Python: heat density plot in a disk - python

My goal is to make a density heat map plot of sphere in 2D. The plotting code below the line works when I use rectangular domains. However, I am trying to use the code for a circular domain. The radius of sphere is 1. The code I have so far is:
from pylab import *
import numpy as np
from matplotlib.colors import LightSource
from numpy.polynomial.legendre import leggauss, legval
xi = 0.0
xf = 1.0
numx = 500
yi = 0.0
yf = 1.0
numy = 500
def f(x):
if 0 <= x <= 1:
return 100
if -1 <= x <= 0:
return 0
deg = 1000
xx, w = leggauss(deg)
L = np.polynomial.legendre.legval(xx, np.identity(deg))
integral = (L * (f(x) * w)[None,:]).sum(axis = 1)
c = (np.arange(1, 500) + 0.5) * integral[1:500]
def r(x, y):
return np.sqrt(x ** 2 + y ** 2)
theta = np.arctan2(y, x)
x, y = np.linspace(0, 1, 500000)
def T(x, y):
return (sum(r(x, y) ** l * c[:,None] *
np.polynomial.legendre.legval(xx, identity(deg)) for l in range(1, 500)))
T(x, y) should equal the sum of c the coefficients times the radius as a function of x and y to the l power times the legendre polynomial where the argument is of the legendre polynomial is cos(theta).
In python: integrating a piecewise function, I learned how to use the Legendre polynomials in a summation but that method is slightly different, and for the plotting, I need a function T(x, y).
This is the plotting code.
densityinterpolation = 'bilinear'
densitycolormap = cm.jet
densityshadedflag = False
densitybarflag = True
gridflag = True
plotfilename = 'laplacesphere.eps'
x = arange(xi, xf, (xf - xi) / (numx - 1))
y = arange(yi, yf, (yf - yi) / (numy - 1))
X, Y = meshgrid(x, y)
z = T(X, Y)
if densityshadedflag:
ls = LightSource(azdeg = 120, altdeg = 65)
rgb = ls.shade(z, densitycolormap)
im = imshow(rgb, extent = [xi, xf, yi, yf], cmap = densitycolormap)
else:
im = imshow(z, extent = [xi, xf, yi, yf], cmap = densitycolormap)
im.set_interpolation(densityinterpolation)
if densitybarflag:
colorbar(im)
grid(gridflag)
show()
I made the plot in Mathematica for reference of what my end goal is

If you set the values outside of the disk domain (or whichever domain you want) to float('nan'), those points will be ignored when plotting (leaving them in white color).

