Python Partial Harmonics - python

Could someone help check why the result is always one and let me know what I did wrong? Thanks
Correct result should be: 1/1 + 1/2 + 1/3 == 1.83333333333.
x = int(input("Enter n: "))
assert x > 0, "n must be greater than zero!"
def one_over_n(x):
result = 0
for n in range(x):
n += 1
result += 1 / n
return result
r = one_over_n(x)
print("one_over_n( {0:d} ): {1:f}" .format(x, r))

It will work correctly on python 3, but not in python 2
>>> 1/2
0
That means you are just adding zeroes, to one. You will need to change either numerator or denominator to a float number e.g. 1/2.0, so change your code to
result += 1.0 / n
See Pep 238 to see why it was changed in python 3.
btw floating point numbers can't represent all fractions, so if you are just adding fractions, you can use Fraction class e.g.
>>> from fractions import Fraction as F
>>> F(1,1) + F(1,2) + F(1,3)
Fraction(11, 6)

As an alternative, to force Python 2 perform division as you expect (rather than integer division), add:
from __future__ import division

Related

Python 3 - float(X) * i = int(Z)

I have a very large number, both before and after the decimal, but for this I'll just call it 4.58.
I want to know the number, Y, that will yield me an integer if multiplied by X and not any sort of float number.
Here is my code:
from decimal import *
setcontext(ExtendedContext)
getcontext().prec = 300
x=Decimal('4.58')
while True:
i=1
a=Decimal(i*x)
if float(a).is_integer():
print(i*x)
break
else:
i=+1
However, this method is incredibly slow and inefficient. I was wondering how could I implement continued fractions or some other method to make it predict the value of Y?
Edit
The decimal module stores float numbers more accurately (As strings), so 0.5 won't become 0.499999999.
Edit 2
I've got X (4.58).
I want to know what number will multiply by X to make an integer; as efficiently as possible.
Edit 3
Okay, maybe not my best question yet.
Here's my dilemma.
I've got a number spat out from a trivial programme I made. That number is a decimal number, 1.5.
All I want to do is find what integer will multiply by my decimal to yield another integer.
For 1.5, the best answer will be 2. (1.5*2=3) (float*int=int)
My while-loop above will do that, eventually, but I just wanted to know whether there was a better way to do this, such as continued fractions; and if there was, how could I implement it.
Edit 4
Here's my code thanks to user6794072. It's lengthy but functional.
from gmpy2 import mpz, isqrt
from fractions import Fraction
import operator
import functools
from decimal import *
setcontext(ExtendedContext)
getcontext().prec = 300
def factors(n):
n = mpz(n)
result = set()
result |= {mpz(1), n}
def all_multiples(result, n, factor):
z = n
f = mpz(factor)
while z % f == 0:
result |= {f, z // f}
f += factor
return result
result = all_multiples(result, n, 2)
result = all_multiples(result, n, 3)
for i in range(1, isqrt(n) + 1, 6):
i1 = i + 1
i2 = i + 5
if not n % i1:
result |= {mpz(i1), n // i1}
if not n % i2:
result |= {mpz(i2), n // i2}
return result
j=Decimal('4.58')
a=(Fraction(j).numerator)
b=(Fraction(j).denominator)
y=(factors(a))
x=(factors(b))
q=([item for item in x if item not in y])
w=([item for item in y if item not in x]) q.extend(w)
p=(functools.reduce(operator.mul, q, 1)) ans=(p*j)
print(ans)
If I understand your question correctly, you want to find the smallest integer (i) that can be multiplied to a non-integer number (n) so that:
i*n is an integer
I would do this by finding the factors of the numerator and denominator for n. In your example, if n = 4.58, then you can extract 458 for the numerator and 100 for the denominator.
The multiples of 458 are 2 and 229
The multiples of 100 are 2, 2, 5, 5
You can cross off one instance of 2 for the numerator and denominator. Then your solution is just multiplying the remaining factors in the denominator: in this case, 2*5*5 or 50.
Well think of what if you wanted to reach z = 1 and then use the fact that z == z * 1 to scale the answer. For any float x != 0.0, y = 1/x will yield z = 1, so for arbitrary integer z, just use y = z/x.
I'm not a Python programmer, but what about round function?

