Scikit - Combining scale and grid search - python

I am new to scikit, and have 2 slight issues to combine a data scale and grid search.
Efficient scaler
Considering a cross validation using Kfolds, I would like that each time we train the model on the K-1 folds, the data scaler (using preprocessing.StandardScaler() for instance) is fit only on the K-1 folds and then apply to the remaining fold.
My impression is that the following code, will fit the scaler on the entire dataset, and therefore I would like to modify it to behave as described previsouly:
classifier = svm.SVC(C=1)
clf = make_pipeline(preprocessing.StandardScaler(), classifier)
tuned_parameters = [{'C': [1, 10, 100, 1000]}]
my_grid_search = GridSearchCV(clf, tuned_parameters, cv=5)
Retrieve inner scaler fitting
When refit=True, "after" the Grid Search, the model is refit (using the best estimator) on the entire dataset, my understanding is that the pipeline will be used again, and therefore the scaler will be fit on the entire dataset. Ideally I would like to reuse that fit to scale my 'test' dataset. Is there a way to retrieve it directly from the GridSearchCV?

GridSearchCV knows nothing about the Pipeline object; it assumes that the provided estimator is atomic in the sense that it cannot choose only some particular stage (StandartScaler for example) and fit different stages on different data.
All GridSearchCV does - calls fit(X, y) method on the provided estimator, where X,y - some splits of data. Thus it fits all stages on same splits.
Try this:
best_pipeline = my_grid_search.best_estimator_
best_scaler = best_pipeline["standartscaler"]
In case when you wrap your transformers/estimators into Pipeline - you have to add a prefix to a name of each parameter, e.g: tuned_parameters = [{'svc__C': [1, 10, 100, 1000]}], look at these examples for more details Concatenating multiple feature extraction methods, Pipelining: chaining a PCA and a logistic regression
Anyway read this, it may help you GridSearchCV

Related

Get all prediction values for each CV in GridSearchCV

I have a time-dependent data set, where I (as an example) am trying to do some hyperparameter tuning on a Lasso regression.
For that I use sklearn's TimeSeriesSplit instead of regular Kfold CV, i.e. something like this:
tscv = TimeSeriesSplit(n_splits=5)
model = GridSearchCV(
estimator=pipeline,
param_distributions= {"estimator__alpha": np.linspace(0.05, 1, 50)},
scoring="neg_mean_absolute_percentage_error",
n_jobs=-1,
cv=tscv,
return_train_score=True,
max_iters=10,
early_stopping=True,
)
model.fit(X_train, y_train)
With this I get a model, which I can then use for predictions etc. The idea behind that cross validation is based on this:
However, my issue is that I would actually like to have the predictions from all the test sets from all cv's. And I have no idea how to get that out of the model ?
If I try the cv_results_ I get the score (from the scoring parameter) for each split and each hyperparameter. But I don't seem to be able to find the prediction values for each value in each test split. And I actually need that for some backtesting. I don't think it would be "fair" to use the final model to predict the previous values. I would imagine there would be some kind of overfitting in that case.
So yeah, is there any way for me to extract the predicted values for each split ?
You can have custom scoring functions in GridSearchCV.With that you can predict outputs with the estimator given to the GridSearchCV in that particular fold.
from the documentation scoring parameter is
Strategy to evaluate the performance of the cross-validated model on the test set.
from sklearn.metrics import mean_absolute_percentage_error
def custom_scorer(clf, X, y):
y_pred = clf.predict(X)
# save y_pred somewhere
return -mean_absolute_percentage_error(y, y_pred)
model = GridSearchCV(estimator=pipeline,
scoring=custom_scorer)
The input X and y in the above code came from the test set. clf is the given pipeline to the estimator parameter.
Obviously your estimator should implement the predict method (should be a valid model in scikit-learn). You can add other scorings to the custom one to avoid non-sense scores from the custom function.

