numpy append array to array - python
I'm trying to append one numpy array to another numpy array, like this:
import numpy as np
meanings = 2
signals = 4
def new_agent(agent_type, context_size):
if agent_type == 'random':
comm_system = np.random.random_integers(0, 1, (meanings, signals))
if agent_type == 'blank':
comm_system = np.zeros((meanings, signals), int)
score_list = np.array([0., 0., 0., 0.])
np.append(comm_system, score_list)
np.append(comm_system, context_size)
return comm_system
if I now call:
random_agent = new_agent('random', 5)
I expect to get something like:
[[0 1 0 0]
[1 1 0 1]
[0. 0. 0. 0.]
5]
But instead I get only:
[[0 1 0 0]
[1 1 0 1]]
So the score_list and the context_size don't get appended. And the same holds for when I call new_agent() with 'blank'.
Thanks!
You can use hstack and vstack to concatenate arrays:
>>> from numpy import array, hstack, vstack
>>> a = array([1, 2, 3])
>>> b = array([4, 5, 6])
>>> hstack([a, b])
array([1, 2, 3, 4, 5, 6])
>>> vstack([a, b])
array([[1, 2, 3],
[4, 5, 6]])
numpy.append() returns a new array containing the data from its inputs together. It does not modify the inputs themselves, and there would be no way for it to do so. This is because arrays in NumPy are generally not resizable.
Try changing your code to capture the value returned from append(), which will be the array you want.
#John is correct about how to use the return value from numpy.append because it doesn't modify the original array. However, there's a problem with your expected output:
[[0 1 0 0]
[1 1 0 1]
[0. 0. 0. 0.]
5]
is not a possible numpy array because of two reasons: one is that some elements are integers and some are floats, but a numpy array's dtype must be uniform; the other is that each row is not the same length, but numpy arrays must have uniform (rectangular) shape.
I think what you might rather do is to just return all three things:
comm_system as an array of ints,
score_list as an array of floats,
and context_size as an int (not an array).
You can do that with a tuple:
def new_agent(agent_type, context_size):
if agent_type == 'random':
comm_system = np.random.random_integers(0, 1, (meanings, signals))
if agent_type == 'blank':
comm_system = np.zeros((meanings, signals), int)
score_list = np.zeros(signals) #This is different too! No need to type out the 0, 0, ...
# now just return all three:
return comm_system, score_list, context_size
Then you can "unpack" the tuple like so:
random_agent, scores, size = new_agent('random', 5)
Or just keep them all in one tuple:
random_agent_info = new_agent('random', 5)
And you'll have
In [331]: random_agent, scores, size = new_agent('random', 5)
In [332]: random_agent
Out[332]:
array([[0, 1, 1, 0],
[0, 1, 0, 1]])
In [333]: scores
Out[333]: array([ 0., 0., 0., 0.])
In [334]: size
Out[334]: 5
In [336]: random_agent_info
Out[336]:
(array([[1, 1, 0, 1],
[0, 1, 0, 0]]),
array([ 0., 0., 0., 0.]),
5)
In [337]: random_agent_info[0]
Out[337]:
array([[1, 1, 0, 1],
[0, 1, 0, 0]])
In [338]: random_agent_info[1]
Out[338]: array([ 0., 0., 0., 0.])
In [339]: random_agent_info[2]
Out[339]: 5
If you do want to have the comm_system and score_list to be one (3,2) array, you can do that with:
def new_agent(agent_type, context_size):
...
return np.vstack([comm_system, score_list]), context_size
Then you'll get one array and one int:
In [341]: random_agent, size = new_agent('random', 5)
In [342]: random_agent
Out[342]:
array([[ 1., 0., 1., 1.],
[ 1., 0., 1., 0.],
[ 0., 0., 0., 0.]])