Related

Moving Points with 1D Noise

I'd like to move points in X & Y with 1D Noise. To further clarify, I don't want each point to move by a unique random number, but rather a larger noise over the whole line with gradients moving the points. The Noise would serve as a multiplier for a move amount and would be a value between -1 and 1. For example, if the Noise value was 0.8, it would multiply the X & Y of points by the amount.
How would I go about this?
This is what I have so far (the black line is the original line). I think it's wrong, because the frequency is 1 but there appears to be multiple waves in the noise.
import numpy as np
import matplotlib.pyplot as plt
import random
import math
from enum import Enum
#PerlinNoise by alexandr-gnrk
class Interp(Enum):
LINEAR = 1
COSINE = 2
CUBIC = 3
class PerlinNoise():
def __init__(self,
seed, amplitude=1, frequency=1,
octaves=1, interp=Interp.COSINE, use_fade=False):
self.seed = random.Random(seed).random()
self.amplitude = amplitude
self.frequency = frequency
self.octaves = octaves
self.interp = interp
self.use_fade = use_fade
self.mem_x = dict()
def __noise(self, x):
# made for improve performance
if x not in self.mem_x:
self.mem_x[x] = random.Random(self.seed + x).uniform(-1, 1)
return self.mem_x[x]
def __interpolated_noise(self, x):
prev_x = int(x) # previous integer
next_x = prev_x + 1 # next integer
frac_x = x - prev_x # fractional of x
if self.use_fade:
frac_x = self.__fade(frac_x)
# intepolate x
if self.interp is Interp.LINEAR:
res = self.__linear_interp(
self.__noise(prev_x),
self.__noise(next_x),
frac_x)
elif self.interp is Interp.COSINE:
res = self.__cosine_interp(
self.__noise(prev_x),
self.__noise(next_x),
frac_x)
else:
res = self.__cubic_interp(
self.__noise(prev_x - 1),
self.__noise(prev_x),
self.__noise(next_x),
self.__noise(next_x + 1),
frac_x)
return res
def get(self, x):
frequency = self.frequency
amplitude = self.amplitude
result = 0
for _ in range(self.octaves):
result += self.__interpolated_noise(x * frequency) * amplitude
frequency *= 2
amplitude /= 2
return result
def __linear_interp(self, a, b, x):
return a + x * (b - a)
def __cosine_interp(self, a, b, x):
x2 = (1 - math.cos(x * math.pi)) / 2
return a * (1 - x2) + b * x2
def __cubic_interp(self, v0, v1, v2, v3, x):
p = (v3 - v2) - (v0 - v1)
q = (v0 - v1) - p
r = v2 - v0
s = v1
return p * x**3 + q * x**2 + r * x + s
def __fade(self, x):
# useful only for linear interpolation
return (6 * x**5) - (15 * x**4) + (10 * x**3)
x = np.linspace(10, 10, 20)
y = np.linspace(0, 10, 20)
seed = 10
gen_x = PerlinNoise(seed=seed, amplitude=5, frequency=1, octaves=1, interp=Interp.CUBIC, use_fade=True)
noise_x = np.array([gen_x.get(pos) for pos in y])
fig, ax = plt.subplots(1)
ax.set_aspect("equal")
ax.plot(x, y, linewidth=2, color="k")
ax.scatter(x, y, s=20, zorder=4, color="k")
ax.plot(x+noise_x, y, linewidth=2, color="blue")
ax.scatter(x+noise_x, y, s=80, zorder=4, color="red")
plt.show()
Thank you!