Random rounding to integer in Python

I am looking for a way to round a floating point number up or down to the next integer based on a probability derived from the numbers after the decimal point. For example the floating number 6.1 can be rounded to 6 and to 7. The probability for beeing rounded to 7 is 0.1 and the probability to be rounded to 6 is 1-0.1. So if I run this rounding experiment infinite times, the average of all integer results should be 6.1 again. I don't know if there is a name for such a procedure and if there is already and implemented function in Python.
Of course it'd be very nice if it is possible to round also to e.g. 2 decimal places the same way.
Does that make sense? Any ideas?
Here is a nice one-liner for this. By using the floor function, it will only be rounded up if the random number between 0 and 1 is enough to bring it up to the next highest integer. This method also works with positive and negative numbers equally well.
def probabilistic_round(x):
return int(math.floor(x + random.random()))
Consider the case of a negative input x = -2.25. 75% of the time the random number will be greater than or equal to 0.25 in which case the floor function will result in -2 being the answer. The other 25% of time the number will get rounded down to -3.
To round to different decimal places it can be modified as follows:
def probabilistic_round(x, decimal_places=0):
factor = 10.0**decimal_places
return int(math.floor(x*factor + random.random()))/factor
The probability you're looking for is x-int(x).
To sample with this probability, do random.random() < x-int(x)
import random
import math
import numpy as np
def prob_round(x):
sign = np.sign(x)
x = abs(x)
is_up = random.random() < x-int(x)
round_func = math.ceil if is_up else math.floor
return sign * round_func(x)
x = 6.1
sum( prob_round(x) for i in range(100) ) / 100.
=> 6.12
EDIT: adding an optional prec argument:
def prob_round(x, prec = 0):
fixup = np.sign(x) * 10**prec
x *= fixup
is_up = random.random() < x-int(x)
round_func = math.ceil if is_up else math.floor
return round_func(x) / fixup
x = 8.33333333
[ prob_round(x, prec = 2) for i in range(10) ]
=> [8.3399999999999999,
8.3300000000000001,
8.3399999999999999,
8.3300000000000001,
8.3300000000000001,
8.3300000000000001,
8.3300000000000001,
8.3300000000000001,
8.3399999999999999,
8.3399999999999999]
The most succinct way to do this for non-negative x is:
int(x + random.random())
If for example x == 6.1, then there's a 10% chance that random.random() will be large enough to make x + random.random() >= 7.
Note that if x == 6, then this expression is guaranteed to return 6, because random.random() is always in the range [0, 1).
Update: This method only works for non-negative inputs. For a solution that works for negative numbers, see Chris Locke's answer.
For rounding positive values to integers, you can do this very concisely:
x = int(x) + (random.random() < x - int(x))
This works because Python's bool type is a subclass of int. The value True is equal to 1 and False is equal to 0.
I also came up with a solution based on the binomial function of random and the code already provided by shx2:
def prob_round(x, prec = 0):
fixup = np.sign(x) * 10**prec
x *= fixup
round_func = int(x) + np.random.binomial(1,x-int(x))
return round_func/fixup
Here's an easy way:
x = round(random.random()*100)
The *100 bit means 1 to 100.
If *200, it means 1 to 200.

floating points precision in complicated calculations

For calculating Catalan Numbers, I wrote two codes. One (def "Catalan") works recursively and returns the right Catalan Numbers.
dicatalan = {}
def catalan(n):
if n == 0:
return 1
else:
res = 0
if n not in dicatalan:
for i in range(n):
res += catalan(i) * catalan(n - i - 1)
dicatalan[n] = res
return dicatalan[n]
the other (def "catalanFormula") applies the implicit formula, but doesn't calculate accurately starting from n=30. the problem derives from floating points - for k=9 the program returns "6835971.999999999" instead of "6835972" and from this moment on accumulates mistakes till the final wrong answer.
(print line is for checking)
def catalanFormula(n):
result = 1
for k in range(2, n + 1):
result *= ((n + k) / k)
print (result)
return int(result)
I tried rounding and failed, tried Decimal import and still got nothing right.
I need the "catalanFormula" work perfectly as "catalan";
Any Ideas?
Thanks!
Try calculating the numerator and denominator separately and dividing them at the end. If you do this, you should be able to make it a little bit farther with floating-point.
I'm sure Python has a package for rational numbers. Using rationals is an even better idea.
See the bigfloat package.
from bigfloat import *
setcontext(quadruple_precision)
def catalanFormula(n):
result = BigFloat(1)
for k in range(2, n + 1):
result *= ((BigFloat(n) + BigFloat(k)) / BigFloat(k))
return result
catalanFormula(30)
Output:
BigFloat.exact('3814986502092304.00000000000000000043', precision=113)

How to set minimum value to a division operation in python?