In [343]: size
Out[343]: 5
Related
Expand a 2D array into a 3D array with specific length
I have a 100x100 numpy array that I want to add for it a third dimension which has length 3 which have [1,0,1]. I'm trying to do this without a for loop if possible. Tried all sort of things like np.newaxis but it only expands the dimension with length 1 and then it can't be populated with a array of length 3. Thank yiu
Depending on what you want you have a few options: import numpy as np arr = np.random.random((100, 100)) some_numbers = [1, 0, 1] # A new_arr = np.empty(arr.shape + (3,)) new_arr[..., :] = some_numbers # array([[[1., 0., 1.], # [1., 0., 1.], # [1., 0., 1.], # ..., # A2 new_arr = np.empty(arr.shape + (len(some_numbers) + 1,)) new_arr[..., 0] = arr[..., np.newaxis] new_arr[..., 1:] = some_numbers # array([[[0.2853, 1., 0., 1.], # [0.7324, 1., 0., 1.], # [0.0706, 1., 0., 1.], # ..., # B new_arr = np.empty(arr.shape + (3,)) new_arr[..., :] = arr[..., np.newaxis] # C new_arr = np.repeat(arr[..., np.newaxis], 3, axis=-1) # array([[[0.2853, 0.2853, 0.2853], # [0.7324, 0.7324, 0.7324], # [0.0706, 0.0706, 0.0706], # ..., In case A you are overwriting all elements of arr with [1, 0, 1]. In case A2 you keep the original array at new_arr[:, :, 0] and fill the remaining planes new_arr[:, :, 1:] with some_numbers respectively. In case B and case C you repeat the 100x100 array 3 times along the new third dimension.
As I understood, you want to generate a 3-D array: the first "layer" filled with ones, the second "layer" filled with zeroes, the third "layer" filled again with ones, all "layers" with dimension 100 * 100. For readablity, I changed your assumptions: the third "layer" filled with 2, all "layers" with dimension 5 * 5. Step 1: Create each 2-D array (layer in the target array): arr1 = np.ones((5,5), dtype=np.int) arr2 = np.zeros((5,5), dtype=np.int) arr3 = np.full((5,5), 2) Step 2: Create the target array: res = np.stack((arr1, arr2, arr3), axis=2) When you print res.shape, you will get: (5, 5, 3) (5 rows, 5 columns, 3 layers) To see each "layer" separately, run res[:, :, n] where n is either 0, 1 or 2. E.g. for n == 2 (the last layer) I got: array([[2, 2, 2, 2, 2], [2, 2, 2, 2, 2], [2, 2, 2, 2, 2], [2, 2, 2, 2, 2], [2, 2, 2, 2, 2]])
Duplicate array dimension with numpy (without np.repeat)
I'd like to duplicate a numpy array dimension, but in a way that the sum of the original and the duplicated dimension array are still the same. For instance consider a n x m shape array (a) which I'd like to convert to a n x n x m (b) array, so that a[i,j] == b[i,i,j]. Unfortunately np.repeat and np.resize are not suitable for this job. Is there another numpy function I could use or is this possible with some creative indexing? >>> import numpy as np >>> a = np.asarray([1, 2, 3]) >>> a array([1, 2, 3]) >>> a.shape (3,) # This is not what I want... >>> np.resize(a, (3, 3)) array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) In the above example, I would like to get this result: array([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
From 1d to 2d array, you can use the np.diagflat method, which Create a two-dimensional array with the flattened input as a diagonal: import numpy as np a = np.asarray([1, 2, 3]) np.diagflat(a) #array([[1, 0, 0], # [0, 2, 0], # [0, 0, 3]]) More generally, you can create a zeros array and assign values in place with advanced indexing: a = np.asarray([[1, 2, 3], [4, 5, 6]]) result = np.zeros((a.shape[0],) + a.shape) idx = np.arange(a.shape[0]) result[idx, idx, :] = a result #array([[[ 1., 2., 3.], # [ 0., 0., 0.]], # [[ 0., 0., 0.], # [ 4., 5., 6.]]])
