scipy.optimize three variables and hundreds of solutions - python

I am trying to use scipy to find the values of three variables (x,y,z) in a nonlinear equation of the type:
g(x) * h(y) * k(z) = F
where F is a vector with hundreds of values.
I successfully used scipy.optimize.minimize where F only had 3 values, but that failed when the size of F was greater than 3.
How can I find (x,y,z) using all values in F?
Here the code:
import numpy as np
# Inputs:
thetas = np.array([25.4,65,37,54.9,26,21.3,24.1,35.7,46.1,61.1,57.2,41.9,20.5,24,55.6,56.9,42.2,39.9,30.8,59,28.8])
thetav = np.array([28.7,5.4,22.6,14.4,23.5,25,12.8,31.2,15.3,9,7.4,24.4,29.7,15.3,15.5,26.8,8.8,16.6,25.1,18.5,12])
azs = np.array([130.3,158,150.2,164.8,152.4,143.5,144.2,151.8,167.4,169.7,162.2,161.4,138.2,147.8,172.9,168.6,158.3,159.8,151.7,160.8,144.5])
azv = np.array([55.9,312.8,38.6,160.4,324.2,314.5,236.3,86.1,313.3,2.1,247.6,260.4,118.9,199.9,277,103.1,150.5,339.2,35.6,14.7,24.9])
F = np.array([0.61745,0.43462,0.60387,0.56595,0.48926,0.55615,0.54351,0.64069,0.54228,0.51716,0.39157,0.51831,0.7053,0.62769,0.21159,0.29964,0.52126,0.53656,0.575,0.40306,0.60471])
relphi = np.abs(azs-azv)
thetas = np.deg2rad(thetas)
thetav = np.deg2rad(thetav)
relphi = np.deg2rad(relphi)
# Compute the trigonometric functions:
coss = np.abs (np.cos(thetas))
cosv = np.cos(thetav)
sins = np.sqrt(1.0 - coss * coss)
sinv = np.sqrt(1.0 - cosv * cosv)
cosp = -np.cos(relphi)
tans = sins / coss
tanv = sinv / cosv
csmllg = coss * cosv + sins * sinv * cosp
bigg = np.sqrt(tans * tans + tanv * tanv - 2.0 * tans * tanv * cosp)
# Function to solve
def fun(x):
return x[0] * ((coss * cosv) ** (x[1] - 1.0)) * ((coss + cosv) ** (x[1] - 1.0)) * (1.0 - x[2] * x[2]) / ((1.0 + x[2] * x[2] + 2.0 * x[2] * csmllg) ** (1.5) + 1e-12) * (1.0 + ((1 - x[0]) / (1.0 + bigg))) - F
# Find unknown x[0], x[1], x[2]

Related

how to pass two arrays into a fuction

I have a function that typically takes in constant args and calculates volatility. I want to pass in a vector of different C's and K's to get an array of volatilities each associated with C[i], K[i]
def vol_calc(S, T, C, K, r, q, sigma):
d1 = (np.log(S / K) + (r - q + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
vega = (1 / np.sqrt(2 * np.pi)) * np.exp(-q * T) * np.sqrt(T) * np.exp((-si.norm.cdf(d1, 0.0, 1.0) ** 2) * 0.5)
tolerance = 0.000001
x0 = sigma
xnew = x0
xold = x0 - 1
while abs(xnew - xold) > tolerance:
xold = xnew
xnew = (xnew - fx - C) / vega
return abs(xnew)
but if I want to pass two arrays without turning into a nested loop, I thought I could just do:
def myfunction(S, T, r, q, sigma):
for x in K,C:
return same size as K,C
but I can't get it to work
How about this?
def vol_calc(S, T, C, K, r, q, sigma):
import numpy as np
output = np.zeros(len(C))
for num, (c, k) in enumerate(zip(C, K)):
d1 = (np.log(S / k) + (r - q + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
vega = (1 / np.sqrt(2 * np.pi)) * np.exp(-q * T) * np.sqrt(T) * np.exp((-si.norm.cdf(d1, 0.0, 1.0) ** 2) * 0.5)
tolerance = 0.000001
x0 = sigma
xnew = x0
xold = x0 - 1
while abs(xnew - xold) > tolerance:
xold = xnew
xnew = (xnew - fx - c) / vega
output[num] = abs(xnew)
return output

Accessing earlier values in odeint

I'm having some trouble using odeint function from scipy. I'm translating a discrete system into a continuous one, but some equation in the discrete model requires that I access the previous value of a variable that I'm currently integrating. How could I translate this behaviour?
