Duplicate array dimension with numpy (without np.repeat) - python

I'd like to duplicate a numpy array dimension, but in a way that the sum of the original and the duplicated dimension array are still the same. For instance consider a n x m shape array (a) which I'd like to convert to a n x n x m (b) array, so that a[i,j] == b[i,i,j]. Unfortunately np.repeat and np.resize are not suitable for this job. Is there another numpy function I could use or is this possible with some creative indexing?
>>> import numpy as np
>>> a = np.asarray([1, 2, 3])
>>> a
array([1, 2, 3])
>>> a.shape
(3,)
# This is not what I want...
>>> np.resize(a, (3, 3))
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
In the above example, I would like to get this result:
array([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])

From 1d to 2d array, you can use the np.diagflat method, which Create a two-dimensional array with the flattened input as a diagonal:
import numpy as np
a = np.asarray([1, 2, 3])
np.diagflat(a)
#array([[1, 0, 0],
# [0, 2, 0],
# [0, 0, 3]])
More generally, you can create a zeros array and assign values in place with advanced indexing:
a = np.asarray([[1, 2, 3], [4, 5, 6]])
result = np.zeros((a.shape[0],) + a.shape)
idx = np.arange(a.shape[0])
result[idx, idx, :] = a
result
#array([[[ 1., 2., 3.],
# [ 0., 0., 0.]],
# [[ 0., 0., 0.],
# [ 4., 5., 6.]]])

Related

Pytorch Geometric sparse adjacency matrix to edge index tensor

My data object has the data.adj_t parameter, giving me the sparse adjacency matrix. How can I get the edge_index tensor of size [2, num_edges] from this?
As you can see in the docs:
Since this feature is still experimental, some operations, e.g., graph pooling methods, may still require you to input the edge_index format. You can convert adj_t back to (edge_index, edge_attr) via:
row, col, edge_attr = adj_t.t().coo()
edge_index = torch.stack([row, col], dim=0)
You can use torch_geometric.utils.convert.from_scipy_sparse_matrix.
>>> from torch_geometric.utils.convert import from_scipy_sparse_matrix
>>> edge_index = torch.tensor([
... [0, 1, 1, 2, 2, 3],
... [1, 0, 2, 1, 3, 2],
>>> ])
>>> adj = to_scipy_sparse_matrix(edge_index)
>>> # `edge_index` and `edge_weight` are both returned
>>> from_scipy_sparse_matrix(adj)
(tensor([[0, 1, 1, 2, 2, 3],
[1, 0, 2, 1, 3, 2]]),
tensor([1., 1., 1., 1., 1., 1.]))

Numpy replacing elements based on logic and value in an identically shaped array [duplicate]

This question already has answers here:
How do I select elements of an array given condition?
(6 answers)
Closed 3 years ago.
I have 2 numpy arrays. One is filled with boolean values and the other numerical values.
How would I perform logic on the numerical array based on also the current value in the boolean array.
e.g. if true and > 5 then make the value false
matrix1
matrix2
newMatrix = matrix1 > 5 where matrix2 value is false
Please note that these arrays have the same shape e.g.
[[0, 1, 1],
[1, 0, 0]]
and
[[3, 1, 0]
[6, 2, 6]]
And the result I would like would be a new boolean matrix that is true if its value is true in the boolean array and the equivalent value in the numerical array is more than 5 e.g.
[[0, 0, 0]
[1, 0, 0]]
newMatrix = np.logical_and(matrix2 == 0, matrix1 > 5 )
This will iterate over all elements, and make an 'and' between pairs of booleans from matrix == 0 and matrix1 > 5. Note that matrix1 > 5 type of expression generates a matrix of boolean values.
If you want 0,1 instead of False,True, you can add +0 to the result:
newMatrix = np.logical_and(matrix2 == 0, matrix1 > 5 ) + 0
The clearest way:
import numpy as np
matrix1 = np.array([[3, 1, 0],
[6, 2, 6]])
matrix2 = np.array([[0, 1, 1],
[1, 0, 0]])
r,c = matrix1.shape
res = np.zeros((r,c))
for i in range(r):
for j in range(c):
if matrix1[i,j]>5 and matrix2[i,j]==1:
res[i,j]=1
result
array([[0., 0., 0.],
[1., 0., 0.]])
A fancier way, using numpy.where():
import numpy as np
matrix1 = np.array([[3, 1, 0],
[6, 2, 6]])
matrix2 = np.array([[0, 1, 1],
[1, 0, 0]])
r,c = matrix1.shape
res = np.zeros((r,c))
res[np.where((matrix1>5) & (matrix2==1))]=1
result
array([[0., 0., 0.],
[1., 0., 0.]])

