sklearn linear regression for large data - python

Does sklearn.LinearRegression support online/incremental learning?
I have 100 groups of data, and I am trying to implement them altogether. For each group, there are over 10000 instances and ~ 10 features, so it will lead to memory error with sklearn if I construct a huge matrix (10^6 by 10). It will be nice if I can update the regressor each time with batch samples of new group.
I found this post relevant, but the accepted solution works for online learning with single new data (only one instance) rather than batch samples.

Take a look at linear_model.SGDRegressor, it learns a a linear model using stochastic gradient.
In general, sklearn has many models that admit "partial_fit", they are all pretty useful on medium to large datasets that don't fit in the RAM.

Not all algorithms can learn incrementally, without seeing all of the instances at once that is. That said, all estimators implementing the partial_fit API are candidates for the mini-batch learning, also known as "online learning".
Here is an article that goes over scaling strategies for incremental learning. For your purposes, have a look at the sklearn.linear_model.SGDRegressor class. It is truly online so the memory and convergence rate are not affected by the batch size.

Related

How should I approach a 300 classes classification machine learning problem?

I am trying to make a Multi-Class classification application, but my dataset has 300 classes, is it possible to train my model with all these classes with a normal PC?
Sure it is. You can even train imagenet with 1000 categories or more, if you have enough time! ;)
You just have to think about which loss function you want (categorical crossentropy, sparse categorical crossentropy or even binary if you want to penalize each output node independently), apart from that there's not really much difference between 10, 100 or a 1000 classes.
Of course you have to increase your model size to account for more classes, so RAM may be an issue, but then you can always decrease batch size. If you are using images and convnets and your model is still too large, try to downsample the images, use pooling layers or larger strides.
If your computer is too old and slow, you can also try Google Colab which offers free GPU and even TPU online!
It is difficult to answer this question. The training time of your model depends on a number of factors. It might be best to train your model for a certain amount of hours and evaluate the performance. You could make use of fitting a learning curve, which could provide an esitmation of how many data points your require for training to achieve a certain performance. After that you could link the required amount of data points to computation time.
Here is an article provides an algorithm for fitting a learning curve: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307431/.

SciKit One-class SVM classifier training time increases exponentially with size of training data

I am using the Python SciKit OneClass SVM classifier to detect outliers in lines of text. The text is converted to numerical features first using bag of words and TF-IDF.
When I train (fit) the classifier running on my computer, the time seems to increase exponentially with the number of items in the training set:
Number of items in training data and training time taken:
10K: 1 sec, 15K: 2 sec, 20K: 8 sec, 25k: 12 sec, 30K: 16 sec, 45K: 44 sec.
Is there anything I can do to reduce the time taken for training, and avoid that this will become too long when training data size increases to a couple of hundred thousand items ?
Well scikit's SVM is a high-level implementation so there is only so much you can do, and in terms of speed, from their website, "SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation."
You can increase your kernel size parameter based on your available RAM, but this increase does not help much.
You can try changing your kernel, though your model might be incorrect.
Here is some advice from http://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use: Scale your data.
Otherwise, don't use scikit and implement it yourself using neural nets.
Hope I'm not too late. OCSVM, and SVM, is resource hungry, and the length/time relationship is quadratic (the numbers you show follow this). If you can, see if Isolation Forest or Local Outlier Factor work for you, but if you're considering applying on a lengthier dataset I would suggest creating a manual AD model that closely resembles the context of these off-the-shelf solutions. By doing this then you should be able to work either in parallel or with threads.
For anyone coming here from Google, sklearn has implemented SGDOneClassSVM, which "has a linear complexity in the number of training samples". It should be faster for large datasets.

Does the SVM in sklearn support incremental (online) learning?