stackoverflow error in 2d fipy PDE solver in python

I am trying to solve a system of three coupled PDEs and two ODEs (coupled) in 2D. The problem tries to solve for a case of a particle moving in a medium. The medium is given by the fields- velocity components vx, vy, and density m and there is one particle moving in this medium with position Rx, Ry.
It runs fine for a while but then throws up errors:
"Fatal Python error: Cannot recover from stack overflow.
Current thread 0x00007fe155915700 (most recent call first):"
Here is the code:
"""
"""
from fipy import (CellVariable, PeriodicGrid2D, Viewer, TransientTerm, DiffusionTerm,
UniformNoiseVariable, LinearLUSolver, numerix,
ImplicitSourceTerm, ExponentialConvectionTerm, VanLeerConvectionTerm,
PowerLawConvectionTerm, Variable)
import sys
import inspect
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage
from scipy.optimize import curve_fit
from scipy.signal import correlate
from scipy.stats import kurtosis
from scipy.interpolate import interp1d
numerix.random.seed(2)
def run_simulation(f0, Total_time):
# Define mesh size and number of points
nx = 50
ny = nx
L = 50
dx = L / nx
dy = dx
mesh = PeriodicGrid2D(dx, dy, nx, ny)
# Variables to use
vx = CellVariable(name='vx', mesh=mesh, hasOld=1)
vy = CellVariable(name='vy', mesh=mesh, hasOld=1)
m = CellVariable(name='m', mesh=mesh, hasOld=1)
# Initial condition
m.setValue(UniformNoiseVariable(mesh=mesh, minimum=0.6215, maximum=0.6225))
vx.setValue(UniformNoiseVariable(mesh=mesh, minimum=0, maximum=0.00001))
vy.setValue(UniformNoiseVariable(mesh=mesh, minimum=0, maximum=0.00001))
#particle position
x0=10.0
y0=25.0
# create grids for grad function
xgrid=np.unique(mesh.x.value)+dx/2
ygrid=np.unique(mesh.y.value)+dy/2
# parameters ------------------------------
B=4.0
Gamma=1.0
gamma=1.0
Dm=0.005
C=100.0
## save the initial positions in Rx,Ry
Rx=Variable(value=x0)
Ry=Variable(value=y0)
theta=Variable(value=0.0) # n-hat = cos(theta) x-hat + sin(theta) y-hat
sigma = 1
dt = 0.05
#-----------------------------------------
x_hat = [1.0, 0.0]
y_hat = [0.0, 1.0]
#------------- dirac delta function --------------
# https://stackoverflow.com/questions/58041222/dirac-delta-source-term-in-fipy
def delta_func(x, y, epsilon):
return ((x < epsilon) & (x > -epsilon) & (y < epsilon) & (y > -epsilon)) * \
(1 + numerix.cos(numerix.pi * x / epsilon) * numerix.cos(numerix.pi * y / epsilon)) / 2 / epsilon
############## equations #############
# renormalized parameters by Gamma
# fields : velocity vector, density scalar
# Gamma * v = -B rho(grad(rho)) + f* n-cap* delta(r-R), B>0, f>0, Gamma>0
# dot(rho) + del.(v rho) = 0
# particle
# dot(R) = (f/gamma)*(n-cap) - (C/gamma) * rho(grad(rho)) C>0
# Gamma=gamma=1, B' = B/Gamma, C'=C/gamma, f'=f/Gamma
######################################
eq_m = (TransientTerm(var=m) + ExponentialConvectionTerm(coeff=x_hat * vx + y_hat * vy, var=m) == DiffusionTerm(coeff=Dm, var=m) )
eq_vx = (ImplicitSourceTerm(coeff=1., var=vx) == -(B/Gamma)*m.grad.dot(x_hat)*(m) + (f0/Gamma)*numerix.cos(theta)* delta_func(mesh.x-Rx,mesh.y-Ry,sigma) )
eq_vy = (ImplicitSourceTerm(coeff=1., var=vy) == -(B/Gamma)*m.grad.dot(y_hat)*(m) + (f0/Gamma)*numerix.sin(theta)* delta_func(mesh.x-Rx,mesh.y-Ry,sigma) )
eq = eq_m & eq_vx & eq_vy
viewer = Viewer(vars=(m))
