I want to randomly generate n points on this plot.
I have used the .scatter method, but the points don't seem to be random. is there a way I could simply pass a number and it to generate that number of points?
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
def f(t):
s1 = np.cos(2*np.pi*t)
e1 = np.exp(-t)
return np.multiply(s1,e1)
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
t3 = np.arange(0.0, 2.0, 0.01)
fig = plt.figure(figsize=plt.figaspect(2.))
ax = fig.add_subplot(2, 1, 2, projection='3d')
X = np.arange(-20, 20, 0.25)
xlen = len(X)
Y = np.arange(-20, 20, 0.25)
ylen = len(Y)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, color='yellow',
linewidth=0, antialiased=False)
scatteredpoints = ax.scatter(X[1::20, 1::20],Y[1::20, 1::20],Z[1::20, 1::20],linewidth=0, antialiased=False)
ax.set_zlim3d(-1, 1)
plt.show()
You need to feed random data to plt.scatter.
def scatterRandomPoints(n):
plt.scatter(*np.random.randint(100, size = (2, n)))
Related
I try to draw a sphere to represent a qubit using matplotlib
import numpy as np
import matplotlib.pyplot as plt
theta = [0, np.pi]
phi = [0, 2* np.pi]
N=100
theta_array = np.linspace(theta[0], theta[1], N)
phi_array = np.linspace(phi[0], phi[1], N)
theta_grid, phi_grid = np.meshgrid(theta_array,phi_array)
x = np.sin(theta_grid) * np.cos(phi_grid)
y = np.sin(theta_grid) * np.sin(phi_grid)
z = np.cos(theta_grid)
fig = plt.figure(figsize=(6,6))
ax = fig.gca(projection='3d')
ax.plot_surface(x, y, z, rstride=1, cstride=1, shade=False,linewidth=0)
plt.show()
I want to add tube arrows on the sphere with directions parallel with xyz axis, like this:
I am not an expert in matplotlib, so it's seem pretty tough to me. Can anyone help me? thanks in advance!
You can use the quiver function to to what you want.
See code below:
import numpy as np
import matplotlib.pyplot as plt
theta = [0, np.pi]
phi = [0, 2* np.pi]
N=100
theta_array = np.linspace(theta[0], theta[1], N)
phi_array = np.linspace(phi[0], phi[1], N)
theta_grid, phi_grid = np.meshgrid(theta_array,phi_array)
x = np.sin(theta_grid) * np.cos(phi_grid)
y = np.sin(theta_grid) * np.sin(phi_grid)
z = np.cos(theta_grid)
fig = plt.figure(figsize=(6,6))
ax = fig.gca(projection='3d')
ax.view_init(azim=60)
ax.plot_surface(x, y, z, rstride=1, cstride=1, shade=False,linewidth=0)
#Set up arrows
ax.quiver(1,0,0,1,0,0,color = 'k', alpha = .8, lw = 3) #x arrow
ax.text(2.4,0,0,'Sx',fontsize=20)
ax.quiver(0,1,0,0,1,0,color = 'k', alpha = .8, lw = 3)#y arrow
ax.text(0,2.4,0,'Sy',fontsize=20)
ax.quiver(0,0,1,0,0,1,color = 'k', alpha = .8, lw = 3)#z arrow
ax.text(-0.3,0,1.8,'Sz',fontsize=20)
plt.show()
And the output gives:
I found a tutorial online for this matplotlib and numpy graph. The code runs smoothly, but there is no output. I have tried to save the graph as a file, but that does not seem to work.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
fig = plt.figure()
ax = plt.axes(projection="3d")
zline = np.linspace(0, 15, 1000)
xline = np.sin(zline)
yline = np.cos(zline)
ax.plot3D(xline, yline, zline, "gray") # Data for three-dimensional scattered points
zdata = 15 * np.random.random(100)
xdata = np.sin(zdata) + 0.1 * np.random.randn(100)
ydata = np.cos(zdata) + 0.1 * np.random.randn(100)
ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap="Greens");
def f(x, y):
return np.sin(np.sqrt(x ** 2 + y ** 2))
x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');
theta = 2 * np.pi * np.random.random(1000)
r = 6 * np.random.random(1000)
x = np.ravel(r * np.sin(theta))
y = np.ravel(r * np.cos(theta))
z = f(x, y)
ax = plt.axes(projection="3d")
ax.plot_trisurf(x, y, z,cmap="viridis", edgecolor="none");
The link to the website is https://www.edureka.co/blog/python-projects/. Surely there is some way to access the graphical user interface to display the plots?
Adding plt.show() at the end will display both of the graphs.
I am trying to use the colormap feature of a 3d-surface plot in matplotlib to color the surface based on values from another array instead of the z-values.
