1.1477
When using a pandas df this worked for me
import math
def truncate(number, digits) -> float:
stepper = 10.0 ** digits
return math.trunc(stepper * number) / stepper
df['trunc'] = df['float_val'].apply(lambda x: truncate(x,1))
df['trunc']=df['trunc'].map('{:.1f}'.format)
int(16.5);
this will give an integer value of 16, i.e. trunc, won't be able to specify decimals, but guess you can do that by
import math;
def trunc(invalue, digits):
return int(invalue*math.pow(10,digits))/math.pow(10,digits);
Here is an easy way:
def truncate(num, res=3):
return (floor(num*pow(10, res)+0.5))/pow(10, res)
for num = 1.923328437452, this outputs 1.923
def trunc(f,n):
return ('%.16f' % f)[:(n-16)]
A general and simple function to use:
def truncate_float(number, length):
"""Truncate float numbers, up to the number specified
in length that must be an integer"""
number = number * pow(10, length)
number = int(number)
number = float(number)
number /= pow(10, length)
return number
There is an easy workaround in python 3. Where to cut I defined with an help variable decPlace to make it easy to adapt.
f = 1.12345
decPlace= 4
f_cut = int(f * 10**decPlace) /10**decPlace
Output:
f = 1.1234
Hope it helps.
Most answers are way too complicated in my opinion, how about this?
digits = 2 # Specify how many digits you want
fnum = '122.485221'
truncated_float = float(fnum[:fnum.find('.') + digits + 1])
>>> 122.48
Simply scanning for the index of '.' and truncate as desired (no rounding).
Convert string to float as final step.
Or in your case if you get a float as input and want a string as output:
fnum = str(122.485221) # convert float to string first
truncated_float = fnum[:fnum.find('.') + digits + 1] # string output
I think a better version would be just to find the index of decimal point . and then to take the string slice accordingly:
def truncate(number, n_digits:int=1)->float:
'''
:param number: real number ℝ
:param n_digits: Maximum number of digits after the decimal point after truncation
:return: truncated floating point number with at least one digit after decimal point
'''
decimalIndex = str(number).find('.')
if decimalIndex == -1:
return float(number)
else:
return float(str(number)[:decimalIndex+n_digits+1])
int(1.923328437452 * 1000) / 1000
>>> 1.923
int(1.9239 * 1000) / 1000
>>> 1.923
By multiplying the number by 1000 (10 ^ 3 for 3 digits) we shift the decimal point 3 places to the right and get 1923.3284374520001. When we convert that to an int the fractional part 3284374520001 will be discarded. Then we undo the shifting of the decimal point again by dividing by 1000 which returns 1.923.
use numpy.round
import numpy as np
precision = 3
floats = [1.123123123, 2.321321321321]
new_float = np.round(floats, precision)
Something simple enough to fit in a list-comprehension, with no libraries or other external dependencies. For Python >=3.6, it's very simple to write with f-strings.
The idea is to let the string-conversion do the rounding to one more place than you need and then chop off the last digit.
>>> nout = 3 # desired number of digits in output
>>> [f'{x:.{nout+1}f}'[:-1] for x in [2/3, 4/5, 8/9, 9/8, 5/4, 3/2]]
['0.666', '0.800', '0.888', '1.125', '1.250', '1.500']
Of course, there is rounding happening here (namely for the fourth digit), but rounding at some point is unvoidable. In case the transition between truncation and rounding is relevant, here's a slightly better example:
>>> nacc = 6 # desired accuracy (maximum 15!)
>>> nout = 3 # desired number of digits in output
>>> [f'{x:.{nacc}f}'[:-(nacc-nout)] for x in [2.9999, 2.99999, 2.999999, 2.9999999]]
>>> ['2.999', '2.999', '2.999', '3.000']
Bonus: removing zeros on the right
>>> nout = 3 # desired number of digits in output
>>> [f'{x:.{nout+1}f}'[:-1].rstrip('0') for x in [2/3, 4/5, 8/9, 9/8, 5/4, 3/2]]
['0.666', '0.8', '0.888', '1.125', '1.25', '1.5']
The core idea given here seems to me to be the best approach for this problem.
Unfortunately, it has received less votes while the later answer that has more votes is not complete (as observed in the comments). Hopefully, the implementation below provides a short and complete solution for truncation.
def trunc(num, digits):
l = str(float(num)).split('.')
digits = min(len(l[1]), digits)
return l[0] + '.' + l[1][:digits]
which should take care of all corner cases found here and here.
Am also a python newbie and after making use of some bits and pieces here, I offer my two cents
print str(int(time.time()))+str(datetime.now().microsecond)[:3]
str(int(time.time())) will take the time epoch as int and convert it to string and join with...
str(datetime.now().microsecond)[:3] which returns the microseconds only, convert to string and truncate to first 3 chars
# value value to be truncated
# n number of values after decimal
value = 0.999782
n = 3
float(int(value*1en))*1e-n

Categories

Resources