I'm trying to display further images (ct-scan) using numpy/vtk as describe in this sample code (http://www.vtk.org/Wiki/VTK/Examples/Python/vtkWithNumpy) but I don't get it and don't know why.
If someone could help me it would be kind.
Here's my code :
import vtk
import numpy as np
import os
import cv, cv2
import matplotlib.pyplot as plt
import PIL
import Image
DEBUG =True
directory="splitted_mri/"
w = 226
h = 186
d = 27
stack = np.zeros((w,d,h))
k=-1 #add the next picture in a differente level of depth/z-positions
for file in os.listdir(directory):
k+=1
img = directory + file
im = Image.open(img)
temp = np.asarray(im, dtype=int)
stack[:,k,:]= temp
print stack.shape
#~ plt.imshow(test)
#~ plt.show()
print type(stack[10,10,15])
res = np.amax(stack)
res1 = np.amin(stack)
print res, type(res)
print res1, type(res1)
#~ for (x,y,z), value in np.ndenumerate(stack):
#~ stack[x,y,z]=np.require(stack[x,y,z],dtype=np.int16)
#~ print type(stack[x,y,z])
stack = np.require(stack,dtype=np.uint16)
print stack.dtype
if DEBUG : print stack.shape
dataImporter = vtk.vtkImageImport()
data_string = stack.tostring()
dataImporter.CopyImportVoidPointer(data_string, len(data_string))
dataImporter.SetDataScalarTypeToUnsignedChar()
dataImporter.SetNumberOfScalarComponents(1)
dataImporter.SetDataExtent(0, w-1, 0, 1, 0, h-1)
dataImporter.SetWholeExtent(0, w-1, 0, 1, 0, h-1)
essai = raw_input()
alphaChannelFunc = vtk.vtkPiecewiseFunction()
colorFunc = vtk.vtkColorTransferFunction()
for i in range (0,255):
alphaChannelFunc.AddPoint(i, 0.9)
colorFunc.AddRGBPoint(i,i,i,i)
volumeProperty = vtk.vtkVolumeProperty()
volumeProperty.SetColor(colorFunc)
#volumeProperty.ShadeOn()
volumeProperty.SetScalarOpacity(alphaChannelFunc)
# This class describes how the volume is rendered (through ray tracing).
compositeFunction = vtk.vtkVolumeRayCastCompositeFunction()
# We can finally create our volume. We also have to specify the data for it, as well as how the data will be rendered.
volumeMapper = vtk.vtkVolumeRayCastMapper()
volumeMapper.SetVolumeRayCastFunction(compositeFunction)
volumeMapper.SetInputConnection(dataImporter.GetOutputPort())
# The class vtkVolume is used to pair the preaviusly declared volume as well as the properties to be used when rendering that volume.
volume = vtk.vtkVolume()
volume.SetMapper(volumeMapper)
volume.SetProperty(volumeProperty)
# With almost everything else ready, its time to initialize the renderer and window, as well as creating a method for exiting the application
renderer = vtk.vtkRenderer()
renderWin = vtk.vtkRenderWindow()
renderWin.AddRenderer(renderer)
renderInteractor = vtk.vtkRenderWindowInteractor()
renderInteractor.SetRenderWindow(renderWin)
# We add the volume to the renderer ...
renderer.AddVolume(volume)
# ... set background color to white ...
renderer.SetBackground(1, 1, 1)
# ... and set window size.
renderWin.SetSize(400, 400)
# A simple function to be called when the user decides to quit the application.
def exitCheck(obj, event):
if obj.GetEventPending() != 0:
obj.SetAbortRender(1)
# Tell the application to use the function as an exit check.
renderWin.AddObserver("AbortCheckEvent", exitCheck)
#to quit, press q
renderInteractor.Initialize()
# Because nothing will be rendered without any input, we order the first render manually before control is handed over to the main-loop.