elapsed = 0.0
ms = []
vxs = []
vys = []
xs = []
ys = []
while elapsed < Total_time:
# Old values are used for sweeping when solving nonlinear values
vx.updateOld()
vy.updateOld()
m.updateOld()
print(elapsed, Rx, Ry)
mgrid=np.reshape(m.value,(nx,ny))
# gradient cal, dydx[0][x,y], dydx[1][x,y] -> x derivative, y derivative at x,y
dydx=np.gradient(mgrid,dx,dy,edge_order=2)
# impose periodic boundary on gradient
dydx[0][nx-1,:]=(mgrid[0,:]-mgrid[nx-2,:])/(2.0*dx)
dydx[0][0,:]=(mgrid[1,:]-mgrid[nx-1,:])/(2.0*dx)
dydx[1][:,ny-1]=(mgrid[:,0]-mgrid[:,ny-2])/(2.0*dy)
dydx[1][:,0]=(mgrid[:,1]-mgrid[:,ny-1])/(2.0*dy)
# solve ode
idx = np.argmin(np.abs(xgrid - Rx))
idy = np.argmin(np.abs(ygrid - Ry))
x0=x0+ ((f0/gamma)*np.cos(theta) - C*mgrid[idx,idy]*dydx[0][idx,idy])*dt
y0=y0+ ((f0/gamma)*np.sin(theta) - C*mgrid[idx,idy]*dydx[1][idx,idy])*dt
if(x0>L):
x0=x0-L
if(x0<0):
x0=x0+L
if(y0>L):
y0=y0-L
if(y0<0):
y0=y0+L
Rx.setValue(x0) # element-wise assignment did not work
Ry.setValue(y0)
elapsed += dt
res = 1e5
old_res = res * 2
step = 0
while res > 1e-5 and step < 5 and old_res / res > 1.01:
old_res = res
res = eq.sweep(dt=dt)
step += 1
# The variable values are just numpy arrays so easy to use!
# save velocity & density
vxs.append(vx.value.copy())
vys.append(vy.value.copy())
ms.append(m.value.copy())
viewer.plot()
# save x and y positions
xs.append(mesh.x.value.copy())
ys.append(mesh.y.value.copy())
return ms, vxs, vys, xs, ys
if __name__ == '__main__':
path = 'result/'
Total_time= 50 #40
f0 = 2
ms, vxs, vys, xs, ys = run_simulation(f0,Total_time)
name = 'f0_{:.4f}'.format(f0)
y = np.array([ms, vxs, vys])
xx = np.reshape(xs,(50,50))
yy = np.reshape(ys,(50,50))
vx = np.reshape(vxs[800][:],(50,50))
vy = np.reshape(vys[800][:],(50,50))
print(np.shape(xx), np.shape(xs), np.shape(vx))
#np.save(path + name, y)
plt.imshow(np.reshape(ms[800][:],(50,50)), aspect='auto', interpolation='bicubic', cmap='jet', extent=[0, 50, 50, 0])
plt.colorbar(label='density m')
plt.xlabel(r'$x $')
plt.ylabel(r'$y $')
plt.gcf().savefig(path + 'rho_'+name+'.png', format='png', bbox_inches='tight')
plt.clf()
#---------------------------------------------
plt.imshow(np.reshape(vxs[800][:],(50,50)), aspect='auto', interpolation='bicubic', cmap='jet', extent=[0, 50, 50, 0])
plt.colorbar(label='velocity vx')
plt.xlabel(r'$x $')
plt.ylabel(r'$y $')
plt.gcf().savefig(path + 'vel_'+name+'.png', format='png', bbox_inches='tight')
plt.clf()
#---------------------------------------------
plt.quiver(xx,yy,vx,vy,scale=3)
plt.xlabel(r'$x $')
plt.ylabel(r'$y $')
plt.gcf().savefig(path + 'v_'+name+'.png', format='png', bbox_inches='tight')
plt.clf()
What can cause this error? I am not defining the equation inside the loop (this caused a similar problem before). Thank you in advance for your help.
UPDATE
I changed the function calling for x.mesh as
delta_func(xp,yp,sigma) where xp and yp are xp=Variable(value=mesh.x-Rx) and yp=Variable(value=mesh.y-Ry). Directly calling the x.mesh might have caused the problem according to an answer to my old question. But that did not help, I am still getting the overflow error. Here is the new version of the code:
"""
"""
from fipy import (CellVariable, PeriodicGrid2D, Viewer, TransientTerm, DiffusionTerm,
UniformNoiseVariable, LinearLUSolver, numerix,