Numpy to assess letters as integers

In 3d arrays, I know I can transform integers with the following:
import numpy as np
x = np.array([[0,1,1,2], [0, 5, 0, 0], [2, 0,3,3]], np.int32)
x[x==0] = 99
print (x[0:])
[[99 1 1 2]
[99 5 99 99]
[ 2 99 3 3]]
Is there a way to input strings into matrices? For example something like this?
import numpy as np
x = np.array([[0,1,1,2], [0, 5, 0, 0], [2, 0, 3, 3]], np.int32)
x[x==0] = int('x') ## This might be something like str('x), but I want it to
## equal 0
print (x[0:])
[[x 1 1 2]
[x 5 x x]
[2 x 3 3]]
What you're asking for can be done, but only by changing from an array of numbers to an array of object—that is, general-anything-at-all values:
>>> x = np.array([[0,1,1,2], [0, 5, 0, 0], [2, 0,3,3]], dtype=object)
>>> x[x==0] = 'x'
>>> x
array([['x', 1, 1, 2],
['x', 5, 'x', 'x'],
[2, 'x', 3, 3]], dtype=object)
But this is probably not what you want. Most of the speed and space savings of numpy come from the fact that arrays have a specific data type; if you use the generic object, they're no smaller, and not much faster, than just using a list of lists. If you're only using numpy for syntactic convenience rather than space or speed benefits, that may be fine, but it's definitely something to think about before you do it.
Also, an array of objects follows the usual Python rules for any arithmetic on those objects. For example:
>>> x+2
TypeError: must be str, not int
That doesn't seem very useful.
If you're looking for a special "marker value" that prevents you from accidentally thinking some value is meaningful when it actually wasn't, you can do that with floats, although not with ints, by using nan:
>>> x = np.array([[0,1,1,2], [0, 5, 0, 0], [2, 0,3,3]], dtype=np.float64)
>>> x[x==0] = np.nan
>>> x
array([[nan, 1., 1., 2.],
[nan, 5., nan, nan],
[ 2., nan, 3., 3.]])
A nan can be stored in a float64 slot, so you still have all the space and speed benefits of a fixed-type array. And (by default), operations on nan don't raise an exception, they just return nan. So:
>>> x+2
array([[nan, 3., 3., 4.],
[nan, 7., nan, nan],
[ 4., nan, 5., 5.]])
In some cases, it may be even better to just leave the array alone and operate on the array with a mask:
>>> x = np.array([[0,1,1,2], [0, 5, 0, 0], [2, 0,3,3]], dtype=np.int64)
>>> x[x!=0] += 2
>>> x
array([[0, 3, 3, 4],
[0, 7, 0, 0],
[4, 0, 5, 5]])
Or, if your indices don't matter, only your values, you can even do this (the simplest version, ignoring even axes):
>>> x = np.array([[0,1,1,2], [0, 5, 0, 0], [2, 0,3,3]], dtype=np.int64)
>>> y = x[x!=0]
>>> y+2
array([3, 3, 4, 7, 4, 5, 5])