renderWin.Render()
renderInteractor.Start()
I finally find out what was wrong
here's my new code
import vtk
import numpy as np
import os
import matplotlib.pyplot as plt
import PIL
import Image
DEBUG =False
directory="splitted_mri/"
l = []
k=0 #add the next picture in a differente level of depth/z-positions
for file in os.listdir(directory):
img = directory + file
if DEBUG : print img
l.append(img)
# the os.listdir function do not give the files in the right order
#so we need to sort them
l=sorted(l)
temp = Image.open(l[0])
h, w = temp.size
d = len(l)*5 #with our sample each images will be displayed 5times to get a better view
if DEBUG : print 'width, height, depth : ',w,h,d
stack = np.zeros((w,d,h),dtype=np.uint8)
for i in l:
im = Image.open(i)
temp = np.asarray(im, dtype=int)
for i in range(5):
stack[:,k+i,:]= temp
k+=5
#~ stack[:,k,:]= temp
#~ k+=1
if DEBUG :
res = np.amax(stack)
print 'max value',res
res1 = np.amin(stack)
print 'min value',res1
#convert the stack in the right dtype
stack = np.require(stack,dtype=np.uint8)
if DEBUG :#check if the image have not been modified
test = stack [:,0,:]
plt.imshow(test,cmap='gray')
plt.show()
if DEBUG : print 'stack shape & dtype' ,stack.shape,',',stack.dtype
dataImporter = vtk.vtkImageImport()
data_string = stack.tostring()
dataImporter.CopyImportVoidPointer(data_string, len(data_string))
dataImporter.SetDataScalarTypeToUnsignedChar()
dataImporter.SetNumberOfScalarComponents(1)
#vtk uses an array in the order : height, depth, width which is
#different of numpy (w,h,d)
w, d, h = stack.shape
dataImporter.SetDataExtent(0, h-1, 0, d-1, 0, w-1)
dataImporter.SetWholeExtent(0, h-1, 0, d-1, 0, w-1)
alphaChannelFunc = vtk.vtkPiecewiseFunction()
colorFunc = vtk.vtkColorTransferFunction()
for i in range(256):
alphaChannelFunc.AddPoint(i, 0.2)
colorFunc.AddRGBPoint(i,i/255.0,i/255.0,i/255.0)
# for our test sample, we set the black opacity to 0 (transparent) so as
#to see the sample
alphaChannelFunc.AddPoint(0, 0.0)
colorFunc.AddRGBPoint(0,0,0,0)
volumeProperty = vtk.vtkVolumeProperty()
volumeProperty.SetColor(colorFunc)
#volumeProperty.ShadeOn()
volumeProperty.SetScalarOpacity(alphaChannelFunc)
# This class describes how the volume is rendered (through ray tracing).
compositeFunction = vtk.vtkVolumeRayCastCompositeFunction()
# We can finally create our volume. We also have to specify the data for
# it, as well as how the data will be rendered.
volumeMapper = vtk.vtkVolumeRayCastMapper()
# function to reduce the spacing between each image
volumeMapper.SetMaximumImageSampleDistance(0.01)
volumeMapper.SetVolumeRayCastFunction(compositeFunction)
volumeMapper.SetInputConnection(dataImporter.GetOutputPort())
# The class vtkVolume is used to pair the preaviusly declared volume as
#well as the properties to be used when rendering that volume.
volume = vtk.vtkVolume()
volume.SetMapper(volumeMapper)
volume.SetProperty(volumeProperty)
# With almost everything else ready, its time to initialize the renderer and window,
# as well as creating a method for exiting the application
renderer = vtk.vtkRenderer()
renderWin = vtk.vtkRenderWindow()
renderWin.AddRenderer(renderer)
renderInteractor = vtk.vtkRenderWindowInteractor()
renderInteractor.SetRenderWindow(renderWin)
# We add the volume to the renderer ...
renderer.AddVolume(volume)
# ... set background color to white ...
renderer.SetBackground(1, 1, 1)
# ... and set window size.
renderWin.SetSize(550, 550)
renderWin.SetMultiSamples(4)
# A simple function to be called when the user decides to quit the application.
def exitCheck(obj, event):
if obj.GetEventPending() != 0:
obj.SetAbortRender(1)
# Tell the application to use the function as an exit check.
renderWin.AddObserver("AbortCheckEvent", exitCheck)
#to auit, press q
renderInteractor.Initialize()
# Because nothing will be rendered without any input, we order the first
# render manually before control is handed over to the main-loop.
renderWin.Render()
renderInteractor.Start()
If you are ok with a solution not using VTK, you could use Matplotlib imshow and interactive navigation with keys.
