computing smooth color map using interpolation recursively - python
I am computing the mandelbrot set recursively and attempting to perform linear interpolation using the smooth coloring algorithm. However, this returns floating point RGB values which I can't put into the ppm image I am using so I am having to round off using int(), creating a smoother but yet still banded image.
Are there any simpler ways that will produce a better non-banded image?
The second function is an extremely bad hack just playing around with ideas as the smooth algorithim seems to be producing rgb values in the range 256**3
Commented out the linear interpolation I was doing.
Here are my three functions:
def linear_interp(self, color_1, color_2, i):
r = (color_1[0] * (1 - i)) + (color_2[0] * i)
g = (color_1[1] * (1 - i)) + (color_2[1] * i)
b = (color_1[2] * (1 - i)) + (color_2[2] * i)
return (int(abs(r)), int(abs(g)), int(abs(b)))
def mandel(self, x, y, z, iteration = 0):
mod_z = sqrt((z.real * z.real) + (z.imag * z.imag))
#If its not in the set or we have reached the maximum depth
if abs(z) >= 2.00 or iteration == DEPTH:
if iteration == DEPTH:
mu = iteration
else:
mu = iteration + 1 - log(log(mod_z)) / log(2)
else:
mu = 0
z = (z * z) + self.c
self.mandel(x, y, z, iteration + 1)
return mu
def create_image(self):
begin = time.time() #For computing how long it took (start time)
self.rgb.palette = []
for y in range(HEIGHT):
self.rgb.palette.append([]) #Need to create the rows of our ppm
for x in range(WIDTH):
self.c = complex(x * ((self.max_a - self.min_a) / WIDTH) + self.min_a,
y * ((self.max_b - self.min_b) / HEIGHT) + self.min_b)
z = self.c
q = (self.c.real - 0.25)**2 + (self.c.imag * self.c.imag)
x = self.c.real
y2 = self.c.imag * self.c.imag
if not (q*(q + (x - 0.25)) < y2 / 4.0 or (x + 1.0)**2 + y2 <0.0625):
mu = self.mandel(x, y, z, iteration = 0)
rgb = self.linear_interp((255, 255, 0), (55, 55, 0), mu)
self.rgb.palette[y].append(rgb)
else:
self.rgb.palette[y].append((55, 55, 0))
if self.progress_bar != None:
self.progress_bar["value"] = y
self.canvas.update()
The image I am getting is below:
I think this is the culprit:
else:
mu = 0
self.mandel(x, y, z, iteration + 1)
return mu
This isn't passing down the value of mu from the recursive call correctly, so you're getting black for everything that doesn't bottom out after 1 call. Try
else:
...
mu = self.mandel(x, y, z, iteration + 1)
return mu
Related
How to simulate a heat diffusion on a rectangular ring with FiPy?
I am new to solving a PDE and experimenting with a heat diffusion on a copper body of a rectangular ring shape using FiPy. And this is a plot of simulation result at some times. I am using the Grid2D() for a mesh and the CellVariable.constrain() to specify boundary conditions. The green dots are centers of exterior faces where T = 273.15 + 25 (K), and blue dots are centers of interior faces where T = 273.15 + 30 (K). Obviously, I am doing something wrong, because the temperature goes down to 0K. How should I specify boundary conditions correctly? These are the code. import numpy as np import matplotlib.pyplot as plt import fipy def get_mask_of_rect(mesh, x, y, w, h): def left_id(i, j): return mesh.numberOfHorizontalFaces + i*mesh.numberOfVerticalColumns + j def right_id(i, j): return mesh.numberOfHorizontalFaces + i*mesh.numberOfVerticalColumns + j + 1 def bottom_id(i, j): return i*mesh.nx + j def top_id(i, j): return (i+1)*mesh.nx + j j0, i0 = np.floor(np.array([x, y]) / [mesh.dx, mesh.dy]).astype(int) n, m = np.round(np.array([w, h]) / [mesh.dx, mesh.dy]).astype(int) mask = np.zeros_like(mesh.exteriorFaces, dtype=bool) for i in range(i0, i0 + n): mask[left_id(i, j0)] = mask[right_id(i, j0 + m-1)] = True for j in range(j0, j0 + m): mask[bottom_id(i0, j)] = mask[top_id(i0 + n-1, j)] = True return mask mesh = fipy.Grid2D(Lx = 1, Ly = 1, nx = 20, ny = 20) # Grid of size 1m x 1m k_over_c_rho = 3.98E2 / (3.85E2 * 8.96E3) # The thermal conductivity, specific heat capacity, and density of Copper in MKS dt = 0.1 * (mesh.dx**2 + mesh.dy**2) / (4*k_over_c_rho) T0 = 273.15 # 0 degree Celsius in Kelvin T = fipy.CellVariable(mesh, name='T', value=T0+25) mask_e = mesh.exteriorFaces T.constrain(T0+25., mask_e) mask_i = get_mask_of_rect(mesh, 0.25, 0.25, 0.5, 0.5) T.constrain(T0+30, mask_i) eq = fipy.TransientTerm() == fipy.DiffusionTerm(coeff=k_over_c_rho) viewer = fipy.MatplotlibViewer(vars=[T], datamin=0, datamax=400) plt.ioff() viewer._plot() plt.plot(*mesh.faceCenters[:, mask_e], '.g') plt.plot(*mesh.faceCenters[:, mask_i], '.b') def update(): for _ in range(10): eq.solve(var=T, dt=dt) viewer._plot() plt.draw() timer = plt.gcf().canvas.new_timer(interval=50) timer.add_callback(update) timer.start() plt.show()
.constrain() does not work for internal faces (see the warning at the end of Applying internal “boundary” conditions). You can achieve an internal fixed value condition using sources, however. As a first cut, try mask_i = get_mask_of_rect(mesh, 0.25, 0.25, 0.5, 0.5) mask_i_cell = fipy.CellVariable(mesh, value=False) mask_i_cell[mesh.faceCellIDs[..., mask_i]] = True largeValue = 1e6 eq = (fipy.TransientTerm() == fipy.DiffusionTerm(coeff=k_over_c_rho) - fipy.ImplicitSourceTerm(mask_i_cell * largeValue) + mask_i_cell * largeValue * (T0 + 30)) This constrains the cells on either side of the faces identified by mask_i to be at T0+30.
I am posting my own answer for future readers. For boundary conditions for internal faces, you should use the implicit and explicit source terms on the equation, as in the jeguyer's answer. By using source terms, you don't need to calculate a mask for faces, like this.(The get_mask_of_rect() in my question isn't required.) T = fipy.CellVariable(mesh, name = 'T', value = T0 + 25) mask_e = mesh.exteriorFaces T.constrain(T0 + 25., mask_e) mask_i_cell = ( (0.25 < mesh.x) & (mesh.x < 0.25 + 0.5) & (0.25 < mesh.y) & (mesh.y < 0.25 + 0.5) ) large_value = 1E6 eq = fipy.TransientTerm() == ( fipy.DiffusionTerm(coeff = k_over_c_rho) - fipy.ImplicitSourceTerm(mask_i_cell * large_value) + mask_i_cell * (large_value * (T0 + 30) # explicit source )) viewer = fipy.MatplotlibViewer(vars = [T], datamin = T0, datamax = T0+50)
How to increase FPS in ursina python
I want to create survival games with infinite block terrain(like Minecraft). So i using ursina python game engine, you can see it here So i using perlin noise to create the terrain with build-in ursina block model. I test for first 25 block and it work pretty good with above 100 FPS, so i start increase to 250 block and more because I want a infinite terrain. But i ran to some problem, when i increase to 100 block or more, my FPS start to decrease below 30 FPS (With i create just one layer). Here is my code: #-------------------------------Noise.py(I got on the github)------------------------- # Copyright (c) 2008, Casey Duncan (casey dot duncan at gmail dot com) # see LICENSE.txt for details """Perlin noise -- pure python implementation""" __version__ = '$Id: perlin.py 521 2008-12-15 03:03:52Z casey.duncan $' from math import floor, fmod, sqrt from random import randint # 3D Gradient vectors _GRAD3 = ((1,1,0),(-1,1,0),(1,-1,0),(-1,-1,0), (1,0,1),(-1,0,1),(1,0,-1),(-1,0,-1), (0,1,1),(0,-1,1),(0,1,-1),(0,-1,-1), (1,1,0),(0,-1,1),(-1,1,0),(0,-1,-1), ) # 4D Gradient vectors _GRAD4 = ((0,1,1,1), (0,1,1,-1), (0,1,-1,1), (0,1,-1,-1), (0,-1,1,1), (0,-1,1,-1), (0,-1,-1,1), (0,-1,-1,-1), (1,0,1,1), (1,0,1,-1), (1,0,-1,1), (1,0,-1,-1), (-1,0,1,1), (-1,0,1,-1), (-1,0,-1,1), (-1,0,-1,-1), (1,1,0,1), (1,1,0,-1), (1,-1,0,1), (1,-1,0,-1), (-1,1,0,1), (-1,1,0,-1), (-1,-1,0,1), (-1,-1,0,-1), (1,1,1,0), (1,1,-1,0), (1,-1,1,0), (1,-1,-1,0), (-1,1,1,0), (-1,1,-1,0), (-1,-1,1,0), (-1,-1,-1,0)) # A lookup table to traverse the simplex around a given point in 4D. # Details can be found where this table is used, in the 4D noise method. _SIMPLEX = ( (0,1,2,3),(0,1,3,2),(0,0,0,0),(0,2,3,1),(0,0,0,0),(0,0,0,0),(0,0,0,0),(1,2,3,0), (0,2,1,3),(0,0,0,0),(0,3,1,2),(0,3,2,1),(0,0,0,0),(0,0,0,0),(0,0,0,0),(1,3,2,0), (0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0), (1,2,0,3),(0,0,0,0),(1,3,0,2),(0,0,0,0),(0,0,0,0),(0,0,0,0),(2,3,0,1),(2,3,1,0), (1,0,2,3),(1,0,3,2),(0,0,0,0),(0,0,0,0),(0,0,0,0),(2,0,3,1),(0,0,0,0),(2,1,3,0), (0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0), (2,0,1,3),(0,0,0,0),(0,0,0,0),(0,0,0,0),(3,0,1,2),(3,0,2,1),(0,0,0,0),(3,1,2,0), (2,1,0,3),(0,0,0,0),(0,0,0,0),(0,0,0,0),(3,1,0,2),(0,0,0,0),(3,2,0,1),(3,2,1,0)) # Simplex skew constants _F2 = 0.5 * (sqrt(3.0) - 1.0) _G2 = (3.0 - sqrt(3.0)) / 6.0 _F3 = 1.0 / 3.0 _G3 = 1.0 / 6.0 class BaseNoise: """Noise abstract base class""" permutation = (151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190,6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168,68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54,65,25,63,161,1,216,80,73,209,76,132,187,208,89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186,3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152,2,44,154,163,70,221,153,101,155,167,43,172,9, 129,22,39,253,9,98,108,110,79,113,224,232,178,185,112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214,31,181,199,106,157,184,84,204,176,115,121,50,45,127,4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180) period = len(permutation) # Double permutation array so we don't need to wrap permutation = permutation * 2 randint_function = randint def __init__(self, period=None, permutation_table=None, randint_function=None): """Initialize the noise generator. With no arguments, the default period and permutation table are used (256). The default permutation table generates the exact same noise pattern each time. An integer period can be specified, to generate a random permutation table with period elements. The period determines the (integer) interval that the noise repeats, which is useful for creating tiled textures. period should be a power-of-two, though this is not enforced. Note that the speed of the noise algorithm is indpendent of the period size, though larger periods mean a larger table, which consume more memory. A permutation table consisting of an iterable sequence of whole numbers can be specified directly. This should have a power-of-two length. Typical permutation tables are a sequnce of unique integers in the range [0,period) in random order, though other arrangements could prove useful, they will not be "pure" simplex noise. The largest element in the sequence must be no larger than period-1. period and permutation_table may not be specified together. A substitute for the method random.randint(a, b) can be chosen. The method must take two integer parameters a and b and return an integer N such that a <= N <= b. """ if randint_function is not None: # do this before calling randomize() if not hasattr(randint_function, '__call__'): raise TypeError( 'randint_function has to be a function') self.randint_function = randint_function if period is None: period = self.period # enforce actually calling randomize() if period is not None and permutation_table is not None: raise ValueError( 'Can specify either period or permutation_table, not both') if period is not None: self.randomize(period) elif permutation_table is not None: self.permutation = tuple(permutation_table) * 2 self.period = len(permutation_table) def randomize(self, period=None): """Randomize the permutation table used by the noise functions. This makes them generate a different noise pattern for the same inputs. """ if period is not None: self.period = period perm = list(range(self.period)) perm_right = self.period - 1 for i in list(perm): j = self.randint_function(0, perm_right) perm[i], perm[j] = perm[j], perm[i] self.permutation = tuple(perm) * 2 class SimplexNoise(BaseNoise): """Perlin simplex noise generator Adapted from Stefan Gustavson's Java implementation described here: http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf To summarize: "In 2001, Ken Perlin presented 'simplex noise', a replacement for his classic noise algorithm. Classic 'Perlin noise' won him an academy award and has become an ubiquitous procedural primitive for computer graphics over the years, but in hindsight it has quite a few limitations. Ken Perlin himself designed simplex noise specifically to overcome those limitations, and he spent a lot of good thinking on it. Therefore, it is a better idea than his original algorithm. A few of the more prominent advantages are: * Simplex noise has a lower computational complexity and requires fewer multiplications. * Simplex noise scales to higher dimensions (4D, 5D and up) with much less computational cost, the complexity is O(N) for N dimensions instead of the O(2^N) of classic Noise. * Simplex noise has no noticeable directional artifacts. Simplex noise has a well-defined and continuous gradient everywhere that can be computed quite cheaply. * Simplex noise is easy to implement in hardware." """ def noise2(self, x, y): """2D Perlin simplex noise. Return a floating point value from -1 to 1 for the given x, y coordinate. The same value is always returned for a given x, y pair unless the permutation table changes (see randomize above). """ # Skew input space to determine which simplex (triangle) we are in s = (x + y) * _F2 i = floor(x + s) j = floor(y + s) t = (i + j) * _G2 x0 = x - (i - t) # "Unskewed" distances from cell origin y0 = y - (j - t) if x0 > y0: i1 = 1; j1 = 0 # Lower triangle, XY order: (0,0)->(1,0)->(1,1) else: i1 = 0; j1 = 1 # Upper triangle, YX order: (0,0)->(0,1)->(1,1) x1 = x0 - i1 + _G2 # Offsets for middle corner in (x,y) unskewed coords y1 = y0 - j1 + _G2 x2 = x0 + _G2 * 2.0 - 1.0 # Offsets for last corner in (x,y) unskewed coords y2 = y0 + _G2 * 2.0 - 1.0 # Determine hashed gradient indices of the three simplex corners perm = self.permutation ii = int(i) % self.period jj = int(j) % self.period gi0 = perm[ii + perm[jj]] % 12 gi1 = perm[ii + i1 + perm[jj + j1]] % 12 gi2 = perm[ii + 1 + perm[jj + 1]] % 12 # Calculate the contribution from the three corners tt = 0.5 - x0**2 - y0**2 if tt > 0: g = _GRAD3[gi0] noise = tt**4 * (g[0] * x0 + g[1] * y0) else: noise = 0.0 tt = 0.5 - x1**2 - y1**2 if tt > 0: g = _GRAD3[gi1] noise += tt**4 * (g[0] * x1 + g[1] * y1) tt = 0.5 - x2**2 - y2**2 if tt > 0: g = _GRAD3[gi2] noise += tt**4 * (g[0] * x2 + g[1] * y2) return noise * 70.0 # scale noise to [-1, 1] def noise3(self, x, y, z): """3D Perlin simplex noise. Return a floating point value from -1 to 1 for the given x, y, z coordinate. The same value is always returned for a given x, y, z pair unless the permutation table changes (see randomize above). """ # Skew the input space to determine which simplex cell we're in s = (x + y + z) * _F3 i = floor(x + s) j = floor(y + s) k = floor(z + s) t = (i + j + k) * _G3 x0 = x - (i - t) # "Unskewed" distances from cell origin y0 = y - (j - t) z0 = z - (k - t) # For the 3D case, the simplex shape is a slightly irregular tetrahedron. # Determine which simplex we are in. if x0 >= y0: if y0 >= z0: i1 = 1; j1 = 0; k1 = 0 i2 = 1; j2 = 1; k2 = 0 elif x0 >= z0: i1 = 1; j1 = 0; k1 = 0 i2 = 1; j2 = 0; k2 = 1 else: i1 = 0; j1 = 0; k1 = 1 i2 = 1; j2 = 0; k2 = 1 else: # x0 < y0 if y0 < z0: i1 = 0; j1 = 0; k1 = 1 i2 = 0; j2 = 1; k2 = 1 elif x0 < z0: i1 = 0; j1 = 1; k1 = 0 i2 = 0; j2 = 1; k2 = 1 else: i1 = 0; j1 = 1; k1 = 0 i2 = 1; j2 = 1; k2 = 0 # Offsets for remaining corners x1 = x0 - i1 + _G3 y1 = y0 - j1 + _G3 z1 = z0 - k1 + _G3 x2 = x0 - i2 + 2.0 * _G3 y2 = y0 - j2 + 2.0 * _G3 z2 = z0 - k2 + 2.0 * _G3 x3 = x0 - 1.0 + 3.0 * _G3 y3 = y0 - 1.0 + 3.0 * _G3 z3 = z0 - 1.0 + 3.0 * _G3 # Calculate the hashed gradient indices of the four simplex corners perm = self.permutation ii = int(i) % self.period jj = int(j) % self.period kk = int(k) % self.period gi0 = perm[ii + perm[jj + perm[kk]]] % 12 gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12 gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12 gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12 # Calculate the contribution from the four corners noise = 0.0 tt = 0.6 - x0**2 - y0**2 - z0**2 if tt > 0: g = _GRAD3[gi0] noise = tt**4 * (g[0] * x0 + g[1] * y0 + g[2] * z0) else: noise = 0.0 tt = 0.6 - x1**2 - y1**2 - z1**2 if tt > 0: g = _GRAD3[gi1] noise += tt**4 * (g[0] * x1 + g[1] * y1 + g[2] * z1) tt = 0.6 - x2**2 - y2**2 - z2**2 if tt > 0: g = _GRAD3[gi2] noise += tt**4 * (g[0] * x2 + g[1] * y2 + g[2] * z2) tt = 0.6 - x3**2 - y3**2 - z3**2 if tt > 0: g = _GRAD3[gi3] noise += tt**4 * (g[0] * x3 + g[1] * y3 + g[2] * z3) return noise * 32.0 def lerp(t, a, b): return a + t * (b - a) def grad3(hash, x, y, z): g = _GRAD3[hash % 16] return x*g[0] + y*g[1] + z*g[2] class TileableNoise(BaseNoise): """Tileable implemention of Perlin "improved" noise. This is based on the reference implementation published here: http://mrl.nyu.edu/~perlin/noise/ """ def noise3(self, x, y, z, repeat, base=0.0): """Tileable 3D noise. repeat specifies the integer interval in each dimension when the noise pattern repeats. base allows a different texture to be generated for the same repeat interval. """ i = int(fmod(floor(x), repeat)) j = int(fmod(floor(y), repeat)) k = int(fmod(floor(z), repeat)) ii = (i + 1) % repeat jj = (j + 1) % repeat kk = (k + 1) % repeat if base: i += base; j += base; k += base ii += base; jj += base; kk += base x -= floor(x); y -= floor(y); z -= floor(z) fx = x**3 * (x * (x * 6 - 15) + 10) fy = y**3 * (y * (y * 6 - 15) + 10) fz = z**3 * (z * (z * 6 - 15) + 10) perm = self.permutation A = perm[i] AA = perm[A + j] AB = perm[A + jj] B = perm[ii] BA = perm[B + j] BB = perm[B + jj] return lerp(fz, lerp(fy, lerp(fx, grad3(perm[AA + k], x, y, z), grad3(perm[BA + k], x - 1, y, z)), lerp(fx, grad3(perm[AB + k], x, y - 1, z), grad3(perm[BB + k], x - 1, y - 1, z))), lerp(fy, lerp(fx, grad3(perm[AA + kk], x, y, z - 1), grad3(perm[BA + kk], x - 1, y, z - 1)), lerp(fx, grad3(perm[AB + kk], x, y - 1, z - 1), grad3(perm[BB + kk], x - 1, y - 1, z - 1)))) #--------------------------Math.py(For InverseLefp)-------------------------------- def Clamp(t: float, minimum: float, maximum: float): """Float result between a min and max values.""" value = t if t < minimum: value = minimum elif t > maximum: value = maximum return value def InverseLefp(a: float, b: float, value: float): if a != b: return Clamp((value - a) / (b - a), 0, 1) return 0 #-----------------------------Game.py(Main code)---------------------- from ursina import * from ursina.prefabs import * from ursina.prefabs.first_person_controller import * from Math import InverseLefp import Noise app = Ursina() #The maximum height of the terrain maxHeight = 10 #Control the width and height of the map mapWidth = 10 mapHeight = 10 #A class that create a block class Voxel(Button): def __init__(self, position=(0,0,0)): super().__init__( parent = scene, position = position, model = 'cube', origin_y = .5, texture = 'white_cube', color = color.color(0, 0, random.uniform(.9, 1.0)), highlight_color = color.lime, ) #Detect user key input def input(self, key): if self.hovered: if key == 'right mouse down': #Place block if user right click voxel = Voxel(position=self.position + mouse.normal) if key == 'left mouse down': #Break block if user left click destroy(self) if key == 'escape': #Exit the game if user press the esc key app.userExit() #Return perlin noise value between 0 and 1 with x, y position with scale = noiseScale def GeneratedNoiseMap(y: int, x: int, noiseScale: float): #Check if the noise scale was invalid or not if noiseScale <= 0: noiseScale = 0.001 sampleX = x / noiseScale sampleY = y / noiseScale #The Noise.SimplexNoise().noise2 will return the value between -1 and 1 perlinValue = Noise.SimplexNoise().noise2(sampleX, sampleY) #The InverseLefp will make the value scale to between 0 and 1 perlinValue = InverseLefp(-1, 1, perlinValue) return perlinValue for z in range(mapHeight): for x in range(mapWidth): #Calculating the height of the block and round it to integer height = round(GeneratedNoiseMap(z, x, 20) * maxHeight) #Place the block and make it always below the player block = Voxel(position=(x, height - maxHeight - 1, z)) #Set the collider of the block block.collider = 'mesh' #Character movement player = FirstPersonController() #Run the game app.run() All file in same folder. It was working fine but the FPS is very low, so can anyone help?
I'm not able to test this code at the moment but this should serve as a starting point: level_parent = Entity(model=Mesh(vertices=[], uvs=[])) for z in range(mapHeight): for x in range(mapWidth): height = round(GeneratedNoiseMap(z, x, 20) * maxHeight) block = Voxel(position=(x, height - maxHeight - 1, z)) level_parent.model.vertices.extend(block.model.vertices) level_parent.collider = 'mesh' # call this only once after all vertices are set up For texturing, you might have to add the block.uvs from each block to level_parent.model.uvs as well. Alternatively, call level_parent.model.project_uvs() after setting up the vertices.
On my version of ursina engine (5.0.0) only this code: ` level_parent = Entity(model=Mesh(vertices=[], uvs=[])) for z in range(mapHeight): for x in range(mapWidth): height = round(GeneratedNoiseMap(z, x, 20) * maxHeight) block = Voxel(position=(x, height - maxHeight - 1, z)) #level_parent.model.vertices.extend(block.model.vertices) level_parent.combine().vertices.extend(block.combine().vertices) level_parent.collider = 'mesh' ` is working.