numpy append array to array

I'm trying to append one numpy array to another numpy array, like this:
import numpy as np
meanings = 2
signals = 4
def new_agent(agent_type, context_size):
if agent_type == 'random':
comm_system = np.random.random_integers(0, 1, (meanings, signals))
if agent_type == 'blank':
comm_system = np.zeros((meanings, signals), int)
score_list = np.array([0., 0., 0., 0.])
np.append(comm_system, score_list)
np.append(comm_system, context_size)
return comm_system
if I now call:
random_agent = new_agent('random', 5)
I expect to get something like:
[[0 1 0 0]
[1 1 0 1]
[0. 0. 0. 0.]
5]
But instead I get only:
[[0 1 0 0]
[1 1 0 1]]
So the score_list and the context_size don't get appended. And the same holds for when I call new_agent() with 'blank'.
Thanks!
You can use hstack and vstack to concatenate arrays:
>>> from numpy import array, hstack, vstack
>>> a = array([1, 2, 3])
>>> b = array([4, 5, 6])
>>> hstack([a, b])
array([1, 2, 3, 4, 5, 6])
>>> vstack([a, b])
array([[1, 2, 3],
[4, 5, 6]])
numpy.append() returns a new array containing the data from its inputs together. It does not modify the inputs themselves, and there would be no way for it to do so. This is because arrays in NumPy are generally not resizable.
Try changing your code to capture the value returned from append(), which will be the array you want.
#John is correct about how to use the return value from numpy.append because it doesn't modify the original array. However, there's a problem with your expected output:
[[0 1 0 0]
[1 1 0 1]
[0. 0. 0. 0.]
5]
is not a possible numpy array because of two reasons: one is that some elements are integers and some are floats, but a numpy array's dtype must be uniform; the other is that each row is not the same length, but numpy arrays must have uniform (rectangular) shape.
I think what you might rather do is to just return all three things:
comm_system as an array of ints,
score_list as an array of floats,
and context_size as an int (not an array).
You can do that with a tuple:
def new_agent(agent_type, context_size):
if agent_type == 'random':
comm_system = np.random.random_integers(0, 1, (meanings, signals))
if agent_type == 'blank':
comm_system = np.zeros((meanings, signals), int)
score_list = np.zeros(signals) #This is different too! No need to type out the 0, 0, ...
# now just return all three:
return comm_system, score_list, context_size
Then you can "unpack" the tuple like so:
random_agent, scores, size = new_agent('random', 5)
Or just keep them all in one tuple:
random_agent_info = new_agent('random', 5)
And you'll have
In [331]: random_agent, scores, size = new_agent('random', 5)
In [332]: random_agent
Out[332]:
array([[0, 1, 1, 0],
[0, 1, 0, 1]])
In [333]: scores
Out[333]: array([ 0., 0., 0., 0.])
In [334]: size
Out[334]: 5
In [336]: random_agent_info
Out[336]:
(array([[1, 1, 0, 1],
[0, 1, 0, 0]]),
array([ 0., 0., 0., 0.]),
5)
In [337]: random_agent_info[0]
Out[337]:
array([[1, 1, 0, 1],
[0, 1, 0, 0]])
In [338]: random_agent_info[1]
Out[338]: array([ 0., 0., 0., 0.])
In [339]: random_agent_info[2]
Out[339]: 5
If you do want to have the comm_system and score_list to be one (3,2) array, you can do that with:
def new_agent(agent_type, context_size):
...
return np.vstack([comm_system, score_list]), context_size
Then you'll get one array and one int:
In [341]: random_agent, size = new_agent('random', 5)
In [342]: random_agent
Out[342]:
array([[ 1., 0., 1., 1.],
[ 1., 0., 1., 0.],
[ 0., 0., 0., 0.]])
In [343]: size
Out[343]: 5

How do I add an extra column to a NumPy array?