ImplicitSourceTerm, ExponentialConvectionTerm, VanLeerConvectionTerm,
PowerLawConvectionTerm, Variable)
import sys
import inspect
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage
from scipy.optimize import curve_fit
from scipy.signal import correlate
from scipy.stats import kurtosis
from scipy.interpolate import interp1d
numerix.random.seed(2)
def run_simulation(f0, Total_time):
# Define mesh size and number of points
nx = 50
ny = nx
L = 50
dx = L / nx
dy = dx
mesh = PeriodicGrid2D(dx, dy, nx, ny)
# Variables to use
vx = CellVariable(name='vx', mesh=mesh, hasOld=1)
vy = CellVariable(name='vy', mesh=mesh, hasOld=1)
m = CellVariable(name='m', mesh=mesh, hasOld=1)
# Initial condition
m.setValue(UniformNoiseVariable(mesh=mesh, minimum=0.6215, maximum=0.6225))
vx.setValue(UniformNoiseVariable(mesh=mesh, minimum=0, maximum=0.00001))
vy.setValue(UniformNoiseVariable(mesh=mesh, minimum=0, maximum=0.00001))
#particle position
x0=10.0
y0=25.0
# create grids for grad function
xgrid=np.unique(mesh.x.value)+dx/2
ygrid=np.unique(mesh.y.value)+dy/2
# parameters ------------------------------
B=4.0
Gamma=1.0
gamma=1.0
Dm=0.005
C=100.0
## save the initial positions in Rx,Ry
Rx=Variable(value=x0)
Ry=Variable(value=y0)
theta=Variable(value=0.0) # n-hat = cos(theta) x-hat + sin(theta) y-hat
sigma = 1
dt = 0.05
#-----------------------------------------
xp=Variable(value=mesh.x-Rx)
yp=Variable(value=mesh.y-Ry)
x_hat = [1.0, 0.0]
y_hat = [0.0, 1.0]
#------------- dirac delta function --------------
# https://stackoverflow.com/questions/58041222/dirac-delta-source-term-in-fipy
def delta_func(x, y, epsilon):
return ((x < epsilon) & (x > -epsilon) & (y < epsilon) & (y > -epsilon)) * \
(1 + numerix.cos(numerix.pi * x / epsilon) * numerix.cos(numerix.pi * y / epsilon)) / 2 / epsilon
############## equations #############
# renormalized parameters by Gamma
# fields : velocity vector, density scalar
# Gamma * v = -B rho(grad(rho)) + f* n-cap* delta(r-R), B>0, f>0, Gamma>0
# dot(rho) + del.(v rho) = 0
# particle
# dot(R) = (f/gamma)*(n-cap) - (C/gamma) * rho(grad(rho)) C>0
# Gamma=gamma=1, B' = B/Gamma, C'=C/gamma, f'=f/Gamma
######################################
eq_m = (TransientTerm(var=m) + ExponentialConvectionTerm(coeff=x_hat * vx + y_hat * vy, var=m) == DiffusionTerm(coeff=Dm, var=m) )
eq_vx = (ImplicitSourceTerm(coeff=1., var=vx) == -(B/Gamma)*m.grad.dot(x_hat)*(m) + (f0/Gamma)*numerix.cos(theta)* delta_func(xp,yp,sigma) )
eq_vy = (ImplicitSourceTerm(coeff=1., var=vy) == -(B/Gamma)*m.grad.dot(y_hat)*(m) + (f0/Gamma)*numerix.sin(theta)* delta_func(xp,yp,sigma) )
eq = eq_m & eq_vx & eq_vy
viewer = Viewer(vars=(m))
elapsed = 0.0
ms = []
vxs = []
vys = []
xs = []
ys = []
while elapsed < Total_time:
# Old values are used for sweeping when solving nonlinear values
vx.updateOld()
vy.updateOld()
m.updateOld()
print(elapsed, Rx, Ry)
mgrid=np.reshape(m.value,(nx,ny))
# gradient cal, dydx[0][x,y], dydx[1][x,y] -> x derivative, y derivative at x,y
dydx=np.gradient(mgrid,dx,dy,edge_order=2)
# impose periodic boundary on gradient
dydx[0][nx-1,:]=(mgrid[0,:]-mgrid[nx-2,:])/(2.0*dx)
dydx[0][0,:]=(mgrid[1,:]-mgrid[nx-1,:])/(2.0*dx)
dydx[1][:,ny-1]=(mgrid[:,0]-mgrid[:,ny-2])/(2.0*dy)
dydx[1][:,0]=(mgrid[:,1]-mgrid[:,ny-1])/(2.0*dy)
# solve ode
idx = np.argmin(np.abs(xgrid - Rx))