Is there a standard library function which will set a minimum value to a division operation, for example:
min(1, a/b)
This will ensure that min value of operation above will always be 1, never 0.
Such as:
min(1, 1/5)
1
Also, how do I round up a division:
round_up(1/5) = 1
I always get "0" when I divide 1/5, even with ceil function:
math.ceil(1/5)
0
If you want to use floating point division as default, you can do from __future__ import division:
>>> 1/5
0
>>> from __future__ import division
>>> 1/5
0.2
>>> math.ceil(1/5)
1.0
If you need the result to be of integer type, e.g. for indexing, you can use
int(math.ceil(1/5))
The result of 1/5 is an integer already. If you want the floating point version you need to do 1.0/5. The math.ceil function will then work as you expect: math.ceil(1.0/5) = 1.0.
If you're working with variables instead of constants, use the float(x) function to convert an integer into a floating point.
In [4]: 1/5
Out[4]: 0
In [5]: math.ceil(1/5)
Out[5]: 0.0
In [7]: float(1)/5
Out[7]: 0.2
In [8]: math.ceil(float(1)/5)
Out[8]: 1.0
You could make a round up function for integers like this
>>> def round_up(p, q):
... d, r = divmod(p, q)
... if r != 0:
... d += 1
... return d
...
>>> round_up(1, 5)
1
>>> round_up(0, 5)
0
>>> round_up(5, 5)
1
>>> round_up(6, 5)
2
>>>
Your example doesn't work because an integer dividing an integer is an integer.
As for your min question - what you wrote is probably the best you can do.
I don't know about anything in the standard library, but if you are just trying to make sure the answer is never less than 1, the function is pretty easy:
def min_dev(x,y):
ans = x/y
if ans < 1: # ensures answer cannot be 0
return 1
else: # answers greater than 1 are returned normally
return ans
If, instead, you are looking to round up every answer:
def round_up(x,y):
ans = x//y # // is the floor division operator
if x % y == 1: # tests for remainder (returns 0 for no, 1 for yes)
ans += 1 # same as ans = ans + 1
return ans
else:
return ans
This will round up any answer with a remainder.
I believe Python 3.3 (and I know 3.4) return a float by default for integer division: https://docs.python.org/3/tutorial/introduction.html