import numpy as np
days_of_prediction = 15
N = 100
discrete_S0 = np.zeros((days_of_prediction, 1))
discrete_I0 = np.zeros((days_of_prediction, 1))
discrete_Q0 = np.zeros((days_of_prediction, 1))
discrete_H0 = np.zeros((days_of_prediction, 1))
discrete_D0 = np.zeros((days_of_prediction, 1))
discrete_S0[0] = 99
discrete_I0[0] = 1
discrete_Q0[0] = 0
discrete_H0[0] = 0
discrete_D0[0] = 0
v=0.1
alpha = 0.3
gamma = 1/21
psi = 0.2
k_h=0.1
k_q=0.1
eta_h=0.3
eta_q=0.3
for t in range(days_of_prediction - 1):
discrete_S0[t + 1] = discrete_S0[t] - v * discrete_S0[t] *
discrete_I0[t] / (N - discrete_Q0[t] - discrete_H0[t] - discrete_D0[t])
discrete_I0[t + 1] = discrete_I0[t] + v * discrete_S0[t] * discrete_I0[t] / (N - discrete_Q0[t] - discrete_H0[t] - discrete_D0[t]) - gamma * discrete_I0[t] - alpha * discrete_I0[t] - psi * discrete_I0[t]
discrete_Q0[t + 1] = discrete_Q0[t] + alpha * discrete_I0[t] - eta_q * discrete_Q0[t] - k_h *discrete_Q0[t] + k_q * discrete_H0[t]
discrete_H0[t + 1] = discrete_H0[t] + psi * discrete_I0[t] - eta_h * discrete_H0[t] + k_h * discrete_Q0[t] - k_q * discrete_H0[t] - zeta * discrete_H0[t]
discrete_R0[t + 1] = discrete_R0[t] + eta_q * discrete_Q0[t] + eta_h * discrete_H0[t]
I've posted a snippet of the code, the problem is with the denominator of the first two equations.
Thanks in advance.
In such an equation system, where the previous values of some variables are required in the evolution equation of other variables, you could define your function as follows:
import numpy as np
def fun(RHS, t):
# get initial boundary condition values
discrete_S0 = RHS[0]
discrete_I0 = RHS[1]
discrete_Q0 = RHS[2]
discrete_H0 = RHS[3]
discrete_D0 = RHS[4]
# calculte rate of respective variables
discrete_S0dt = - v * discrete_S0 * discrete_I0 / (N - discrete_Q0 - discrete_H0 - discrete_D0)
discrete_I0dt = v * discrete_S0 * discrete_I0 / (N - discrete_Q0 - discrete_H0 - discrete_D0) - gamma * discrete_I0 - alpha * discrete_I0 - psi * discrete_I0
discrete_Q0dt = alpha * discrete_I0 - eta_q * discrete_Q0 - k_h *discrete_Q0 + k_q * discrete_H0
discrete_H0dt = psi * discrete_I0 - eta_h * discrete_H0 + k_h * discrete_Q0 - k_q * discrete_H0 - zeta * discrete_H0
discrete_D0dt = eta_q * discrete_Q0 + eta_h * discrete_H0
# Left-hand side of ODE
LHS = np.zeros([5,])
LHS[0] = discrete_S0dt
LHS[1] = discrete_I0dt
LHS[2] = discrete_Q0dt
LHS[3] = discrete_H0dt
LHS[4] = discrete_D0dt
return LHS
Afterward, you can solve it (according to your boundary conditions) as follows:
from scipy.integrate import odeint
v=0.1
alpha = 0.3
gamma = 1/21
psi = 0.2
k_h=0.1
k_q=0.1
eta_h=0.3
eta_q=0.3
y0 = [99, 1, 0, 0, 0]
t = np.linspace(0,13,14)
res = odeint(fun, y0, t)
Here y0 is the initial boundary condition for all the variables defined in the function fun at t=0. That's why the variable t starts from 0.