I am currently in the process of designing a recommender system for text articles (a binary case of 'interesting' or 'not interesting'). One of my specifications is that it should continuously update to changing trends.
From what I can tell, the best way to do this is to make use of machine learning algorithm that supports incremental/online learning.
Algorithms like the Perceptron and Winnow support online learning but I am not completely certain about Support Vector Machines. Does the scikit-learn python library support online learning and if so, is a support vector machine one of the algorithms that can make use of it?
I am obviously not completely tied down to using support vector machines, but they are usually the go to algorithm for binary classification due to their all round performance. I would be willing to change to whatever fits best in the end.
While online algorithms for SVMs do exist, it has become important to specify if you want kernel or linear SVMs, as many efficient algorithms have been developed for the special case of linear SVMs.
For the linear case, if you use the SGD classifier in scikit-learn with the hinge loss and L2 regularization you will get an SVM that can be updated online/incrementall. You can combine this with feature transforms that approximate a kernel to get similar to an online kernel SVM.
One of my specifications is that it should continuously update to changing trends.
This is referred to as concept drift, and will not be handled well by a simple online SVM. Using the PassiveAggresive classifier will likely give you better results, as it's learning rate does not decrease over time.
Assuming you get feedback while training / running, you can attempt to detect decreases in accuracy over time and begin training a new model when the accuracy starts to decrease (and switch to the new one when you believe that it has become more accurate). JSAT has 2 drift detection methods (see jsat.driftdetectors) that can be used to track accuracy and alert you when it has changed.
It also has more online linear and kernel methods.
(bias note: I'm the author of JSAT).
Maybe it's me being naive but I think it is worth mentioning how to actually update the sci-kit SGD classifier when you present your data incrementally:
clf = linear_model.SGDClassifier()
x1 = some_new_data
y1 = the_labels
clf.partial_fit(x1,y1)
x2 = some_newer_data
y2 = the_labels
clf.partial_fit(x2,y2)
Technical aspects
The short answer is no. Sklearn implementation (as well as most of the existing others) do not support online SVM training. It is possible to train SVM in an incremental way, but it is not so trivial task.
If you want to limit yourself to the linear case, than the answer is yes, as sklearn provides you with Stochastic Gradient Descent (SGD), which has option to minimize the SVM criterion.
You can also try out pegasos library instead, which supports online SVM training.
Theoretical aspects
The problem of trend adaptation is currently very popular in ML community. As #Raff stated, it is called concept drift, and has numerous approaches, which are often kinds of meta models, which analyze "how the trend is behaving" and change the underlying ML model (by for example forcing it to retrain on the subset of the data). So you have two independent problems here:
the online training issue, which is purely technical, and can be addressed by SGD or other libraries than sklearn
concept drift, which is currently a hot topic and has no just works answers There are many possibilities, hypothesis and proofes of concepts, while there is no one, generaly accepted way of dealing with this phenomena, in fact many phd dissertations in ML are currenlly based on this issue.
SGD for batch learning tasks normally has a decreasing learning rate and goes over training set multiple times. So, for purely online learning, make sure learning_rate is set to 'constant' in sklearn.linear_model.SGDClassifier() and eta0= 0.1 or any desired value. Therefore the process is as follows:
clf= sklearn.linear_model.SGDClassifier(learning_rate = 'constant', eta0 = 0.1, shuffle = False, n_iter = 1)
# get x1, y1 as a new instance
clf.partial_fit(x1, y1)
# get x2, y2
# update accuracy if needed
clf.partial_fit(x2, y2)
A way to scale SVM could be split your large dataset into batches that can be safely consumed by an SVM algorithm, then find support vectors for each batch separately, and then build a resulting SVM model on a dataset consisting of all the support vectors found in all the batches.
Updating to trends could be achieved by maintaining a time window each time you run your training pipeline. For example, if you do your training once a day and there is enough information in a month's historical data, create your traning dataset from the historical data obtained in the recent 30 days.
If interested in online learning with concept drift then here is some previous work
Learning under Concept Drift: an Overview
https://arxiv.org/pdf/1010.4784.pdf
The problem of concept drift: definitions and related work
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.9085&rep=rep1&type=pdf
A Survey on Concept Drift Adaptation
http://www.win.tue.nl/~mpechen/publications/pubs/Gama_ACMCS_AdaptationCD_accepted.pdf
MOA Concept Drift Active Learning Strategies for Streaming Data
http://videolectures.net/wapa2011_bifet_moa/
A Stream of Algorithms for Concept Drift
http://people.cs.georgetown.edu/~maloof/pubs/maloof.heilbronn12.handout.pdf
MINING DATA STREAMS WITH CONCEPT DRIFT
http://www.cs.put.poznan.pl/dbrzezinski/publications/ConceptDrift.pdf
Analyzing time series data with stream processing and machine learning
http://www.ibmbigdatahub.com/blog/analyzing-time-series-data-stream-processing-and-machine-learning

Is scikit-learn suitable for big data tasks?

I'm working on a TREC task involving use of machine learning techniques, where the dataset consists of more than 5 terabytes of web documents, from which bag-of-words vectors are planned to be extracted. scikit-learn has a nice set of functionalities that seems to fit my need, but I don't know whether it is going to scale well to handle big data. For example, is HashingVectorizer able to handle 5 terabytes of documents, and is it feasible to parallelize it? Moreover, what are some alternatives out there for large-scale machine learning tasks?
HashingVectorizer will work if you iteratively chunk your data into batches of 10k or 100k documents that fit in memory for instance.
You can then pass the batch of transformed documents to a linear classifier that supports the partial_fit method (e.g. SGDClassifier or PassiveAggressiveClassifier) and then iterate on new batches.
You can start scoring the model on a held-out validation set (e.g. 10k documents) as you go to monitor the accuracy of the partially trained model without waiting for having seen all the samples.
You can also do this in parallel on several machines on partitions of the data and then average the resulting coef_ and intercept_ attribute to get a final linear model for the all dataset.
I discuss this in this talk I gave in March 2013 at PyData: http://vimeo.com/63269736
There is also sample code in this tutorial on paralyzing scikit-learn with IPython.parallel taken from: https://github.com/ogrisel/parallel_ml_tutorial

How many features can scikit-learn handle?

I have a csv file of [66k, 56k] size (rows, columns). Its a sparse matrix. I know that numpy can handle that size a matrix. I would like to know based on everyone's experience, how many features scikit-learn algorithms can handle comfortably?
Depends on the estimator. At that size, linear models still perform well, while SVMs will probably take forever to train (and forget about random forests since they won't handle sparse matrices).
I've personally used LinearSVC, LogisticRegression and SGDClassifier with sparse matrices of size roughly 300k × 3.3 million without any trouble. See #amueller's scikit-learn cheat sheet for picking the right estimator for the job at hand.
Full disclosure: I'm a scikit-learn core developer.
Some linear model (Regression, SGD, Bayes) will probably be your best bet if you need to train your model frequently.
Although before you go running any models you could try the following
1) Feature reduction. Are there features in your data that could easily be removed? For example if your data is text or ratings based there are lots known options available.
2) Learning curve analysis. Maybe you only need a small subset of your data to train a model, and after that you are only fitting to your data or gaining tiny increases in accuracy.
Both approaches could allow you to greatly reduce the training data required.

Categories

Resources