idy = np.argmin(np.abs(ygrid - Ry))
x0=x0+ ((f0/gamma)*np.cos(theta) - C*mgrid[idx,idy]*dydx[0][idx,idy])*dt
y0=y0+ ((f0/gamma)*np.sin(theta) - C*mgrid[idx,idy]*dydx[1][idx,idy])*dt
if(x0>L):
x0=x0-L
if(x0<0):
x0=x0+L
if(y0>L):
y0=y0-L
if(y0<0):
y0=y0+L
Rx.setValue(x0) # element-wise assignment did not work
Ry.setValue(y0)
elapsed += dt
res = 1e5
old_res = res * 2
step = 0
while res > 1e-5 and step < 5 and old_res / res > 1.01:
old_res = res
res = eq.sweep(dt=dt)
step += 1
# The variable values are just numpy arrays so easy to use!
# save velocity & density
vxs.append(vx.value.copy())
vys.append(vy.value.copy())
ms.append(m.value.copy())
viewer.plot()
# save x and y positions
xs.append(mesh.x.value.copy())
ys.append(mesh.y.value.copy())
return ms, vxs, vys, xs, ys
if __name__ == '__main__':
path = 'result/'
Total_time= 100 #40
f0 = 2
ms, vxs, vys, xs, ys = run_simulation(f0,Total_time)
name = 'f0_{:.4f}'.format(f0)
y = np.array([ms, vxs, vys])
xx = np.reshape(xs,(50,50))
yy = np.reshape(ys,(50,50))
vx = np.reshape(vxs[380][:],(50,50))
vy = np.reshape(vys[380][:],(50,50))
print(np.shape(xx), np.shape(xs), np.shape(vx))
#np.save(path + name, y)
plt.imshow(np.reshape(ms[380][:],(50,50)), aspect='auto', interpolation='bicubic', cmap='jet', extent=[0, 50, 50, 0])
plt.colorbar(label='density m')
plt.xlabel(r'$x $')
plt.ylabel(r'$y $')
plt.gcf().savefig(path + 'rho_'+name+'.png', format='png', bbox_inches='tight')
plt.clf()
#---------------------------------------------
plt.imshow(np.reshape(vxs[380][:],(50,50)), aspect='auto', interpolation='bicubic', cmap='jet', extent=[0, 50, 50, 0])
plt.colorbar(label='velocity vx')
plt.xlabel(r'$x $')
plt.ylabel(r'$y $')
plt.gcf().savefig(path + 'vel_'+name+'.png', format='png', bbox_inches='tight')
plt.clf()
#---------------------------------------------
plt.quiver(xx,yy,vx,vy,scale=3)
plt.xlabel(r'$x $')
plt.ylabel(r'$y $')
plt.gcf().savefig(path + 'v_'+name+'.png', format='png', bbox_inches='tight')
plt.clf()
I must confess that I ran out of patience before getting the stack overflow error, but I was able to identify the problem.
It's a similar (although more subtle) issue to what you reported before. Because theta is declared as a Variable,
x0=x0+ ((f0/gamma)*np.cos(theta) - C*mgrid[idx,idy]*dydx[0][idx,idy])*dt
y0=y0+ ((f0/gamma)*np.sin(theta) - C*mgrid[idx,idy]*dydx[1][idx,idy])*dt
result in longer and longer Variable expressions (and longer and longer step times). I.e., x0 = (((x0_0 + dx0_1) + dx0_2) + dx0_3) + dx0_4 + ...
Changing these to
x0=x0+ (((f0/gamma)*np.cos(theta) - C*mgrid[idx,idy]*dydx[0][idx,idy])*dt).value
y0=y0+ (((f0/gamma)*np.sin(theta) - C*mgrid[idx,idy]*dydx[1][idx,idy])*dt).value
resolves this issue.
Addressing the warning following the question edit
The warning in the comments about "...has been cast to a constant CellVariable" is due to:
xp=Variable(value=mesh.x-Rx)
yp=Variable(value=mesh.y-Ry)
This is definitely not recommended. This takes the MeshVariable objects mesh.x and mesh.y and then throws away the mesh. When the result is later associated with a mesh, e.g., by multiplying by another MeshVariable or using as a SourceTerm, FiPy warns because it looks like it could fit on the mesh, but it's not on a mesh. Just use
xp=mesh.x-Rx
yp=mesh.y-Ry