Also, you can get the result of all the variables as follows:
print(res[:,0])
print(res[:,1])
print(res[:,2])
print(res[:,3])
print(res[:,4])

Not geting right solution with solve_ivp

I am trying to solve the differential equation using solve_ivp, but I am not getting the right solution. However, I obtained the right solution using ideint. Do I have some problems with the solve_ipv program?
ODEINT program :
# Arhenius Function
def Arhenius(a, T):
dadT = np.exp(lnA)/v * np.exp(- E / (8.3144 * T)) * c * np.abs(a) ** m * np.abs((1 - np.abs(a))) ** n
return dadT
# Initial data
pt = 100000
T0 = 273
Tf = 1500
a0 = 0.0000000001
T = np.linspace(T0, Tf, pt)
a_sol = np.zeros(pt)
dadt = np.zeros(pt)
# ODE solve
a_t = odeint(Arhenius, a0, T)
# For removing errored values and have maximum at 1
search1 = np.where(np.isclose(a_t, 1))
try:
ia_1 = search1[0][0]
a_sol[0,:] = a_t[:,0]
a_sol[0,ia_1+1:pt] = 1
except:
a_sol = a_t[:,0]
# Calculate the new derivative
dadt = np.exp(lnA) * np.exp(- E / (8.3144 * T)) * c * np.abs(a_sol) ** m * np.abs((1 - a_sol)) ** n
PROGRAM with solve_ivp :
# Arhenius Function
def Arhenius(a, T):
dadT = np.exp(lnA) * np.exp(- E / (8.3144 * T)) * c * np.abs(a) ** m * np.abs((1 - np.abs(a))) ** n
return dadT
# Initial data
pt = 100000
T0 = 273
Tf = 1500
a0 = 0.0000000001
T = np.linspace(T0, Tf, pt)
a_sol = np.zeros(pt)
dadt = np.zeros(pt)
# ODE solve
a_t = solve_ivp(Arhenius, t_span = (T0, Tf), y0 = (a0,), t_eval = T, method = 'RK45')
a_sol= a_t.y
# Calculate the new derivative
dadt = np.exp(lnA) * np.exp(- E / (8.3144 * T)) * c * np.abs(a_sol) ** m * np.abs((1 - a_sol)) ** n

Octave's fzero() and Scipy's root() functions not producing the same result

I have to find the zero of the following equation:
This is an equation of state, and it doesn't matter a whole lot if you don't know exactly what an EoS is. With the root of the above equation I compute (among other things) the compressibility factors of a gaseous substance, Z, for different pressures and temperatures. With those solutions I can plot families of curves having pressures as abscissas, Zs as ordinates and temperatures as parameters. Beta, delta, eta and phi are constants, as well as pr and Tr.
After banging my head unsuccessfully against the Newton-Raphson method (which works fine with several other EoSs) I decided to try Scipy's root() function. To my discontent, I obtained this chart:
As one can easily perceive, this saw-toothed chart is totally flawed. I should've gotten smooth curves instead. Also, Z typically ranges between 0.25 and 2.0. Thus, Zs equal to, say, 3 or above are completely off the mark. Yet the curves with Z < 2 look OK, although highly compressed because of the scale.
Then I tried Octave's fzero() solver, and got this:
Which is exactly what I should've gotten, as those are curves with the correct/expected shape!
Here comes my question. Apparently Scipy's root() and Octave's fzero() are based on the same algorithm hybrid from MINPACK. Still, the results clearly aren't the same. Do any of you know why?
I plotted a curve of the Zs obtained by Octave (abscissas) against the ones obtained with Scipy and got this:
The points at the bottom hinting a straight line represent y = x, i.e., the points for which Octave and Scipy agreed in the solutions they presented. The other points are in total disagreement and, unfortunately, they're too many to be simply ignored.
I might always use Octave from now on since it works, but I want to keep using Python.
What's your take on this? Any suggestion?