Getting probabilities of best model for RandomizedSearchCV

I'm using RandomizedSearchCV to get the best parameters with a 10-fold cross-validation and 100 iterations. This works well. But now I would like to also get the probabilities of each predicted test data point (like predict_proba) from the best performing model.
How can this be done?
I see two options. First, perhaps it is possible to get these probabilities directly from the RandomizedSearchCV or second, getting the best parameters from RandomizedSearchCV and then doing again a 10-fold cross-validation (with the same seed so that I get the same splits) with this best parameters.
Edit: Is the following code correct to get the probabilities of the best performing model? X is the training data and y are the labels and model is my RandomizedSearchCV containing a Pipeline with imputing missing values, standardization and SVM.
cv_outer = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)
y_prob = np.empty([y.size, nrClasses]) * np.nan
best_model = model.fit(X, y).best_estimator_
for train, test in cv_outer.split(X, y):
probas_ = best_model.fit(X[train], y[train]).predict_proba(X[test])
y_prob[test] = probas_
If I understood it right, you would like to get the individual scores of every sample in your test split for the case with the highest CV score. If that is the case, you have to use one of those CV generators which give you control over split indices, such as those here: http://scikit-learn.org/stable/tutorial/statistical_inference/model_selection.html#cross-validation-generators
If you want to calculate scores of a new test sample with the best performing model, the predict_proba() function of RandomizedSearchCV would suffice, given that your underlying model supports it.
Example:
import numpy
skf = StratifiedKFold(n_splits=10, random_state=0, shuffle=True)
scores = cross_val_score(svc, X, y, cv=skf, n_jobs=-1)
max_score_split = numpy.argmax(scores)
Now that you know that your best model happens at max_score_split, you can get that split yourself and fit your model with it.
train_indices, test_indices = k_fold.split(X)[max_score_split]
X_train = X[train_indices]
y_train = y[train_indices]
X_test = X[test_indices]
y_test = y[test_indices]
model.fit(X_train, y_train) # this is your model object that should have been created before
And finally get your predictions by:
model.predict_proba(X_test)
I haven't tested the code myself but should work with minor modifications.
You need to look in cv_results_ this will give you the scores, and mean scores for all of your folds, along with a mean, fitting time etc...
If you want to predict_proba() for each of the iterations, the way to do this would be to loop through the params given in cv_results_, re-fit the model for each of then, then predict the probabilities, as the individual models are not cached anywhere, as far as I know.
best_params_ will give you the best fit parameters, for if you want to train a model just using the best parameters next time.
See cv_results_ in the information page http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

Cross validation: cross_val_score function from scikit-learn arguments

According to the DOC of scikit-learn
sklearn.model_selection.cross_val_score(estimator, X, y=None,
groups=None, scoring=None, cv=None, n_jobs=1, verbose=0,
fit_params=None, pre_dispatch=‘2*n_jobs’)
X and y
X : array-like The data to fit. Can be for example a list, or an
array.
y : array-like, optional, default: None The target variable to
try to predict in the case of supervised learning.
I am wondering whether [X,y] is X_train and y_train or [X,y] should be the whole dataset. In some of the notebooks from kaggle some people use the whole dataset and some others X_train and y_train.
To my knowledge, cross validation just evaluate the model and shows whether or not you overfit/underfit your data (it does not actually train the model). Then, in my view the most data you have the better will be the performance, so I would use the whole dataset.
What do you think?
Model performance is dependent on way the data is split and sometimes model does not have ability to generalize.
So that's why we need the cross validation.
Cross-validation is a vital step in evaluating a model. It maximizes the amount of data that is used to train the model, as during the course of training, the model is not only trained, but also tested on all of the available data.
I am wondering whether [X,y] is X_train and y_train or [X,y] should be
the whole dataset.
[X, y] should be the whole dataset because internally cross validation spliting the data into training data and test data.
Suppose you use cross validation with 5 folds (cv = 5).
We begin by splitting the dataset into five groups or folds. Then we hold out the first fold as a test set, fit out model on the remaining four folds, predict on the test set and compute the metric of interest.
Next, we hold out the second fold as out test set, fit on the remaining data, predict on the test set and compute the metric of interest.
By default, scikit-learn's cross_val_score() function uses R^2 score as the metric of choice for regression.
R^2 score is called coefficient of determination.

Keras Regression using Scikit Learn StandardScaler with Pipeline and without Pipeline