This tutorial shows how:
https://www.datacamp.com/community/tutorials/matplotlib-3d-volumetric-data
https://github.com/jni/mpl-volume-viewer
and here an implementation for viewing RTdose files:
https://github.com/pydicom/contrib-pydicom/pull/19
See also:
https://github.com/napari/napari
Related
In this moment I'm trying to modific a fbx file from python sdk. I can get the mesh, Vertices and Space Points even the name of the bones.
I need to Scaling or rotating the object I made this in my code.
#First I load my object
import fbx
import sys
import numpy as np
filepath = 'Mannequin UE4.fbx'
manager = fbx.FbxManager.Create()
importer = fbx.FbxImporter.Create(manager, 'myImporter')
status = importer.Initialize( filepath )
list = []
if status == False:
print('FbxImporter initialization failed.')
print('Error: %s' % importer.GetLastErrorString())
sys.exit()
scene = fbx.FbxScene.Create( manager, 'myScene' )
importer.Import(scene)
importer.Destroy()
#I get the name of the bones and meshes
for i in range(0, a):
b = scene.GetNode(i) #Obtengo los nodos del archivo FBX
print(b.GetName()) #Imprimo cada uno de los nodos
#Scaling Here doesn't work
t = fbx.FbxDouble3(0.5, 0.5, 0.5)
b = scene.GetNode(1)
b.LclScaling.Set(t)
f = b.GetGeometry()
print(f.GetControlPointAt(0))
#Here I get points and vertices to draw in my Engine Game but the values is no scaling
c = scene.GetGeometry(0)
c.GetPolygonVertices()
for i in range(0, c.GetControlPointsCount()):
list1 = []
q = c.GetControlPointAt(i)
list1.append(q[0])
list1.append(q[1])
list1.append(q[2])
list.append(list1)
n = np.array(list, np.float32)
print(n)
The scaling doesn't work I print the values and values are the same after the scaling in the geometry(0) or mesh(0) in my object
Please I need help
I'm trying to rotare or scale and 3D object
I am trying to write a small bit of code that interactively deletes selected slices in an image series using matplotlib. I have created a button 'delete' which stores a number of indices to be deleted when the button 'update' is selected. However, I am currently unable to reset the range of my slider widget, i.e. removing the number of deleted slices from valmax. What is the pythonic solution to this problem?
Here is my code:
import dicom
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button
frame = 0
#store indices of slices to be deleted
delete_list = []
def main():
data = np.random.rand(16,256,256)
nframes = data.shape[0]
raw_dicom_stack = []
for x in range (nframes):
raw_dicom_stack.append(data[x,:,:])
#yframe = 0
# Visualize it
viewer = VolumeViewer(raw_dicom_stack, nframes)
viewer.show()
class VolumeViewer(object):
def __init__(self, raw_dicom_stack, nframes):