PS: Here's the original Python code. It produces the first chart shown here.
import numpy
from scipy.optimize import root
import matplotlib.pyplot as plt
def fx(x, beta, delta, eta, phi, pr_, Tr_):
tmp = phi*x**2
etmp = numpy.exp(-tmp)
f = x*(1.0 + beta*x + delta*x**4 + eta*x**2*(1.0 + tmp)*etmp) - pr_/Tr_
return f
def zsbwr(pr_, Tr_, pc_, Tc_, zc_, w_, MW_, phase=0):
d1 = 0.4912 + 0.6478*w_
d2 = 0.3000 + 0.3619*w_
e1 = 0.0841 + 0.1318*w_ + 0.0018*w_**2
e2 = 0.075 + 0.2408*w_ - 0.014*w_**2
e3 = -0.0065 + 0.1798*w_ - 0.0078*w_**2
f = 0.770
ee = (2.0 - 5.0*zc_)*numpy.exp(f)/(1.0 + f + 3.0*f**2 - 2*f**3)
d = (1.0 - 2.0*zc_ - ee*(1.0 + f - 2.0*f**2)*numpy.exp(-f))/3.0
b = zc_ - 1.0 - d - ee*(1.0 + f)*numpy.exp(-f)
bc = b*zc_
dc = d*zc_**4
ec = ee*zc_**2
phi = f*zc_**2
beta = bc + 0.422*(1.0 - 1.0/Tr_**1.6) + 0.234*w_*(1.0- 1.0/Tr_**3)
delta = dc*(1.0+ d1*(1.0/Tr_ - 1.0) + d2*(1.0/Tr_ - 1.0)**2)
eta = ec + e1*(1.0/Tr_ - 1.0) + e2*(1.0/Tr_ - 1.0)**2 \
+ e3*(1.0/Tr_ - 1.0)**3
if Tr_ > 1:
y0 = pr_/Tr_/(1.0 + beta*pr_/Tr_)
else:
if phase == 0:
y0 = pr_/Tr_/(1.0 + beta*pr_/Tr_)
else:
y0 = 1.0/zc_**(1.0 + (1.0 - Tr_)**(2.0/7.0))
raiz = root(fx,y0,args=(beta, delta, eta, phi, pr_, Tr_),method='hybr',tol=1.0e-06)
return pr_/raiz.x[0]/Tr_
if __name__ == "__main__":
Tc = 304.13
pc = 73.773
omega = 0.22394
zc = 0.2746
MW = 44.01
Tr = numpy.array([0.8, 0.93793103])
pr = numpy.linspace(0.5, 14.5, 25)
zfactor = numpy.zeros((2, 25))
for redT in Tr:
j = numpy.where(Tr == redT)[0][0]
for redp in pr:
indp = numpy.where(pr == redp)[0][0]
zfactor[j][indp] = zsbwr(redp, redT, pc, Tc, zc, omega, MW, 0)
for key, value in enumerate(zfactor):
plt.plot(pr, value, '.-', linewidth=1, color='#ef082a')
plt.figure(1, figsize=(7, 6))
plt.xlabel('$p_R$', fontsize=16)
plt.ylabel('$Z$', fontsize=16)
plt.grid(color='#aaaaaa', linestyle='--', linewidth=1)
plt.show()
And now the Octave script:
function SoaveBenedictWebbRubin
format long;
nTr = 11;
npr = 43;
ic = 1;
nome = {"CO2"; "N2"; "H2O"; "CH4"; "C2H6"; "C3H8"};
comp = [304.13, 73.773, 0.22394, 0.2746, 44.0100; ...
126.19, 33.958, 0.03700, 0.2894, 28.0134; ...
647.14, 220.640, 0.34430, 0.2294, 18.0153; ...
190.56, 45.992, 0.01100, 0.2863, 16.0430; ...
305.33, 48.718, 0.09930, 0.2776, 30.0700; ...