Trying to construct identity matrix? [duplicate]
This question already has answers here: List of lists changes reflected across sublists unexpectedly (17 answers) Closed 6 years ago. Write a function identity(n) that returns the n identity matrix. For example: identity(3) outputs [[1,0,0][0,1,0][0,0,1]] I have tried as follow: def identity(n): matrix=[[0]*n]*n i=0 while i<n: matrix[i][i]=1 i+=1 return matrix Also I tried with range but it did'n work like this def identity(n): matrix=[[0]*n]*n k=matrix[:] i=0 for i in range(1,n): matrix[i][i]=1 i+=1 return k print(identity(5)) But it output for n = 5: [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]
If numpy is not allowed ... Know this How to define two-dimensional array in python and do this def identity(n): m=[[0 for x in range(n)] for y in range(n)] for i in range(0,n): m[i][i] = 1 return m
This is because the way you are initializing matrix. Each sublist of [[0]*n]*n is the same list [0]*n, or in other words, each row of your matrix is a reference to the same underlying row. You can verify this using id: > x = [[0]*3]*3 > x [[0, 0, 0], [0, 0, 0], [0, 0, 0]] > id(x[0]) 140017690403112 > id(x[1]) 140017690403112 > id(x[2]) 140017690403112 TTherefore, when you assign a value to the ith row of your matrix, you're assigning it to all rows. So avoid nested list creation using [0]*n. Instead, use matrix = [[0]*n for _ in range(n)] Even simpler, avoid all of this with: import numpy as np np.eye(n)
Numpy has this built in, you can just use np.eye(n): In [1]: import numpy as np In [2]: x = np.eye(4) In [3]: x Out[3]: array([[ 1., 0., 0., 0.], [ 0., 1., 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 1.]])
Initializing a N x M matrix in python
I'm trying to learn python. In it, I'm trying to dynamically generate a N x M matrix in python, where each cell contains the index value of that cell in python. The matrix would look like: [0,1,2,3,4 0,1,2,3,4 ...] I know that in java it would go something like: a={}{} for (i=0;i<N;i++) for (j=0;j<M:j++) a[i][j] = i Where N is the width of the matrix and M is the height of the matrix Except in python it seems like I can't iterate on a matrix on the basis of the cell placement, rather I need to iterate on the basis of the elements in the cell. From my experience something like a = [][] a = np.zeroes((N, M)) [ 0, 0, 0 0, 0, 0] in the case where N = 3, and M = 2 and then the same style of a loop: j = 0 for i in len(a): a[i][j] = i if i == len(a): j = j+1 doesn't work because python can't iterate on the basis of the places of the elements. Perhaps I am wrong. Would this work? Is there a better way to make such a matrix and fill it with the indexed values?
Since you're already using NumPy, you could use numpy.arange and numpy.tile: In [26]: N = 5 In [27]: M = 4 In [28]: np.tile(np.arange(N), (M, 1)) Out[28]: array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]])
Another option is to create a row using np.arange(5) and assign it to every row of zeros matrix. In [22]: m = np.zeros((4,5)) In [23]: m[:,] = np.arange(5) In [24]: m Out[24]: array([[ 0., 1., 2., 3., 4.], [ 0., 1., 2., 3., 4.], [ 0., 1., 2., 3., 4.], [ 0., 1., 2., 3., 4.]])
Some example similar to your Java example, but with python syntax sugar. >>> N=M=5 >>> for z in [[n for n in xrange(N)] for m in xrange(M)]: ... print z ... [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4]
Here is the code in which matrix contain index value of that cell: n,m=map(int,raw_input().split()) a=n*[m*[0]] j=0 for i in range (0,n): for j in range(0,m): a[i][j]=j for i in range (0,n): for j in range(0,m): print a[i][j], print
How do I add an extra column to a NumPy array?
Given the following 2D array: a = np.array([ [1, 2, 3], [2, 3, 4], ]) I want to add a column of zeros along the second axis to get: b = np.array([ [1, 2, 3, 0], [2, 3, 4, 0], ])
np.r_[ ... ] and np.c_[ ... ] are useful alternatives to vstack and hstack, with square brackets [] instead of round (). A couple of examples: : import numpy as np : N = 3 : A = np.eye(N) : np.c_[ A, np.ones(N) ] # add a column array([[ 1., 0., 0., 1.], [ 0., 1., 0., 1.], [ 0., 0., 1., 1.]]) : np.c_[ np.ones(N), A, np.ones(N) ] # or two array([[ 1., 1., 0., 0., 1.], [ 1., 0., 1., 0., 1.], [ 1., 0., 0., 1., 1.]]) : np.r_[ A, [A[1]] ] # add a row array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.], [ 0., 1., 0.]]) : # not np.r_[ A, A[1] ] : np.r_[ A[0], 1, 2, 3, A[1] ] # mix vecs and scalars array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.]) : np.r_[ A[0], [1, 2, 3], A[1] ] # lists array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.]) : np.r_[ A[0], (1, 2, 3), A[1] ] # tuples array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.]) : np.r_[ A[0], 1:4, A[1] ] # same, 1:4 == arange(1,4) == 1,2,3 array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.]) (The reason for square brackets [] instead of round () is that Python expands e.g. 1:4 in square -- the wonders of overloading.)