The surface plot is created and displayed as follows:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def gauss(x, y, w_0):
r = np.sqrt(x**2 + y**2)
return np.exp(-2*r**2 / w_0**2)
x = np.linspace(-100, 100, 100)
y = np.linspace(-100, 100, 100)
X, Y = np.meshgrid(x, y)
Z = gauss(X, Y, 50)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot_surface(X, Y, Z, cmap='jet')
Now instead of coloring based on elevation of the 3d-surface, I am looking to supply the color data for the surface in form of another array, here as an example a random one:
color_data = np.random.uniform(0, 1, size=(Z.shape))
However, I did not find a solution to colorize the 3d-surface based on those values. Ideally, it would look like a contourf plot in 3d, just on the 3d surface.
You can use matplotlib.colors.from_levels_and_colors to obtain a colormap and normalization, then apply those to the values to be colormapped.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.colors
x = np.linspace(-100, 100, 101)
y = np.linspace(-100, 100, 101)
X, Y = np.meshgrid(x, y)
Z = np.exp(-2*np.sqrt(X**2 + Y**2)**2 / 50**2)
c = X+50*np.cos(Y/20) # values to be colormapped
N = 11 # Number of level (edges)
levels = np.linspace(-150,150,N)
colors = plt.cm.get_cmap("RdYlGn", N-1)(np.arange(N-1))
cmap, norm = matplotlib.colors.from_levels_and_colors(levels, colors)
color_vals = cmap(norm(c))
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot_surface(X, Y, Z, facecolors=color_vals, rstride=1, cstride=1)
plt.show()
I can't find a way to draw errorbars in a 3D scatter plot in matplotlib.
Basically, for the following piece of code
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y, Z = axes3d.get_test_data(1)
ax.scatter(X, Y, zs = Z, zdir = 'z')
I am looking for something like
ax.errorbar(X,Y, zs = Z, dY, dX, zserr = dZ)
Is there a way to do this in mplot3d? If not, are there other libraries with this function?
There is clearly example on forum http://mple.m-artwork.eu/home/posts/simple3dplotwith3derrorbars
Here is the code but is not built-in functionality:
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as axes3d
fig = plt.figure(dpi=100)
ax = fig.add_subplot(111, projection='3d')
#data
fx = [0.673574075,0.727952994,0.6746285]
fy = [0.331657721,0.447817839,0.37733386]
fz = [18.13629648,8.620699842,9.807536512]
#error data
xerror = [0.041504064,0.02402152,0.059383144]
yerror = [0.015649804,0.12643117,0.068676131]
zerror = [3.677693713,1.345712547,0.724095592]
#plot points
ax.plot(fx, fy, fz, linestyle="None", marker="o")
#plot errorbars
for i in np.arange(0, len(fx)):
ax.plot([fx[i]+xerror[i], fx[i]-xerror[i]], [fy[i], fy[i]], [fz[i], fz[i]], marker="_")
ax.plot([fx[i], fx[i]], [fy[i]+yerror[i], fy[i]-yerror[i]], [fz[i], fz[i]], marker="_")
ax.plot([fx[i], fx[i]], [fy[i], fy[i]], [fz[i]+zerror[i], fz[i]-zerror[i]], marker="_")
#configure axes
ax.set_xlim3d(0.55, 0.8)
ax.set_ylim3d(0.2, 0.5)
ax.set_zlim3d(8, 19)
plt.show()
I ended up writing the method for matplotlib: official example for 3D errorbars:
import matplotlib.pyplot as plt
import numpy as np
ax = plt.figure().add_subplot(projection='3d')
# setting up a parametric curve
t = np.arange(0, 2*np.pi+.1, 0.01)
x, y, z = np.sin(t), np.cos(3*t), np.sin(5*t)
estep = 15
i = np.arange(t.size)
zuplims = (i % estep == 0) & (i // estep % 3 == 0)
zlolims = (i % estep == 0) & (i // estep % 3 == 2)
ax.errorbar(x, y, z, 0.2, zuplims=zuplims, zlolims=zlolims, errorevery=estep)
ax.set_xlabel("X label")
ax.set_ylabel("Y label")
ax.set_zlabel("Z label")
plt.show()
How do I add a small filled circle or point to a countour plot in matplotlib?
Here is an example, using pylab.Circle:
import numpy as np
import matplotlib.pyplot as plt
e = np.e
X, Y = np.meshgrid(np.linspace(0, 5, 100), np.linspace(0, 5, 100))
F = X ** Y
G = Y ** X
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
circ = plt.Circle((e, e), radius=0.07, color='g')
plt.contour(X, Y, (F - G), [0])
ax.add_patch(circ)
plt.show()
And here is another example (though not a contour plot) from the docs.
Or, you could just use plot:
import numpy as np
import matplotlib.pyplot as plt
e = np.e
X, Y = np.meshgrid(np.linspace(0, 5, 100), np.linspace(0, 5, 100))
F = X ** Y
G = Y ** X
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
plt.contour(X, Y, (F - G), [0])
plt.plot([e], [e], 'g.', markersize=20.0)
plt.show()