369.83, 42.477, 0.15240, 0.2769, 44.0970];
Tc = comp(ic,1);
pc = comp(ic,2);
w = comp(ic,3);
zc = comp(ic,4);
MW = comp(ic,5);
Tr = linspace(0.8, 2.8, nTr);
pr = linspace(0.2, 7.2, npr);
figure(1, 'position',[300,150,600,500])
for i=1:size(Tr, 2)
icont = 1;
zval = zeros(1, npr);
for j=1:size(pr, 2)
[Z, phi, density] = SBWR(Tr(i), pr(j), Tc, pc, zc, w, MW, 0);
zval(icont) = Z;
icont = icont + 1;
endfor
plot(pr,zval,'o','markerfacecolor','white','linestyle','-','markersize',3);
hold on;
endfor
str = strcat("Soave-Benedict-Webb-Rubin para","\t",nome(ic));
xlabel("p_r",'fontsize',15);
ylabel("Z",'fontsize',15);
title(str,'fontsize',12);
end
function [Z,phi,density] = SBWR(Tr, pr, Tc, pc, Zc, w, MW, phase)
R = 8.3144E-5; % universal gas constant (bar·m3/(mol·K))
% Definition of parameters
d1 = 0.4912 + 0.6478*w;
d2 = 0.3 + 0.3619*w;
e1 = 0.0841 + 0.1318*w + 0.0018*w**2;
e2 = 0.075 + 0.2408*w - 0.014*w**2;
e3 = -0.0065 + 0.1798*w - 0.0078*w**2;
f = 0.77;
ee = (2.0 - 5.0*Zc)*exp(f)/(1.0 + f + 3.0*f**2 - 2.0*f**3);
d = (1.0 - 2.0*Zc - ee*(1.0 + f - 2.0*f**2)*exp(-f))/3.0;
b = Zc - 1.0 - d - ee*(1.0 + f)*exp(-f);
bc = b*Zc;
dc = d*Zc**4;
ec = ee*Zc**2;
ff = f*Zc**2;
beta = bc + 0.422*(1.0 - 1.0/Tr**1.6) + 0.234*w*(1.0 - 1.0/Tr**3);
delta = dc*(1.0 + d1*(1.0/Tr - 1.0) + d2*(1.0/Tr - 1.0)**2);
eta = ec + e1*(1.0/Tr - 1.0) + e2*(1.0/Tr - 1.0)**2 + e3*(1.0/Tr - 1.0)**3;
if Tr > 1
y0 = pr/Tr/(1.0 + beta*pr/Tr);
else
if phase == 0
y0 = pr/Tr/(1.0 + beta*pr/Tr);
else
y0 = 1.0/Zc**(1.0 + (1.0 - Tr)**(2.0/7.0));
end
end
fun = #(y)y*(1.0 + beta*y + delta*y**4 + eta*y**2*(1.0 + ff*y**2)*exp(-ff*y**2)) - pr/Tr;
options = optimset('TolX',1.0e-06);
yi = fzero(fun,y0,options);
Z = pr/yi/Tr;
density = yi*pc*MW/(1000.0*R*Tc);
phi = exp(Z - 1.0 - log(Z) + beta*yi + 0.25*delta*yi**4 - eta/ff*(exp(-ff*yi**2)*(1.0 + 0.5*ff*yi**2) - 1.0));
end
First things first. Your two files weren't equivalent, therefore a direct comparison of the underlying algorithms was difficult. I attach here an octave and a python version that are directly comparable line-for-line that can be compared side-by-side.
%%% File: SoaveBenedictWebbRubin.m:
% No package imports necessary
function SoaveBenedictWebbRubin()
nome = {"CO2"; "N2"; "H2O"; "CH4"; "C2H6"; "C3H8"};
comp = [ 304.13, 73.773, 0.22394, 0.2746, 44.0100;
126.19, 33.958, 0.03700, 0.2894, 28.0134;
647.14, 220.640, 0.34430, 0.2294, 18.0153;
190.56, 45.992, 0.01100, 0.2863, 16.0430;
305.33, 48.718, 0.09930, 0.2776, 30.0700;
369.83, 42.477, 0.15240, 0.2769, 44.0970 ];
nTr = 11; Tr = linspace( 0.8, 2.8, nTr );
npr = 43; pr = linspace( 0.2, 7.2, npr );
ic = 1;
Tc = comp(ic, 1);
pc = comp(ic, 2);
w = comp(ic, 3);
zc = comp(ic, 4);
MW = comp(ic, 5);
figure(1, 'position',[300,150,600,500])
zvalues = zeros( nTr, npr );
for i = 1 : nTr
for j = 1 : npr
zvalues(i,j) = zSBWR( Tr(i), pr(j), Tc, pc, zc, w, MW, 0 );
endfor
endfor
hold on
for i = 1 : nTr
plot( pr, zvalues(i,:), 'o-', 'markerfacecolor', 'white', 'markersize', 3);
endfor
hold off
xlabel( "p_r", 'fontsize', 15 );
ylabel( "Z" , 'fontsize', 15 );