Python mayavi : How to draw spheres at random positions in 3D space

This is a code for generating random sized spheres with mayavi,
I want to make the spheres to be connected with each other by the surface or with a bond line:
Spheres must be at random positions in 3D space
Spheres must be with the same radius
from mayavi import mlab
import numpy as np
[phi,theta] = np.mgrid[0:2*np.pi:12j,0:np.pi:12j]
x = np.cos(phi)*np.sin(theta)
y = np.sin(phi)*np.sin(theta)
z = np.cos(theta)
def plot_sphere(p):
r,a,b,c = p
r=1
return mlab.mesh(r*x+a, r*y+b, r*z )
for k in range(8):
c = np.random.rand(4)
c[0] /= 10.
plot_sphere(c)
mlab.show()
From sphere equation:
So when passing arguments to mlab.mesh we would like to set [x_0, y_0, z_0] for each sphere such as they are at different positions from the axis.
The problem was that the numbers generated by np.random.rand(4) are random, but not distinct.
Let's modify so that the arguments [x_0, y_0, z_0] are random and distinct:
We use sample to get distinct index numbers in a cube
We convert using index_to_3d the index to an (x, y, z) coordinates
The radius, r, can be adjusted to have more or less spacing between the spheres.
Spheres at 3D space
Code:
import random
from itertools import product
from mayavi import mlab
import numpy as np
[phi, theta] = np.mgrid[0:2 * np.pi:12j, 0:np.pi:12j]
x = np.cos(phi) * np.sin(theta)
y = np.sin(phi) * np.sin(theta)
z = np.cos(theta)
def plot_sphere(x_0, y_0, z_0):
r = 0.5
return mlab.mesh(r * x + x_0, r * y + y_0, r * z + z_0)
SPHERES_NUMBER = 200
CUBE_SIZE = 10
def index_to_3d(i, SIZE):
z = i // (SIZE * SIZE)
i -= (z * SIZE * SIZE)
y = i // SIZE
x = i % SIZE
return x, y, z
random_tuples = [index_to_3d(i, CUBE_SIZE) for i in random.sample(range(CUBE_SIZE ** 3), SPHERES_NUMBER)]
for k in range(SPHERES_NUMBER):
x_0, y_0, z_0 = random_tuples[k]
plot_sphere(x_0, y_0, z_0)
mlab.show()
Output:
Spheres cluster
Let's utilize gauss to create coordinates for the cluster points.
Code:
import random
from itertools import product
from mayavi import mlab
import numpy as np
[phi, theta] = np.mgrid[0:2 * np.pi:12j, 0:np.pi:12j]
x = np.cos(phi) * np.sin(theta)
y = np.sin(phi) * np.sin(theta)
z = np.cos(theta)
def plot_sphere(x_0, y_0, z_0):
r = 0.5
return mlab.mesh(r * x + x_0, r * y + y_0, r * z + z_0)
SPHERES_NUMBER = 200
def create_cluster(CLUSTER_SIZE):
means_and_deviations = [(1, 1.5), (1, 1.5), (1, 1.5)]
def generate_point(means_and_deviations):
return tuple(random.gauss(mean, deviation) for mean, deviation in means_and_deviations)
cluster_points = set()
while len(cluster_points) < CLUSTER_SIZE:
cluster_points.add(generate_point(means_and_deviations))
return list(cluster_points)
cluster_points = create_cluster(SPHERES_NUMBER)
for k in range(SPHERES_NUMBER):
x_0, y_0, z_0 = cluster_points[k]
plot_sphere(x_0, y_0, z_0)
mlab.show()
Output:
What about just using the mayavi points3d function? By default the mode parameter is set to sphere and you can set the diameter by using the scale_factor parameter. You can also increase the resolution of the sphere by varying the resolution parameter.
Here is the code:
def draw_sphere(
center_coordinates,
radius,
figure_title,
color,
background,
foreground
):
sphere = mlab.figure(figure_title)
sphere.scene.background = background
sphere.scene.foreground = foreground
mlab.points3d(
center_coordinates[0],
center_coordinates[1],
center_coordinates[2],
color=color,
resolution=256,
scale_factor=2*radius,
figure=sphere
)
Regarding the connected with each other by the surface issue, your explanation is poor. Maybe you mean just tangent spheres, but I would need more details.

Nullcline Plot for Nonlinear System of ODEs

I am attempting to plot the nullcline (steady state) curves of the Oregonator model to assert the existence of a limit cycle by applying the Poincare-Bendixson Theorem. I am close, but for some reason the plot that is produced shows two straight lines. I think it has something to do with the plotting stage. Any ideas?
Also any hints for how to construct a quadrilateral to apply the theorem with would be most appreciated.
Code:
import numpy as np
import matplotlib.pyplot as plt
# Dimensionless parameters
eps = 0.04
q = 0.0008
f = 1
# Oregonator model as numpy array
def Sys(Y, t = 0):
return np.array((Y[0] * (1 - Y[0] - ((Y[0] - q) * f * Y[1]) / (Y[0] + q)) / eps, Y[0] - Y[1] ))
# Oregonator model steady states
def g(x,z):
return (x * (1 - x) + ((q - x) * f * z) / (q + x)) / eps
def h(x,z):
return x - z
# Initial lists containing values
x = []
z = []
def sys(iv1, iv2, dt, time):
# initial values:
x.append(iv1)
z.append(iv2)
# Compute and fill lists
for i in range(time):
x.append(x[i] + (g(x[i],z[i])) * dt)
z.append(z[i] + (h(x[i],z[i])) * dt)
return x, z
sys(1, 0.5, 0.01, 30)
# Locate and find equilibrium points
eqp = []
def find_fixed_points(r):
for x in range(r):
for z in range(r):
if ((g(x, z) == 0) and (h(x, z) == 0)):
eqp.append((x,z))
return eqp
# Plot nullclines
plt.plot([0,2],[2,0], 'r-', lw=2, label='x-nullcline')
plt.plot([1,1],[0,2], 'b-', lw=2, label='z-nullcline')
# Plot equilibrium points
for point in eqp:
plt.plot(point[0],point[1],"red", marker = "o", markersize = 10.0)
plt.legend(loc='best')
x = np.linspace(0, 2, 20)
z = np.linspace(0, 2, 20)
X1 , Z1 = np.meshgrid(x, z) # Create a grid
DX1, DZ1 = Sys([X1, Z1]) # Compute reaction rate on the grid
M = (np.hypot(DX1, DZ1)) # Norm reaction rate
M[ M == 0] = 1. # Avoid zero division errors
DX1 /= M # Normalise each arrows
DZ1 /= M
plt.quiver(X1, Z1, DX1, DZ1, M, pivot='mid')
plt.xlabel("x(\u03C4)")
plt.ylabel("z(\u03C4)")
plt.legend()
plt.grid()
plt.show()