I think a more straightforward solution and faster to boot is to do the following: import numpy as np N = 10 a = np.random.rand(N,N) b = np.zeros((N,N+1)) b[:,:-1] = a And timings: In [23]: N = 10 In [24]: a = np.random.rand(N,N) In [25]: %timeit b = np.hstack((a,np.zeros((a.shape[0],1)))) 10000 loops, best of 3: 19.6 us per loop In [27]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a 100000 loops, best of 3: 5.62 us per loop
Use numpy.append: >>> a = np.array([[1,2,3],[2,3,4]]) >>> a array([[1, 2, 3], [2, 3, 4]]) >>> z = np.zeros((2,1), dtype=int64) >>> z array([[0], [0]]) >>> np.append(a, z, axis=1) array([[1, 2, 3, 0], [2, 3, 4, 0]])
One way, using hstack, is: b = np.hstack((a, np.zeros((a.shape[0], 1), dtype=a.dtype)))
I was also interested in this question and compared the speed of numpy.c_[a, a] numpy.stack([a, a]).T numpy.vstack([a, a]).T numpy.ascontiguousarray(numpy.stack([a, a]).T) numpy.ascontiguousarray(numpy.vstack([a, a]).T) numpy.column_stack([a, a]) numpy.concatenate([a[:,None], a[:,None]], axis=1) numpy.concatenate([a[None], a[None]], axis=0).T which all do the same thing for any input vector a. Timings for growing a: Note that all non-contiguous variants (in particular stack/vstack) are eventually faster than all contiguous variants. column_stack (for its clarity and speed) appears to be a good option if you require contiguity. Code to reproduce the plot: import numpy as np import perfplot b = perfplot.bench( setup=np.random.rand, kernels=[ lambda a: np.c_[a, a], lambda a: np.ascontiguousarray(np.stack([a, a]).T), lambda a: np.ascontiguousarray(np.vstack([a, a]).T), lambda a: np.column_stack([a, a]), lambda a: np.concatenate([a[:, None], a[:, None]], axis=1), lambda a: np.ascontiguousarray(np.concatenate([a[None], a[None]], axis=0).T), lambda a: np.stack([a, a]).T, lambda a: np.vstack([a, a]).T, lambda a: np.concatenate([a[None], a[None]], axis=0).T, ], labels=[ "c_", "ascont(stack)", "ascont(vstack)", "column_stack", "concat", "ascont(concat)", "stack (non-cont)", "vstack (non-cont)", "concat (non-cont)", ], n_range=[2 ** k for k in range(23)], xlabel="len(a)", ) b.save("out.png")
I find the following most elegant: b = np.insert(a, 3, values=0, axis=1) # Insert values before column 3 An advantage of insert is that it also allows you to insert columns (or rows) at other places inside the array. Also instead of inserting a single value you can easily insert a whole vector, for instance duplicate the last column: b = np.insert(a, insert_index, values=a[:,2], axis=1) Which leads to: array([[1, 2, 3, 3], [2, 3, 4, 4]]) For the timing, insert might be slower than JoshAdel's solution: In [1]: N = 10 In [2]: a = np.random.rand(N,N) In [3]: %timeit b = np.hstack((a, np.zeros((a.shape[0], 1)))) 100000 loops, best of 3: 7.5 µs per loop In [4]: %timeit b = np.zeros((a.shape[0], a.shape[1]+1)); b[:,:-1] = a 100000 loops, best of 3: 2.17 µs per loop In [5]: %timeit b = np.insert(a, 3, values=0, axis=1) 100000 loops, best of 3: 10.2 µs per loop
I think: np.column_stack((a, zeros(shape(a)[0]))) is more elegant.