Checking if float is equivalent to an integer value in python

In Python 3, I am checking whether a given value is triangular, that is, it can be represented as n * (n + 1) / 2 for some positive integer n.
Can I just write:
import math
def is_triangular1(x):
num = (1 / 2) * (math.sqrt(8 * x + 1) - 1)
return int(num) == num
Or do I need to do check within a tolerance instead?
epsilon = 0.000000000001
def is_triangular2(x):
num = (1 / 2) * (math.sqrt(8 * x + 1) - 1)
return abs(int(num) - num) < epsilon
I checked that both of the functions return same results for x up to 1,000,000. But I am not sure if generally speaking int(x) == x will always correctly determine whether a number is integer, because of the cases when for example 5 is represented as 4.99999999999997 etc.
As far as I know, the second way is the correct one if I do it in C, but I am not sure about Python 3.
There is is_integer function in python float type:
>>> float(1.0).is_integer()
True
>>> float(1.001).is_integer()
False
>>>
Both your implementations have problems. It actually can happen that you end up with something like 4.999999999999997, so using int() is not an option.
I'd go for a completely different approach: First assume that your number is triangular, and compute what n would be in that case. In that first step, you can round generously, since it's only necessary to get the result right if the number actually is triangular. Next, compute n * (n + 1) / 2 for this n, and compare the result to x. Now, you are comparing two integers, so there are no inaccuracies left.
The computation of n can be simplified by expanding
(1/2) * (math.sqrt(8*x+1)-1) = math.sqrt(2 * x + 0.25) - 0.5
and utilizing that
round(y - 0.5) = int(y)
for positive y.
def is_triangular(x):
n = int(math.sqrt(2 * x))
return x == n * (n + 1) / 2
You'll want to do the latter. In Programming in Python 3 the following example is given as the most accurate way to compare
def equal_float(a, b):
#return abs(a - b) <= sys.float_info.epsilon
return abs(a - b) <= chosen_value #see edit below for more info
Also, since epsilon is the "smallest difference the machine can distinguish between two floating-point numbers", you'll want to use <= in your function.
Edit: After reading the comments below I have looked back at the book and it specifically says "Here is a simple function for comparing floats for equality to the limit of the machines accuracy". I believe this was just an example for comparing floats to extreme precision but the fact that error is introduced with many float calculations this should rarely if ever be used. I characterized it as the "most accurate" way to compare in my answer, which in some sense is true, but rarely what is intended when comparing floats or integers to floats. Choosing a value (ex: 0.00000000001) based on the "problem domain" of the function instead of using sys.float_info.epsilon is the correct approach.
Thanks to S.Lott and Sven Marnach for their corrections, and I apologize if I led anyone down the wrong path.
Python does have a Decimal class (in the decimal module), which you could use to avoid the imprecision of floats.
floats can exactly represent all integers in their range - floating-point equality is only tricky if you care about the bit after the point. So, as long as all of the calculations in your formula return whole numbers for the cases you're interested in, int(num) == num is perfectly safe.
So, we need to prove that for any triangular number, every piece of maths you do can be done with integer arithmetic (and anything coming out as a non-integer must imply that x is not triangular):
To start with, we can assume that x must be an integer - this is required in the definition of 'triangular number'.
This being the case, 8*x + 1 will also be an integer, since the integers are closed under + and * .
math.sqrt() returns float; but if x is triangular, then the square root will be a whole number - ie, again exactly represented.
So, for all x that should return true in your functions, int(num) == num will be true, and so your istriangular1 will always work. The only sticking point, as mentioned in the comments to the question, is that Python 2 by default does integer division in the same way as C - int/int => int, truncating if the result can't be represented exactly as an int. So, 1/2 == 0. This is fixed in Python 3, or by having the line
from __future__ import division
near the top of your code.
I think the module decimal is what you need
You can round your number to e.g. 14 decimal places or less:
>>> round(4.999999999999997, 14)
5.0
PS: double precision is about 15 decimal places
It is hard to argue with standards.
In C99 and POSIX, the standard for rounding a float to an int is defined by nearbyint() The important concept is the direction of rounding and the locale specific rounding convention.
Assuming the convention is common rounding, this is the same as the C99 convention in Python:
#!/usr/bin/python
import math
infinity = math.ldexp(1.0, 1023) * 2
def nearbyint(x):
"""returns the nearest int as the C99 standard would"""
# handle NaN
if x!=x:
return x
if x >= infinity:
return infinity
if x <= -infinity:
return -infinity
if x==0.0:
return x
return math.floor(x + 0.5)
If you want more control over rounding, consider using the Decimal module and choose the rounding convention you wish to employ. You may want to use Banker's Rounding for example.
Once you have decided on the convention, round to an int and compare to the other int.
Consider using NumPy, they take care of everything under the hood.
import numpy as np
result_bool = np.isclose(float1, float2)
Python has unlimited integer precision, but only 53 bits of float precision. When you square a number, you double the number of bits it requires. This means that the ULP of the original number is (approximately) twice the ULP of the square root.
You start running into issues with numbers around 50 bits or so, because the difference between the fractional representation of an irrational root and the nearest integer can be smaller than the ULP. Even in this case, checking if you are within tolerance will do more harm than good (by increasing the number of false positives).
For example:
>>> x = (1 << 26) - 1
>>> (math.sqrt(x**2)).is_integer()
True
>>> (math.sqrt(x**2 + 1)).is_integer()
False
>>> (math.sqrt(x**2 - 1)).is_integer()
False
>>> y = (1 << 27) - 1
>>> (math.sqrt(y**2)).is_integer()
True
>>> (math.sqrt(y**2 + 1)).is_integer()
True
>>> (math.sqrt(y**2 - 1)).is_integer()
True
>>> (math.sqrt(y**2 + 2)).is_integer()
False
>>> (math.sqrt(y**2 - 2)).is_integer()
True
>>> (math.sqrt(y**2 - 3)).is_integer()
False
You can therefore rework the formulation of your problem slightly. If an integer x is a triangular number, there exists an integer n such that x = n * (n + 1) // 2. The resulting quadratic is n**2 + n - 2 * x = 0. All you need to know is if the discriminant 1 + 8 * x is a perfect square. You can compute the integer square root of an integer using math.isqrt starting with python 3.8. Prior to that, you could use one of the algorithms from Wikipedia, implemented on SO here.
You can therefore stay entirely in python's infinite-precision integer domain with the following one-liner:
def is_triangular(x):
return math.isqrt(k := 8 * x + 1)**2 == k
Now you can do something like this:
>>> x = 58686775177009424410876674976531835606028390913650409380075
>>> math.isqrt(k := 8 * x + 1)**2 == k
True
>>> math.isqrt(k := 8 * (x + 1) + 1)**2 == k
False
>>> math.sqrt(k := 8 * x + 1)**2 == k
False
The first result is correct: x in this example is a triangular number computed with n = 342598234604352345342958762349.
Python still uses the same floating point representation and operations C does, so the second one is the correct way.
Under the hood, Python's float type is a C double.
The most robust way would be to get the nearest integer to num, then test if that integers satisfies the property you're after:
import math
def is_triangular1(x):
num = (1/2) * (math.sqrt(8*x+1)-1 )
inum = int(round(num))
return inum*(inum+1) == 2*x # This line uses only integer arithmetic

Categories

Resources