global delete_list
self.raw_dicom_stack = raw_dicom_stack
self.nframes = nframes
self.delete_list = delete_list
# Setup the axes.
self.fig, self.ax = plt.subplots()
self.slider_ax = self.fig.add_axes([0.2, 0.03, 0.65, 0.03])
self.delete_ax = self.fig.add_axes([0.85,0.84,0.1,0.04])
self.update_ax = self.fig.add_axes([0.85,0.78,0.1,0.04])
self.register_ax = self.fig.add_axes([0.85,0.72,0.1,0.04])
self.add_ax = self.fig.add_axes([0.85,0.66,0.1,0.04])
# Make the slider
self.slider = Slider(self.slider_ax, 'Frame', 1, self.nframes,
valinit=1, valfmt='%1d/{}'.format(self.nframes))
self.slider.on_changed(self.update)
#Make the buttons
self.del_button = Button(self.delete_ax, 'Delete')
self.del_button.on_clicked(self.delete)
self.upd_button = Button(self.update_ax, 'Update')
self.upd_button.on_clicked(self.img_update)
self.reg_button = Button(self.register_ax, 'Register')
self.add_button = Button(self.add_ax, "Add")
# Plot the first slice of the image
self.im = self.ax.imshow(np.array(raw_dicom_stack[0]))
def update(self, value):
global frame
frame = int(np.round(value - 1))
# Update the image data
dat = np.array(self.raw_dicom_stack[frame])
self.im.set_data(dat)
# Reset the image scaling bounds (this may not be necessary for you)
self.im.set_clim([dat.min(), dat.max()])
# Redraw the plot
self.fig.canvas.draw()
def delete(self,event):
global frame
global delete_list
delete_list.append(frame)
print 'Frame %s has been added to list of slices to be deleted' %str(frame+1)
print 'Please click update to delete these slices and show updated image series \n'
#Remove duplicates from delete list
def img_update(self,event):
#function deletes image stacks and updates viewer
global delete_list
#Remove duplicates from list and sort into numerical order
delete_list = list(set(delete_list))
delete_list.sort()
#Make sure delete_list is not empty
if not delete_list:
print "Delete list is empty, no slices to delete"
#Loop through delete list in reverse numerical order and remove slices from series
else:
for i in reversed(delete_list):
self.raw_dicom_stack.pop(i)
print 'Slice %i removed from dicom series \n' %(i+1)
#Can now remove contents from delete_list
del delete_list[:]
#Update slider range
self.nframes = len(self.raw_dicom_stack)
def show(self):
plt.show()
if __name__ == '__main__':
main()
In order to update a slider range you may set the min and max value of it directly,
slider.valmin = 3
slider.valmax = 7
In order to reflect this change in the slider axes you need to set the limits of the axes,
slider.ax.set_xlim(slider.valmin,slider.valmax)
A complete example, where typing in any digit changes the valmin of the slider to that value.
import matplotlib.pyplot as plt
import matplotlib.widgets
fig, (ax,sliderax) = plt.subplots(nrows=2,gridspec_kw=dict(height_ratios=[1,.05]))
ax.plot(range(11))
ax.set_xlim(5,None)
ax.set_title("Type number to set minimum slider value")
def update_range(val):
ax.set_xlim(val,None)
def update_slider(evt):
print(evt.key)
try:
val = int(evt.key)
slider.valmin = val
slider.ax.set_xlim(slider.valmin,None)
if val > slider.val:
slider.val=val
update_range(val)
fig.canvas.draw_idle()
except:
pass
slider=matplotlib.widgets.Slider(sliderax,"xlim",0,10,5)
slider.on_changed(update_range)
fig.canvas.mpl_connect('key_press_event', update_slider)
plt.show()
It looks like the slider does not have a way to update the range (api). I would suggest setting the range of the slider to be [0,1] and doing
frame = int(self.nframes * value)
On a somewhat related note, I would have made frame an instance variable a data attribute instead of a global variable (tutorial).
I am currently experimenting with the pytest module to create unit tests for a project I'm working on. I'm trying to test the 'add_point' method which draws an ellipse based on a set of pixels. What I want to do is inspect 'draw' to ensure that the ellipse has been created successfully. Unfortunately I don't know how to go about this, so any help will be appreciated. Here's my code so far:
(A) TheSlicePreviewMaker.py
import os, Image, ImageDraw, ImageFont
from json_importer import json_importer
class SlicePreviewer(object):
def __init__(self):
self.screen_size = (470, 470)
self.background_colour = (86,0,255)
self.platform_fill_colour = (100, 100, 100)
self.platform_outline_colour = (0, 0, 0)
self.platform_window = (0,0,469,469)
self.point_colour = (0,0,255)
self.config_object = json_importer("ConfigFile.txt")
self.image = None
def initialise_image(self):
self.image = Image.new('RGB',self.screen_size,self.background_colour)
draw = ImageDraw.Draw(self.image)
draw.rectangle(self.platform_window,outline=self.platform_outline_colour,fill=self.platform_fill_colour)
del draw
def add_point(self, px, py):
x1 = px - 1
y1 = py - 1
x2 = px + 1
y2 = py + 1
draw = ImageDraw.Draw(self.image)
draw.ellipse((x1,y1,x2,y2),outline=self.point_colour,fill=self.point_colour)
return draw #del draw
def save_image(self, file_name):
self.image.save(file_name, "BMP")
(B) test_TheSlicePreviewMaker.py
from TheSlicePreviewMaker import SlicePreviewer
slice_preview = SlicePreviewer()
class TestSlicePreviewer:
def test_init(self):
'''check that the config file object has been created on init'''
assert slice_preview.config_object != None
def test_initialise_image(self):
'''verify if the image has been successfully initialised'''
assert slice_preview.image.mode == 'RGB'
def test_add_point(self):
'''has the point been drawn successfully?'''