Assign value to points in a 3D array that are inside an ellipsoid

I need to assign value to points in a 3D array that are inside an ellipsoid.
The ellipsoid equation should be something like this:
r=b.sin(u)
x=r.cos(v)
y=r.sin(v)
z=a.cos(u).
But I think that this is only visual. I already tried something with a mask over a cubic array:
a, b = (size-1)/2, (size-1)/2
n = size
r = (size-1)/2
y,x = np.ogrid[-a:n-a, -b:n-b]
mask = x*x + y*y <= r*r # circle mask
array = np.zeros((n, n, n))
array[mask] = 10
But this creates a circle only in x and y which gives me: /.
It's not a sphere. (and I need an ellipsoid).
Any ideas?
mask = x*x + y*y <= r*r gives you a circle, because that's the equation for a circle.
By the same rationale,
mask = x*x + y*y + z*z <= r*r should give you a sphere, and
mask = x*x/(a*a) + y*y/(b*b) + z*z/(c*c) <= r*r should give you an ellipsoid with principal axes of half-length a, b, and c.
Of course, you'll have to create a z array in a way akin to that in which you create your x and y arrays.
For me the easiest way would be to use the coordinate equations for a sphere and work from there.
x = a * cos(u) * cos(v)
y = b * cos(u) * sin(v)
z = c * sin(u)
You can construct these coordinates with np.meshgrid and then plot.
a, b, c = 4, 8, 6
space = np.linspace(0, 2 * np.pi, 50)
u, v = np.meshgrid(space)
x = a * np.cos(u) * np.cos(v)
y = b * np.cos(u) * np.sin(v)
z = c * np.sin(u)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z)
fig.show()
Update
To get the interior coordinates of the sphere you would use the mask akin to your example, but with the ellipsoid implicit equation. x^2/a^2 + y^2/b^2 + z^2/c^2 = 1
a, b, c = 4, 8, 6
xs, ys, zs = np.mgrid[-a + 1:a + 1:15j, -b + 1:b + 1:15j, -c + 1:c + 1:15j]
mask = xs**2/(a**2) + ys**2/(b**2) + zs**2/(c**2) <= 1
xs[~mask] = 0
ys[~mask] = 0
zs[~mask] = 0
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xs, ys, zs)
fig.show()
Your first equations hints axis aligned ellipsoid centered at (0,0,0) for such is the easiest way I know of to use scaling to/from sphere. so let:
[x ,y ,z ] - ellipsoid (rx,ry,rz)
[x',y',z'] - sphere (r)
So the transforms are:
// sphere -> ellipsoid
x = x' * rx/r
y = y' * ry/r
z = z' * rz/r
// sphere <- ellipsoid
x' = x * r/rx
y' = y * r/ry
z' = z * r/rz
The (rx,ry,rz) are the radiuses of ellipsoid (in your case rx=ry) and r is any nonzero radius of the sphere (for example r=1.0)
So the test for inside ellipsoid boils down to this:
// scale constants
sx = 1/rx
sy = 1/ry
sz = 1/rz
// condition for inside ellipsoid
x*x*sx*sx + y*y*sy*sy + z*z*sz*sz <= 1.0

Categories

Resources