title( ["Soave-Benedict-Webb-Rubin para\t", nome(ic)], 'fontsize', 12 );
endfunction % main
function Z = zSBWR( Tr, pr, Tc, pc, Zc, w, MW, phase )
% Definition of parameters
d1 = 0.4912 + 0.6478 * w;
d2 = 0.3 + 0.3619 * w;
e1 = 0.0841 + 0.1318 * w + 0.0018 * w ** 2;
e2 = 0.075 + 0.2408 * w - 0.014 * w ** 2;
e3 = -0.0065 + 0.1798 * w - 0.0078 * w ** 2;
f = 0.77;
ee = (2.0 - 5.0 * Zc) * exp( f ) / (1.0 + f + 3.0 * f ** 2 - 2.0 * f ** 3 );
d = (1.0 - 2.0 * Zc - ee * (1.0 + f - 2.0 * f ** 2) * exp( -f ) ) / 3.0;
b = Zc - 1.0 - d - ee * (1.0 + f) * exp( -f );
bc = b * Zc;
dc = d * Zc ** 4;
ec = ee * Zc ** 2;
phi = f * Zc ** 2;
beta = bc + 0.422 * (1.0 - 1.0 / Tr ** 1.6) + 0.234 * w * (1.0 - 1.0 / Tr ** 3);
delta = dc * (1.0 + d1 * (1.0 / Tr - 1.0) + d2 * (1.0 / Tr - 1.0) ** 2);
eta = ec + e1 * (1.0 / Tr - 1.0) + e2 * (1.0 / Tr - 1.0) ** 2 + e3 * (1.0 / Tr - 1.0) ** 3;
if Tr > 1
y0 = pr / Tr / (1.0 + beta * pr / Tr);
else
if phase == 0
y0 = pr / Tr / (1.0 + beta * pr / Tr);
else
y0 = 1.0 / Zc ** (1.0 + (1.0 - Tr) ** (2.0 / 7.0) );
endif
endif
yi = fzero( #(y) fx(y, beta, delta, eta, phi, pr, Tr), y0, optimset( 'TolX', 1.0e-06 ) );
Z = pr / yi / Tr;
endfunction % zSBWR
function Out = fx( y, beta, delta, eta, phi, pr, Tr )
Out = y * (1.0 + beta * y + delta * y ** 4 + eta * y ** 2 * (1.0 + phi * y ** 2) * exp( -phi * y ** 2 ) ) - pr / Tr;
endfunction
### File: SoaveBenedictWebbRubin.py
import numpy; from scipy.optimize import root; import matplotlib.pyplot as plt
def SoaveBenedictWebbRubin():
nome = ["CO2", "N2", "H2O", "CH4", "C2H6", "C3H8"]
comp = numpy.array( [ [ 304.13, 73.773, 0.22394, 0.2746, 44.0100 ],
[ 126.19, 33.958, 0.03700, 0.2894, 28.0134 ],
[ 647.14, 220.640, 0.34430, 0.2294, 18.0153 ],
[ 190.56, 45.992, 0.01100, 0.2863, 16.0430 ],
[ 305.33, 48.718, 0.09930, 0.2776, 30.0700 ],
[ 369.83, 42.477, 0.15240, 0.2769, 44.0970 ] ] )
nTr = 11; Tr = numpy.linspace( 0.8, 2.8, nTr )
npr = 43; pr = numpy.linspace( 0.2, 7.2, npr )
ic = 0
Tc = comp[ic, 0]
pc = comp[ic, 1]
w = comp[ic, 2]
zc = comp[ic, 3]
MW = comp[ic, 4]
plt.figure(1, figsize=(7, 6))
zvalues = numpy.zeros( (nTr, npr) )
for i in range( nTr ):
for j in range( npr ):
zvalues[i,j] = zsbwr( Tr[i], pr[j], pc, Tc, zc, w, MW, 0)
# endfor
# endfor
for i in range(nTr):
plt.plot(pr, zvalues[i, :], 'o-', markerfacecolor='white', markersize=3 )
plt.xlabel( '$p_r$', fontsize = 15 )
plt.ylabel( '$Z$' , fontsize = 15 )
plt.title( "Soave-Benedict-Webb-Rubin para\t" + nome[ic], fontsize = 12 );
plt.show()
# end function main
def zsbwr( Tr, pr, pc, Tc, zc, w, MW, phase=0):
# Definition of parameters
d1 = 0.4912 + 0.6478 * w
d2 = 0.3000 + 0.3619 * w
e1 = 0.0841 + 0.1318 * w + 0.0018 * w ** 2
e2 = 0.075 + 0.2408 * w - 0.014 * w ** 2
e3 = -0.0065 + 0.1798 * w - 0.0078 * w ** 2
f = 0.770
ee = (2.0 - 5.0 * zc) * numpy.exp( f ) / (1.0 + f + 3.0 * f ** 2 - 2 * f ** 3)
d = (1.0 - 2.0 * zc - ee * (1.0 + f - 2.0 * f ** 2) * numpy.exp( -f )) / 3.0
b = zc - 1.0 - d - ee * (1.0 + f) * numpy.exp( -f )
bc = b * zc
dc = d * zc ** 4
ec = ee * zc ** 2