draw = slice_preview.add_point(196,273)
assert something
import pytest
if __name__ == '__main__':
pytest.main("--capture=sys -v")
SN: I've run TheSlicePreviewMaker.py separately to check the bitmap file it produces, so I know that the code works. What I want to achieve is unit test this so that each time I don't have to go check the bitmap.
One approach is to manually inspect the generated image and if looks OK to you, save it next to the test and use a image diffing algorithm (for example ImageChops.difference) to obtain a threshold value that you can use to make sure future test runs are still drawing the same image.
For example:
# contents of conftest.py
from PIL import ImageChops, ImageDraw, Image
import pytest
import os
import py.path
import math
import operator
def rms_diff(im1, im2):
"""Calculate the root-mean-square difference between two images
Taken from: http://snipplr.com/view/757/compare-two-pil-images-in-python/
"""
h1 = im1.histogram()
h2 = im2.histogram()
def mean_sqr(a,b):
if not a:
a = 0.0
if not b:
b = 0.0
return (a-b)**2
return math.sqrt(reduce(operator.add, map(mean_sqr, h1, h2))/(im1.size[0]*im1.size[1]))
class ImageDiff:
"""Fixture used to make sure code that generates images continues to do so
by checking the difference of the genereated image against known good versions.
"""
def __init__(self, request):
self.directory = py.path.local(request.node.fspath.dirname) / request.node.fspath.purebasename
self.expected_name = (request.node.name + '.png')
self.expected_filename = self.directory / self.expected_name
def check(self, im, max_threshold=0.0):
__tracebackhide__ = True
local = py.path.local(os.getcwd()) / self.expected_name
if not self.expected_filename.check(file=1):
msg = '\nExpecting image at %s, but it does not exist.\n'
msg += '-> Generating here: %s'
im.save(str(local))
pytest.fail(msg % (self.expected_filename, local))
else:
expected = Image.open(str(self.expected_filename))
rms_value = rms_diff(im, expected)
if rms_value > max_threshold:
im.save(str(local))
msg = '\nrms_value %s > max_threshold of %s.\n'
msg += 'Obtained image saved at %s'
pytest.fail(msg % (rms_value, max_threshold, str(local)))
#pytest.fixture
def image_diff(request):
return ImageDiff(request)
Now you can use the image_diff fixture in your tests. For example:
def create_image():
""" dummy code that generates an image, simulating some actual code """
im = Image.new('RGB', (100, 100), (0, 0, 0))
draw = ImageDraw.Draw(im)
draw.ellipse((10, 10, 90, 90), outline=(0, 0, 255),
fill=(255, 255, 255))
return im
def test_generated_image(image_diff):
im = create_image()
image_diff.check(im)
The first time your run this test, it will fail with this output:
================================== FAILURES ===================================
____________________________ test_generated_image _____________________________
image_diff = <test_foo.ImageDiff instance at 0x029ED530>
def test_generated_image(image_diff):
im = create_image()
> image_diff.check(im)
E Failed:
E Expecting image at X:\temp\sandbox\img-diff\test_foo\test_generated_image.png, but it does not exist.