Assuming M is a (100,3) ndarray and y is a (100,) ndarray append can be used as follows: M=numpy.append(M,y[:,None],1) The trick is to use y[:, None] This converts y to a (100, 1) 2D array. M.shape now gives (100, 4)
np.concatenate also works >>> a = np.array([[1,2,3],[2,3,4]]) >>> a array([[1, 2, 3], [2, 3, 4]]) >>> z = np.zeros((2,1)) >>> z array([[ 0.], [ 0.]]) >>> np.concatenate((a, z), axis=1) array([[ 1., 2., 3., 0.], [ 2., 3., 4., 0.]])
Add an extra column to a numpy array: Numpy's np.append method takes three parameters, the first two are 2D numpy arrays and the 3rd is an axis parameter instructing along which axis to append: import numpy as np x = np.array([[1,2,3], [4,5,6]]) print("Original x:") print(x) y = np.array([[1], [1]]) print("Original y:") print(y) print("x appended to y on axis of 1:") print(np.append(x, y, axis=1)) Prints: Original x: [[1 2 3] [4 5 6]] Original y: [[1] [1]] y appended to x on axis of 1: [[1 2 3 1] [4 5 6 1]]
np.insert also serves the purpose. matA = np.array([[1,2,3], [2,3,4]]) idx = 3 new_col = np.array([0, 0]) np.insert(matA, idx, new_col, axis=1) array([[1, 2, 3, 0], [2, 3, 4, 0]]) It inserts values, here new_col, before a given index, here idx along one axis. In other words, the newly inserted values will occupy the idx column and move what were originally there at and after idx backward.
I like JoshAdel's answer because of the focus on performance. A minor performance improvement is to avoid the overhead of initializing with zeros, only to be overwritten. This has a measurable difference when N is large, empty is used instead of zeros, and the column of zeros is written as a separate step: In [1]: import numpy as np In [2]: N = 10000 In [3]: a = np.ones((N,N)) In [4]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a 1 loops, best of 3: 492 ms per loop In [5]: %timeit b = np.empty((a.shape[0],a.shape[1]+1)); b[:,:-1] = a; b[:,-1] = np.zeros((a.shape[0],)) 1 loops, best of 3: 407 ms per loop
A bit late to the party, but nobody posted this answer yet, so for the sake of completeness: you can do this with list comprehensions, on a plain Python array: source = a.tolist() result = [row + [0] for row in source] b = np.array(result)
For me, the next way looks pretty intuitive and simple. zeros = np.zeros((2,1)) #2 is a number of rows in your array. b = np.hstack((a, zeros))
In my case, I had to add a column of ones to a NumPy array X = array([ 6.1101, 5.5277, ... ]) X.shape => (97,) X = np.concatenate((np.ones((m,1), dtype=np.int), X.reshape(m,1)), axis=1) After X.shape => (97, 2) array([[ 1. , 6.1101], [ 1. , 5.5277], ...