Given the following 2D array:
a = np.array([
[1, 2, 3],
[2, 3, 4],
])
I want to add a column of zeros along the second axis to get:
b = np.array([
[1, 2, 3, 0],
[2, 3, 4, 0],
])
np.r_[ ... ] and np.c_[ ... ]
are useful alternatives to vstack and hstack,
with square brackets [] instead of round ().
A couple of examples:
: import numpy as np
: N = 3
: A = np.eye(N)
: np.c_[ A, np.ones(N) ] # add a column
array([[ 1., 0., 0., 1.],
[ 0., 1., 0., 1.],
[ 0., 0., 1., 1.]])
: np.c_[ np.ones(N), A, np.ones(N) ] # or two
array([[ 1., 1., 0., 0., 1.],
[ 1., 0., 1., 0., 1.],
[ 1., 0., 0., 1., 1.]])
: np.r_[ A, [A[1]] ] # add a row
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 0., 1., 0.]])
: # not np.r_[ A, A[1] ]
: np.r_[ A[0], 1, 2, 3, A[1] ] # mix vecs and scalars
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
: np.r_[ A[0], [1, 2, 3], A[1] ] # lists
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
: np.r_[ A[0], (1, 2, 3), A[1] ] # tuples
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
: np.r_[ A[0], 1:4, A[1] ] # same, 1:4 == arange(1,4) == 1,2,3
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
(The reason for square brackets [] instead of round ()
is that Python expands e.g. 1:4 in square --
the wonders of overloading.)
I think a more straightforward solution and faster to boot is to do the following:
import numpy as np
N = 10
a = np.random.rand(N,N)
b = np.zeros((N,N+1))
b[:,:-1] = a
And timings:
In [23]: N = 10
In [24]: a = np.random.rand(N,N)
In [25]: %timeit b = np.hstack((a,np.zeros((a.shape[0],1))))
10000 loops, best of 3: 19.6 us per loop
In [27]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a
100000 loops, best of 3: 5.62 us per loop
Use numpy.append:
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> z = np.zeros((2,1), dtype=int64)
>>> z
array([[0],
[0]])
>>> np.append(a, z, axis=1)
array([[1, 2, 3, 0],
[2, 3, 4, 0]])
One way, using hstack, is:
b = np.hstack((a, np.zeros((a.shape[0], 1), dtype=a.dtype)))
I was also interested in this question and compared the speed of
numpy.c_[a, a]
numpy.stack([a, a]).T
numpy.vstack([a, a]).T
numpy.ascontiguousarray(numpy.stack([a, a]).T)
numpy.ascontiguousarray(numpy.vstack([a, a]).T)
numpy.column_stack([a, a])
numpy.concatenate([a[:,None], a[:,None]], axis=1)
numpy.concatenate([a[None], a[None]], axis=0).T
which all do the same thing for any input vector a. Timings for growing a:
Note that all non-contiguous variants (in particular stack/vstack) are eventually faster than all contiguous variants. column_stack (for its clarity and speed) appears to be a good option if you require contiguity.
Code to reproduce the plot:
import numpy as np
import perfplot
b = perfplot.bench(
setup=np.random.rand,
kernels=[
lambda a: np.c_[a, a],
lambda a: np.ascontiguousarray(np.stack([a, a]).T),
lambda a: np.ascontiguousarray(np.vstack([a, a]).T),
lambda a: np.column_stack([a, a]),
lambda a: np.concatenate([a[:, None], a[:, None]], axis=1),
lambda a: np.ascontiguousarray(np.concatenate([a[None], a[None]], axis=0).T),
lambda a: np.stack([a, a]).T,
lambda a: np.vstack([a, a]).T,
lambda a: np.concatenate([a[None], a[None]], axis=0).T,
],
labels=[
"c_",
"ascont(stack)",
"ascont(vstack)",
"column_stack",
"concat",
"ascont(concat)",
"stack (non-cont)",
"vstack (non-cont)",
"concat (non-cont)",
],
n_range=[2 ** k for k in range(23)],
xlabel="len(a)",
)
b.save("out.png")
I find the following most elegant:
b = np.insert(a, 3, values=0, axis=1) # Insert values before column 3
An advantage of insert is that it also allows you to insert columns (or rows) at other places inside the array. Also instead of inserting a single value you can easily insert a whole vector, for instance duplicate the last column:
b = np.insert(a, insert_index, values=a[:,2], axis=1)