E -> Generating here: X:\temp\sandbox\img-diff\test_generated_image.png
You can then manually check the image and if everything is OK, move it to a directory with the same name as the test file, with the name of the test as the file name plus ".png" extension. From now one whenever the test runs, it will check that the image is similar within an acceptable amount.
Suppose you change the code and produce a slightly different image, the test will now fail like this:
================================== FAILURES ===================================
____________________________ test_generated_image _____________________________
image_diff = <test_foo.ImageDiff instance at 0x02A4B788>
def test_generated_image(image_diff):
im = create_image()
> image_diff.check(im)
E Failed:
E rms_value 2.52 > max_threshold of 0.0.
E Obtained image saved at X:\temp\sandbox\img-diff\test_generated_image.png
test_foo.py:63: Failed
========================== 1 failed in 0.03 seconds ===========================
The code needs some polishing but should be a good start. You can find a version of this code here.
Cheers,
I am currently trying to save a mayavi animation generated by my simulation, so I don't have to rerun the code each time to see it.
plt = points3d(x_coord, y_coord, z_coord)
msplt = plt.mlab_source
#mlab.animate(delay=100)
def anim():
f = mlab.gcf()
while True:
#animation updates here
msplt.set(x = x_coord, y = y_coord, z = z_coord)
yield
anim()
mlab.savefig(filename = 'ani.mp4')
mlab.show()
I have tried saving it through the pipleline editor and just get a still of the frame it is on, and mlab.savefig doesn't generate a file. Any help appreciated.
The following will will work for both viewing the animation, saving each frame as a 'png', and then converting them to a movie, BUT it is perhaps fastest in this case to forgo playing the animation, and just cycle through the data saving figures, and then using this method to make a video.
from mayavi import mlab
import numpy as np
import os
# Output path for you animation images
out_path = './'
out_path = os.path.abspath(out_path)
fps = 20
prefix = 'ani'
ext = '.png'
# Produce some nice data.
n_mer, n_long = 6, 11
pi = np.pi
dphi = pi/1000.0
phi = np.arange(0.0, 2*pi + 0.5*dphi, dphi, 'd')
mu = phi*n_mer
x = np.cos(mu)*(1+np.cos(n_long*mu/n_mer)*0.5)
y = np.sin(mu)*(1+np.cos(n_long*mu/n_mer)*0.5)
z = np.sin(n_long*mu/n_mer)*0.5
# Init plot
plt = mlab.points3d(x[0], y[0], z[0])
padding = len(str(len(x)))
# Define data source and update routine
msplt = plt.mlab_source
#mlab.animate(delay=10)
def anim():
f = mlab.gcf()
for i in range(len(x)):
#animation updates here
msplt.set(x=x[i], y=y[i], z=z[i])
# create zeros for padding index positions for organization
zeros = '0'*(padding - len(str(i)))
# concate filename with zero padded index number as suffix
filename = os.path.join(out_path, '{}_{}{}{}'.format(prefix, zeros, i, ext))
mlab.savefig(filename=filename)
yield
anim()
mlab.view(distance=15)
mlab.show()
import subprocess
ffmpeg_fname = os.path.join(out_path, '{}_%0{}d{}'.format(prefix, padding, ext))
cmd = 'ffmpeg -f image2 -r {} -i {} -vcodec mpeg4 -y {}.mp4'.format(fps,
ffmpeg_fname,
prefix)
print cmd
subprocess.check_output(['bash','-c', cmd])
# Remove temp image files with extension
[os.remove(f) for f in os.listdir(out_path) if f.endswith(ext)]
Instead of saving the images to disk and then stitching them together it's also possible to pipe them directly to ffmpeg using the python-ffmpeg package.
import ffmpeg
# Set up the figure
width = 200
height = 200
mlab.options.offscreen = True # Stops the view window popping up and makes sure you get the correct size screenshots.
fig = mlab.figure(size=(width, height))
# ... set up the scene ...
# Define update function
def update_scene(idx):
# -- update the scene
return
# Initialise ffmpeg process
output_args = {
'pix_fmt': 'yuv444p',
'vcodec': 'libx264',
'r': 25,
}
process = (
ffmpeg
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{width}x{height}')
.output('animation.mp4', **output_args)
.overwrite_output()
.run_async(pipe_stdin=True)
)
fig.scene._lift() # Throws an error without this.