phi = f * zc ** 2
beta = bc + 0.422 * (1.0 - 1.0 / Tr ** 1.6) + 0.234 * w * (1.0 - 1.0 / Tr ** 3)
delta = dc * (1.0 + d1 * (1.0 / Tr - 1.0) + d2 * (1.0 / Tr - 1.0) ** 2)
eta = ec + e1 * (1.0 / Tr - 1.0) + e2 * (1.0 / Tr - 1.0) ** 2 + e3 * (1.0 / Tr - 1.0) ** 3
if Tr > 1:
y0 = pr / Tr / (1.0 + beta * pr / Tr)
else:
if phase == 0:
y0 = pr / Tr / (1.0 + beta * pr / Tr)
else:
y0 = 1.0 / zc ** (1.0 + (1.0 - Tr) ** (2.0 / 7.0))
# endif
# endif
yi = root( fx, y0, args = (beta, delta, eta, phi, pr, Tr), method = 'hybr', tol = 1.0e-06 ).x
return pr / yi / Tr
# endfunction zsbwr
def fx(y, beta, delta, eta, phi, pr, Tr):
return y*(1.0 + beta*y + delta*y**4 + eta*y**2*(1.0 + phi*y**2)*numpy.exp(-phi*y**2)) - pr/Tr
# endfunction fx
if __name__ == "__main__": SoaveBenedictWebbRubin()
This confirms that the outputs from the two systems do in fact differ partly due to the outputs of the underlying algorithms used, rather than because the programs weren't the effectively the same. However, the comparison is not as bad now:
As for "the algorithms are the same", they are not. Octave typically hides more technical implementation details in the source code, so this is always worth checking. In particular, in file fzero.m, right after the docstring, it mentions the following:
This is essentially the ACM "Algorithm 748: Enclosing Zeros of Continuous Functions" due to Alefeld, Potra and Shi, ACM Transactions on Mathematical Software, Vol. 21, No. 3, September 1995.
Although the workflow should be the same, the structure of the algorithm has been transformed non-trivially; instead of the authors' approach of sequentially calling building blocks subprograms we implement here a FSM version using one interior point determination and one bracketing per iteration, thus reducing the number of temporary variables and simplifying the algorithm structure. Further, this approach reduces the need for external functions and error handling. The algorithm has also been slightly modified.
Whereas according to help(root):
Notes
This section describes the available solvers that can be selected by the 'method' parameter. The default method is hybr.
Method hybr uses a modification of the Powell hybrid method as
implemented in MINPACK [1].
References
[1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom. 1980. User Guide for MINPACK-1.
I tried a couple of the alternatives mentioned in help(root). The df-sane one seems to be optimised for 'scalar' values (i.e. like 'fzero'). Indeed, while not as good as octave's implementation, this does give a slightly 'saner' (pun intended) result:
Having said all that, the hybrid method doesn't dump any warnings, but if you use some of the other alternatives, many of them will inform you that you have a lot of effective divisions by zero, nans, and infs, in places were you shouldn't, which is presumably why you get such weird results. So, perhaps it's not that octave's algorithm is "better" per se, but that it handles "division by zero" instances in this problem slightly more gracefully.