resize image with bilinear interpolation in python
I want to resize image with bilinear interpolation. I found new intensity value but I do not know how can I use it.. The code is below which is I written.. def resizeImageBI(im,width,height): temp = np.zeros((height,width),dtype=np.uint8) ratio_1 = float(im.size[0] - 1 )/ float(width - 1) ratio_0 = float(im.size[1] - 1) / float(height - 1) xx,yy = np.mgrid[:height, :width] xmap = np.around(xx * ratio_0) ymap = np.around(yy * ratio_1) for i in xrange(0, height): for j in xrange(0,width): temp[i][j]=im.getpixel( ( ymap[i][j], xmap[i][j]) ) * getNewIntensity(i,j,ratio_1,ratio_0) return Image.fromarray(temp) firstly get variable image width ratio and height ratio lena.png 0.5 1 Orginal image is here That is output accorting to written code
I just had to do this for a class and I haven't been graded yet, so you should check this out before using. Basic Interpolation function def interpolation(y0,x0, y1,x1, x): frac = (x - x0) / (x1 - x0) return y0*(1-frac) + y1 * frac Step 1: Map the original coordinates to the newly resized image def get_coords(im, W, H): h,w = im.shape x = np.arange(0,w+1,1) * W/w y = np.arange(0,h+1,1) * H/h return x,y Step 2: Create a function to interpolate in the x-direction on all rows. def im_interp(im, H,W): X = np.zeros(shape=(W,H)) x, y = get_coords(im, W, H) for i,v in enumerate(X): y0_idx = np.argmax(y >i) - 1 for j,_ in enumerate(v): # subtracting 1 because this is the first val # that is greater than j, want the idx before that x0_idx = np.argmax(x > j) - 1 x1_idx = np.argmax(j < x) x0 = x[x0_idx] x1 = x[x1_idx] y0 = im[y0_idx, x0_idx - 1] y1 = im[y0_idx, x1_idx - 1] X[i,j] = interpolation(y0, x0, y1, x1, j) return X Step 3: Use function from the above step to interpolate twice. First on the image in the x-direction, then on the transpose of the newly created image (y-direction) def im_resize(im,H,W): X_lin = im_interp(im, H,W) X = im_interp(X_lin.T, H,W) return X_lin, X.T I return both images just to look at the difference.
i'm not sure if you want to do this manually as an exercise... if not, there is scipy.mics.imresize that can do what you want
multithreaded mandelbrot set
Is it possible to change the formula of the mandelbrot set (which is f(z) = z^2 + c by default) to a different one ( f(z) = z^2 + c * e^(-z) is what i need) when using the escape time algorithm and if possible how? I'm currently using this code by FB36 # Multi-threaded Mandelbrot Fractal (Do not run using IDLE!) # FB - 201104306 import threading from PIL import Image w = 512 # image width h = 512 # image height image = Image.new("RGB", (w, h)) wh = w * h maxIt = 256 # max number of iterations allowed # drawing region (xa < xb & ya < yb) xa = -2.0 xb = 1.0 ya = -1.5 yb = 1.5 xd = xb - xa yd = yb - ya numThr = 5 # number of threads to run # lock = threading.Lock() class ManFrThread(threading.Thread): def __init__ (self, k): self.k = k threading.Thread.__init__(self) def run(self): # each thread only calculates its own share of pixels for i in range(k, wh, numThr): kx = i % w ky = int(i / w) a = xa + xd * kx / (w - 1.0) b = ya + yd * ky / (h - 1.0) x = a y = b for kc in range(maxIt): x0 = x * x - y * y + a y = 2.0 * x * y + b x = x0 if x * x + y * y > 4: # various color palettes can be created here red = (kc % 8) * 32 green = (16 - kc % 16) * 16 blue = (kc % 16) * 16 # lock.acquire() global image image.putpixel((kx, ky), (red, green, blue)) # lock.release() break if __name__ == "__main__": tArr = [] for k in range(numThr): # create all threads tArr.append(ManFrThread(k)) for k in range(numThr): # start all threads tArr[k].start() for k in range(numThr): # wait until all threads finished tArr[k].join() image.save("MandelbrotFractal.png", "PNG")
From the code I infer that z = x + y * i and c = a + b * i. That corresponds f(z) - z ^2 + c. You want f(z) = z ^2 + c * e^(-z). Recall that e^(-z) = e^-(x + yi) = e^(-x) * e^i(-y) = e^(-x)(cos(y) - i*sin(y)) = e^(-x)cos(y) - i (e^(-x)sin(y)). Thus you should update your lines to be the following: x0 = x * x - y * y + a * exp(-x) * cos(y) + b * exp(-x) * sin(y); y = 2.0 * x * y + a * exp(-x) * sin(y) - b * exp(-x) * cos(y) x = x0 You might need to adjust maxIt if you don't get the level of feature differentiation you're after (it might take more or fewer iterations to escape now, on average) but this should be the mathematical expression you're after. As pointed out in the comments, you might need to adjust the criterion itself and not just the maximum iterations in order to get the desired level of differentiation: changing the max doesn't help for ones that never escape. You can try deriving a good escape condition or just try out some things and see what you get.