There is a function specifically for this. It is called numpy.pad a = np.array([[1,2,3], [2,3,4]]) b = np.pad(a, ((0, 0), (0, 1)), mode='constant', constant_values=0) print b >>> array([[1, 2, 3, 0], [2, 3, 4, 0]]) Here is what it says in the docstring: Pads an array. Parameters ---------- array : array_like of rank N Input array pad_width : {sequence, array_like, int} Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes. mode : str or function One of the following string values or a user supplied function. 'constant' Pads with a constant value. 'edge' Pads with the edge values of array. 'linear_ramp' Pads with the linear ramp between end_value and the array edge value. 'maximum' Pads with the maximum value of all or part of the vector along each axis. 'mean' Pads with the mean value of all or part of the vector along each axis. 'median' Pads with the median value of all or part of the vector along each axis. 'minimum' Pads with the minimum value of all or part of the vector along each axis. 'reflect' Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. 'symmetric' Pads with the reflection of the vector mirrored along the edge of the array. 'wrap' Pads with the wrap of the vector along the axis. The first values are used to pad the end and the end values are used to pad the beginning. <function> Padding function, see Notes. stat_length : sequence or int, optional Used in 'maximum', 'mean', 'median', and 'minimum'. Number of values at edge of each axis used to calculate the statistic value. ((before_1, after_1), ... (before_N, after_N)) unique statistic lengths for each axis. ((before, after),) yields same before and after statistic lengths for each axis. (stat_length,) or int is a shortcut for before = after = statistic length for all axes. Default is ``None``, to use the entire axis. constant_values : sequence or int, optional Used in 'constant'. The values to set the padded values for each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis. ((before, after),) yields same before and after constants for each axis. (constant,) or int is a shortcut for before = after = constant for all axes. Default is 0. end_values : sequence or int, optional Used in 'linear_ramp'. The values used for the ending value of the linear_ramp and that will form the edge of the padded array. ((before_1, after_1), ... (before_N, after_N)) unique end values for each axis. ((before, after),) yields same before and after end values for each axis. (constant,) or int is a shortcut for before = after = end value for all axes. Default is 0. reflect_type : {'even', 'odd'}, optional Used in 'reflect', and 'symmetric'. The 'even' style is the default with an unaltered reflection around the edge value. For the 'odd' style, the extented part of the array is created by subtracting the reflected values from two times the edge value. Returns ------- pad : ndarray Padded array of rank equal to `array` with shape increased according to `pad_width`. Notes ----- .. versionadded:: 1.7.0 For an array with rank greater than 1, some of the padding of later axes is calculated from padding of previous axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by using padded values from the first axis. The padding function, if used, should return a rank 1 array equal in length to the vector argument with padded values replaced. It has the following signature:: padding_func(vector, iaxis_pad_width, iaxis, kwargs) where vector : ndarray A rank 1 array already padded with zeros. Padded values are vector[:pad_tuple[0]] and vector[-pad_tuple[1]:]. iaxis_pad_width : tuple A 2-tuple of ints, iaxis_pad_width[0] represents the number of values padded at the beginning of vector where iaxis_pad_width[1] represents the number of values padded at the end of vector. iaxis : int The axis currently being calculated. kwargs : dict Any keyword arguments the function requires. Examples -------- >>> a = [1, 2, 3, 4, 5] >>> np.pad(a, (2,3), 'constant', constant_values=(4, 6)) array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6]) >>> np.pad(a, (2, 3), 'edge') array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5]) >>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4)) array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4]) >>> np.pad(a, (2,), 'maximum') array([5, 5, 1, 2, 3, 4, 5, 5, 5]) >>> np.pad(a, (2,), 'mean') array([3, 3, 1, 2, 3, 4, 5, 3, 3]) >>> np.pad(a, (2,), 'median') array([3, 3, 1, 2, 3, 4, 5, 3, 3]) >>> a = [[1, 2], [3, 4]] >>> np.pad(a, ((3, 2), (2, 3)), 'minimum') array([[1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [3, 3, 3, 4, 3, 3, 3], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1]]) >>> a = [1, 2, 3, 4, 5] >>> np.pad(a, (2, 3), 'reflect') array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) >>> np.pad(a, (2, 3), 'reflect', reflect_type='odd') array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) >>> np.pad(a, (2, 3), 'symmetric') array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) >>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd') array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7]) >>> np.pad(a, (2, 3), 'wrap') array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3]) >>> def pad_with(vector, pad_width, iaxis, kwargs): ... pad_value = kwargs.get('padder', 10) ... vector[:pad_width[0]] = pad_value ... vector[-pad_width[1]:] = pad_value ... return vector >>> a = np.arange(6) >>> a = a.reshape((2, 3)) >>> np.pad(a, 2, pad_with) array([[10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 0, 1, 2, 10, 10], [10, 10, 3, 4, 5, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10]]) >>> np.pad(a, 2, pad_with, padder=100) array([[100, 100, 100, 100, 100, 100, 100], [100, 100, 100, 100, 100, 100, 100], [100, 100, 0, 1, 2, 100, 100], [100, 100, 3, 4, 5, 100, 100], [100, 100, 100, 100, 100, 100, 100], [100, 100, 100, 100, 100, 100, 100]])
I liked this: new_column = np.zeros((len(a), 1)) b = np.block([a, new_column])