Which leads to:
array([[1, 2, 3, 3],
[2, 3, 4, 4]])
For the timing, insert might be slower than JoshAdel's solution:
In [1]: N = 10
In [2]: a = np.random.rand(N,N)
In [3]: %timeit b = np.hstack((a, np.zeros((a.shape[0], 1))))
100000 loops, best of 3: 7.5 µs per loop
In [4]: %timeit b = np.zeros((a.shape[0], a.shape[1]+1)); b[:,:-1] = a
100000 loops, best of 3: 2.17 µs per loop
In [5]: %timeit b = np.insert(a, 3, values=0, axis=1)
100000 loops, best of 3: 10.2 µs per loop
I think:
np.column_stack((a, zeros(shape(a)[0])))
is more elegant.
Assuming M is a (100,3) ndarray and y is a (100,) ndarray append can be used as follows:
M=numpy.append(M,y[:,None],1)
The trick is to use
y[:, None]
This converts y to a (100, 1) 2D array.
M.shape
now gives
(100, 4)
np.concatenate also works
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> z = np.zeros((2,1))
>>> z
array([[ 0.],
[ 0.]])
>>> np.concatenate((a, z), axis=1)
array([[ 1., 2., 3., 0.],
[ 2., 3., 4., 0.]])
Add an extra column to a numpy array:
Numpy's np.append method takes three parameters, the first two are 2D numpy arrays and the 3rd is an axis parameter instructing along which axis to append:
import numpy as np
x = np.array([[1,2,3], [4,5,6]])
print("Original x:")
print(x)
y = np.array([[1], [1]])
print("Original y:")
print(y)
print("x appended to y on axis of 1:")
print(np.append(x, y, axis=1))
Prints:
Original x:
[[1 2 3]
[4 5 6]]
Original y:
[[1]
[1]]
y appended to x on axis of 1:
[[1 2 3 1]
[4 5 6 1]]
np.insert also serves the purpose.
matA = np.array([[1,2,3],
[2,3,4]])
idx = 3
new_col = np.array([0, 0])
np.insert(matA, idx, new_col, axis=1)
array([[1, 2, 3, 0],
[2, 3, 4, 0]])
It inserts values, here new_col, before a given index, here idx along one axis. In other words, the newly inserted values will occupy the idx column and move what were originally there at and after idx backward.
I like JoshAdel's answer because of the focus on performance. A minor performance improvement is to avoid the overhead of initializing with zeros, only to be overwritten. This has a measurable difference when N is large, empty is used instead of zeros, and the column of zeros is written as a separate step:
In [1]: import numpy as np
In [2]: N = 10000
In [3]: a = np.ones((N,N))
In [4]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a
1 loops, best of 3: 492 ms per loop
In [5]: %timeit b = np.empty((a.shape[0],a.shape[1]+1)); b[:,:-1] = a; b[:,-1] = np.zeros((a.shape[0],))
1 loops, best of 3: 407 ms per loop
A bit late to the party, but nobody posted this answer yet, so for the sake of completeness: you can do this with list comprehensions, on a plain Python array:
source = a.tolist()
result = [row + [0] for row in source]
b = np.array(result)
For me, the next way looks pretty intuitive and simple.
zeros = np.zeros((2,1)) #2 is a number of rows in your array.
b = np.hstack((a, zeros))
In my case, I had to add a column of ones to a NumPy array
X = array([ 6.1101, 5.5277, ... ])
X.shape => (97,)
X = np.concatenate((np.ones((m,1), dtype=np.int), X.reshape(m,1)), axis=1)
After
X.shape => (97, 2)
array([[ 1. , 6.1101],
[ 1. , 5.5277],
...
There is a function specifically for this. It is called numpy.pad
a = np.array([[1,2,3], [2,3,4]])
b = np.pad(a, ((0, 0), (0, 1)), mode='constant', constant_values=0)
print b
>>> array([[1, 2, 3, 0],
[2, 3, 4, 0]])
Here is what it says in the docstring:
Pads an array.
Parameters
----------
array : array_like of rank N
Input array
pad_width : {sequence, array_like, int}
Number of values padded to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) unique pad widths
for each axis.
((before, after),) yields same before and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width for all
axes.
mode : str or function