Chaotic billiards simulation
I came to ask for some help with maths and programming. What am I trying to do? I'm trying to implement a simulation of a chaotic billiard system, following the algorithm in this excerpt. How am I trying it? Using numpy and matplotlib, I implemented the following code def boundaryFunction(parameter): return 1 + 0.1 * np.cos(parameter) def boundaryDerivative(parameter): return -0.1 * np.sin(parameter) def trajectoryFunction(parameter): aux = np.sin(beta - phi) / np.sin(beta - parameter) return boundaryFunction(phi) * aux def difference(parameter): return trajectoryFunction(parameter) - boundaryFunction(parameter) def integrand(parameter): rr = boundaryFunction(parameter) dd = boundaryDerivative (parameter) return np.sqrt(rr ** 2 + dd ** 2) ##### Main ##### length_vals = np.array([], dtype=np.float64) alpha_vals = np.array([], dtype=np.float64) # nof initial phi angles, alpha angles, and nof collisions for each. n_phi, n_alpha, n_cols, count = 10, 10, 10, 0 # Length of the boundary total_length, err = integrate.quad(integrand, 0, 2 * np.pi) for phi in np.linspace(0, 2 * np.pi, n_phi): for alpha in np.linspace(0, 2 * np.pi, n_alpha): for n in np.arange(1, n_cols): nu = np.arctan(boundaryFunction(phi) / boundaryDerivative(phi)) beta = np.pi + phi + alpha - nu # Determines next impact coordinate. bnds = (0, 2 * np.pi) phi_new = optimize.minimize_scalar(difference, bounds=bnds, method='bounded').x nu_new = np.arctan(boundaryFunction(phi_new) / boundaryDerivative(phi_new)) # Reflection angle with relation to tangent. alpha_new = phi_new - phi + nu - nu_new - alpha # Arc length for current phi value. arc_length, err = integrate.quad(integrand, 0, phi_new) # Append values to list length_vals = np.append(length_vals, arc_length / total_length) alpha_vals = np.append(alpha_vals, alpha) count += 1 print "{}%" .format(100 * count / (n_phi * n_alpha)) What is the problem? When calculating phi_new, the equation has two solutions (assuming the boundary is convex, which is.) I must enforce that phi_new is the solution which is different from phi, but I don't know how to do that. Are there more issues with the code? What should the output be? A phase space diagram of S x Alpha, looking like this. Any help is very appreciated! Thanks in advance.
One way you could try would be (given there really are only two solutions) would be epsilon = 1e-7 # tune this delta = 1e-4 # tune this # ... bnds = (0, 2 * np.pi) phi_new = optimize.minimize_scalar(difference, bounds=bnds, method='bounded').x if abs(phi_new - phi) < epsilon: bnds_1 = (0, phi - delta) phi_new_1 = optimize.minimize_scalar(difference, bounds=bnds_1, method='bounded').x bnds_2 = (phi + delta, 2 * np.pi) phi_new_2 = optimize.minimize_scalar(difference, bounds=bnds_2, method='bounded').x if difference(phi_new_1) < difference(phi_new_2): phi_new = phi_new_1 else: phi_new = phi_new_2 Alternatively, you could introduce a penalty-term, e.g. delta*exp(eps/(x-phi)^2) with appropriate choices of epsilon and delta.