for i in range(100):
update_scene(i)
screenshot = mlab.screenshot(mode='rgb', antialiased=True)
frame = Image.fromarray(screenshot, 'RGB')
process.stdin.write(frame.tobytes())
# Flush video
process.stdin.close()
process.wait()
I'm trying to make an animation with a sequence of datafiles in mayavi. Unfortunately i have noticed that camera doesn't lock (it is zooming and zooming out). I think it is happening because the Z componrnt of my mesh is changing and mayavi is trying to recalculate scales.
How can I fix it?
import numpy
from mayavi import mlab
mlab.figure(size = (1024,768),bgcolor = (1,1,1))
mlab.view(azimuth=45, elevation=60, distance=0.01, focalpoint=(0,0,0))
#mlab.move(forward=23, right=32, up=12)
for i in range(8240,8243):
n=numpy.arange(10,400,20)
k=numpy.arange(10,400,20)
[x,y] = numpy.meshgrid(k,n)
z=numpy.zeros((20,20))
z[:] = 5
M = numpy.loadtxt('B:\\Dropbox\\Master.Diploma\\presentation\\movie\\1disk_j9.5xyz\\'+'{0:05}'.format(i)+'.txt')
Mx = M[:,0]; My = M[:,1]; Mz = M[:,2]
Mx = Mx.reshape(20,20); My = My.reshape(20,20); Mz = Mz.reshape(20,20);
s = mlab.quiver3d(x,y,z,Mx, My, -Mz, mode="cone",resolution=40,scale_factor=0.016,color = (0.8,0.8,0.01))
Mz = numpy.loadtxt('B:\\Dropbox\\Master.Diploma\\presentation\\movie\\Mzi\\' + '{0:05}'.format(i) + '.txt')
n=numpy.arange(2.5,400,2)
k=numpy.arange(2.5,400,2)
[x,y] = numpy.meshgrid(k,n)
f = mlab.mesh(x, y, -Mz/1.5,representation = 'wireframe',opacity=0.3,line_width=1)
mlab.savefig('B:\\Dropbox\\Master.Diploma\\presentation\\movie\\figs\\'+'{0:05}'.format(i)+'.png')
mlab.clf()
#mlab.savefig('B:\\Dropbox\\Master.Diploma\\figures\\vortex.png')
print(i)
mlab.show()
for anyone still interested in this, you could try wrapping whatever work you're doing in this context, which will disable rendering and return the disable_render value and camera views to their original states after the context exits.
with constant_camera_view():
do_stuff()
Here's the class:
class constant_camera_view(object):
def __init__(self):
pass
def __enter__(self):
self.orig_no_render = mlab.gcf().scene.disable_render
if not self.orig_no_render:
mlab.gcf().scene.disable_render = True
cc = mlab.gcf().scene.camera
self.orig_pos = cc.position
self.orig_fp = cc.focal_point
self.orig_view_angle = cc.view_angle
self.orig_view_up = cc.view_up
self.orig_clipping_range = cc.clipping_range
def __exit__(self, t, val, trace):
cc = mlab.gcf().scene.camera
cc.position = self.orig_pos
cc.focal_point = self.orig_fp
cc.view_angle = self.orig_view_angle
cc.view_up = self.orig_view_up
cc.clipping_range = self.orig_clipping_range
if not self.orig_no_render:
mlab.gcf().scene.disable_render = False
if t != None:
print t, val, trace
ipdb.post_mortem(trace)
I do not really see the problem in your plot but to reset the view after each plotting instance insert your view point:
mlab.view(azimuth=45, elevation=60, distance=0.01, focalpoint=(0,0,0))
directly above your mlab.savefig callwithin your for loop .
You could just use the vmin and vmax function in your mesh command, if u do so the scale will not change with your data and your camera should stay where it is.
Like this:
f = mlab.mesh(x, y, -Mz/1.5,representation = 'wireframe',vmin='''some value''',vmax='''some value''',opacity=0.3,line_width=1)