I don't know the exact nature of your problem, but it may be that the algorithms on python's side simply expect you to feed it well-conditioned problems instead. Perhaps some of your computations in zsbwr() result in division by zero occasions or unrealistic zeros etc, which you could detect and treat as special cases?
(Please trim the code to a minimum example which only show the root-finding part and parameters where it finds an unwanted root.)
Then the procedure is to manually inspect the equation to find the localization interval for the root you want and use it. I typically use brentq.

Integrate Over Multiple Columns in 1 List to Fill Additional List With Same Number Of Columns

I am intending to take a list of random variables and alter a previous list in each column by said random variables. However, for the purpose of my function, each variable must be used in a Gamma function as well as integrated.
x[t] = c * (1 / (2 ** (v / 2) + test[t - 1]) * (gamma((v / 2) + test[t - 1]))) * integrate.\
quad(lambda h: np.exp(-h / 2) * h ** ((v / 2) + test[t - 1] - 1), 0, np.inf)
x[ t ] is an np.zeros((x , y)) list, and test[t - 1] is an np.zeros((x - 1, y)) list
I have filled test[ ] with the appropriate random variables, but I am unable to pass them through this equation to complete the columns of row [ t ] in x
When I try to run my current code, I receive:
File "C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\scipy\integrate\quadpack.py", line 450, in _quad
return _quadpack._qagie(func,bound,infbounds,args,full_output,epsabs,epsrel,limit)
TypeError: only size-1 arrays can be converted to Python scalars
Is there a different special function which allows me to use each column's variable to solve for my desired x[ t ]?
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import stats
import mpmath as mp
import scipy.integrate as integrate
from scipy.special import gamma
T = 1
beta = 0.5
x0 = 0.05
q = 0
mu = x0 - q
alpha = - (2 - beta) * mu
sigma0 = 0.1
sigma = (2 - beta) * sigma0
b = - ((1 - beta) / (2 * mu) * (sigma0 ** 2))
simulations = 100
M = 50
dt = T / M
def srd_sampled_nxc2():
x = np.zeros((M + 1, simulations))
x[0] = x0
test = np.zeros((M, simulations))
for t in range(1, M + 1):
v = 4 * b * alpha / sigma ** 2
c = (sigma ** 2 * (1 - np.exp(-alpha * dt))) / (4 * alpha)
nc = np.exp(-alpha * dt) / c * x[t - 1]
if v > 1:
x[t] = c * ((np.random.standard_normal(simulations) + nc ** 0.5) ** 2 + mp.nsum(
lambda i: np.random.standard_normal(simulations) ** 2, [0, v - 1]))
else:
max_array = []
nc_over_2 = [l / 2 for l in nc]
for p in range(simulations):
sump = []
poisson_start = 0
while poisson_start <= 1:
x_i = sum(-np.log(np.random.uniform(0, 1, simulations)) / nc_over_2)
sump.append(
x_i
)
poisson_start += x_i
x_n = max(sump)
max_array.append(
x_n
)
sump = []
test[t - 1] = max_array
x[t] = c * (1 / (2 ** ((v / 2) + test[t - 1])) * (gamma((v / 2) + test[t - 1]))) * integrate.\
quad(lambda h: np.exp(-h / 2) * h ** ((v / 2) + test[t - 1] - 1), 0, np.inf)
max_array = []
return x
Ultimately ended up finding a workaround which is simple to implement:
else:
max_array = []
for p in range(simulations):
k = nc[t - 1, p]
lam = k / 2
poisson_samp = 0
while poisson_samp <= 1:
x_i = -math.log(np.random.uniform(0, 1)) / lam
max_array.append(
x_i
)
poisson_samp += x_i
test[t - 1, p] = len(max_array) - 1
max_array.clear()
for f in range(simulations):
n = test[t - 1, f]
z = integrate.quad(lambda h: np.exp(-h / 2) * h ** ((v / 2) + n - 1), 0, 1)
new[t - 1, f] = z[0]
x[t] = c * (1 / (2 ** ((v / 2) + test[t - 1]) * (gamma((v / 2) + test[t - 1]))) * new[0])
The only real problem is the shrinkage of x[t] which leads to dividing by zero--just a formula problem.

Categories

Resources