One of the following string values or a user supplied function.
'constant'
Pads with a constant value.
'edge'
Pads with the edge values of array.
'linear_ramp'
Pads with the linear ramp between end_value and the
array edge value.
'maximum'
Pads with the maximum value of all or part of the
vector along each axis.
'mean'
Pads with the mean value of all or part of the
vector along each axis.
'median'
Pads with the median value of all or part of the
vector along each axis.
'minimum'
Pads with the minimum value of all or part of the
vector along each axis.
'reflect'
Pads with the reflection of the vector mirrored on
the first and last values of the vector along each
axis.
'symmetric'
Pads with the reflection of the vector mirrored
along the edge of the array.
'wrap'
Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.
<function>
Padding function, see Notes.
stat_length : sequence or int, optional
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
values at edge of each axis used to calculate the statistic value.
((before_1, after_1), ... (before_N, after_N)) unique statistic
lengths for each axis.
((before, after),) yields same before and after statistic lengths
for each axis.
(stat_length,) or int is a shortcut for before = after = statistic
length for all axes.
Default is ``None``, to use the entire axis.
constant_values : sequence or int, optional
Used in 'constant'. The values to set the padded values for each
axis.
((before_1, after_1), ... (before_N, after_N)) unique pad constants
for each axis.
((before, after),) yields same before and after constants for each
axis.
(constant,) or int is a shortcut for before = after = constant for
all axes.
Default is 0.
end_values : sequence or int, optional
Used in 'linear_ramp'. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array.
((before_1, after_1), ... (before_N, after_N)) unique end values
for each axis.
((before, after),) yields same before and after end values for each
axis.
(constant,) or int is a shortcut for before = after = end value for
all axes.
Default is 0.
reflect_type : {'even', 'odd'}, optional
Used in 'reflect', and 'symmetric'. The 'even' style is the
default with an unaltered reflection around the edge value. For
the 'odd' style, the extented part of the array is created by
subtracting the reflected values from two times the edge value.
Returns
-------
pad : ndarray
Padded array of rank equal to `array` with shape increased
according to `pad_width`.
Notes
-----
.. versionadded:: 1.7.0
For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes. This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.
The padding function, if used, should return a rank 1 array equal in
length to the vector argument with padded values replaced. It has the
following signature::
padding_func(vector, iaxis_pad_width, iaxis, kwargs)
where
vector : ndarray
A rank 1 array already padded with zeros. Padded values are
vector[:pad_tuple[0]] and vector[-pad_tuple[1]:].
iaxis_pad_width : tuple
A 2-tuple of ints, iaxis_pad_width[0] represents the number of
values padded at the beginning of vector where
iaxis_pad_width[1] represents the number of values padded at
the end of vector.
iaxis : int
The axis currently being calculated.
kwargs : dict
Any keyword arguments the function requires.
Examples
--------
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2,3), 'constant', constant_values=(4, 6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])
>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])
>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])
>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
... return vector
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])
I liked this:
new_column = np.zeros((len(a), 1))
b = np.block([a, new_column])

Categories

Resources