I am comparing the performance of two programs about KerasRegressor using Scikit-Learn StandardScaler: one program with Scikit-Learn Pipeline and one program without the Pipeline.
Program 1:
estimators = []
estimators.append(('standardise', StandardScaler()))
estimators.append(('multiLayerPerceptron', KerasRegressor(build_fn=build_nn, nb_epoch=num_epochs, batch_size=10, verbose=0)))
pipeline = Pipeline(estimators)
log = pipeline.fit(X_train, Y_train)
Y_deep = pipeline.predict(X_test)
Program 2:
scale = StandardScaler()
X_train = scale.fit_transform(X_train)
X_test = scale.fit_transform(X_test)
model_np = KerasRegressor(build_fn=build_nn, nb_epoch=num_epochs, batch_size=10, verbose=0)
log = model_np.fit(X_train, Y_train)
Y_deep = model_np.predict(X_test)
My problem is that Program 1 can achieve R2 score as 0.98 (3 trials on average) while Program 2 only achieve R2 score as 0.84 (3 trials on average.) Can anyone explain the difference between these two programs?
In the second case, you are calling StandardScaler.fit_transform() on both X_train and X_test. Its wrong usage.
You should call fit_transform() on X_train and then call only transform() on the X_test. Because thats what the Pipeline does.
The Pipeline as the documentation states, will:
fit():
Fit all the transforms one after the other and transform the data,
then fit the transformed data using the final estimator
predict():
Apply transforms to the data, and predict with the final estimator
So you see, it will only apply transform() to the test data, not fit_transform().
So elaborate my point, your code should be:
scale = StandardScaler()
X_train = scale.fit_transform(X_train)
#This is the change
X_test = scale.transform(X_test)
model_np = KerasRegressor(build_fn=build_nn, nb_epoch=num_epochs, batch_size=10, verbose=0)
log = model_np.fit(X_train, Y_train)
Y_deep = model_np.predict(X_test)
Calling fit() or fit_transform() on test data wrongly scales it to a different scale than what was used on train data. And is a source of change in prediction.
Edit: To answer the question in comment:
See, fit_transform() is just a shortcut function for doing fit() and then transform(). For StandardScaler, fit() doesnt return anything, just learns the mean and standard deviation of data. And then transform() applies the learning on the data to return new scaled data.
So what you are saying leads to below two scenarios:
Scenario 1: Wrong
1) X_scaled = scaler.fit_transform(X)
2) Divide the X_scaled into X_scaled_train, X_scaled_test and run your model.
No need to scale again.
Scenario 2: Wrong (Basically equal to Scenario 1, reversing the scaling and spitting operations)
1) Divide the X into X_train, X_test
2) scale.fit_transform(X) [# You are not using the returned value, only fitting the data, so equivalent to scale.fit(X)]
3.a) X_train_scaled = scale.transform(X_train) #[Equals X_scaled_train in scenario 1]
3.b) X_test_scaled = scale.transform(X_test) #[Equals X_scaled_test in scenario 1]
You can try any of the scenario and maybe it will increase the performance of your model.
But there is one very important thing which is missing in them. When you do scaling on the whole data and then divide them into train and test, it is assumed that you know the test (unseen) data, which will not be true in real world cases. And will give you results which will not be according to real world results. Because in the real world, whole of the data will be our training data. It may also lead to over-fitting because the model has some information about the test data already.
So when evaluating the performance of machine learning models, it is recommended that you keep aside the test data before performing any operations on it. Because it is our unseen data, we know nothing about it. So ideal path of operations would be the one I answered, ie.:
1) Divide X into X_train and X_test (same for y)
2) X_train_scaled = scale.fit_transform(X_train) [#Learn the mean and SD of train data]
3) X_test_scaled = scale.transform(X_test) [#Use the mean and SD learned in step2 to convert test data]
4) Use the X_train_scaled for training the model and X_test_scaled in evaluation.
Hope it makes sense to you.

Model help using Scikit-learn when using GridSearch

As part of the Enron project, built the attached model, Below is the summary of the steps,
Below model gives highly perfect scores
cv = StratifiedShuffleSplit(n_splits = 100, test_size = 0.2, random_state = 42)
gcv = GridSearchCV(pipe, clf_params,cv=cv)
gcv.fit(features,labels) ---> with the full dataset
for train_ind, test_ind in cv.split(features,labels):
x_train, x_test = features[train_ind], features[test_ind]
y_train, y_test = labels[train_ind],labels[test_ind]
gcv.best_estimator_.predict(x_test)
Below model gives more reasonable but low scores
cv = StratifiedShuffleSplit(n_splits = 100, test_size = 0.2, random_state = 42)
gcv = GridSearchCV(pipe, clf_params,cv=cv)
gcv.fit(features,labels) ---> with the full dataset
for train_ind, test_ind in cv.split(features,labels):
x_train, x_test = features[train_ind], features[test_ind]
y_train, y_test = labels[train_ind],labels[test_ind]
gcv.best_estimator_.fit(x_train,y_train)
gcv.best_estimator_.predict(x_test)
Used Kbest to find out the scores and sorted the features and trying a combination of higher and lower scores.
Used SVM with a GridSearch using a StratifiedShuffle
Used the best_estimator_ to predict and calculate the precision and recall.
The problem is estimator is spitting out perfect scores, in some case 1
But when I refit the best classifier on training data then run the test it gives reasonable scores.
My doubt/question was what exactly GridSearch does with the test data after the split using the Shuffle split object we send in to it. I assumed it would not fit anything on Test data, if that was true then when I predict using the same test data, it should not give this high scores right.? since i used random_state value, the shufflesplit should have created the same copy for the Grid fit and also for the predict.
So, is using the same Shufflesplit for two wrong?
GridSearchCV as #Gauthier Feuillen said is used to search best parameters of an estimator for given data.
Description of GridSearchCV:-
gcv = GridSearchCV(pipe, clf_params,cv=cv)
gcv.fit(features,labels)
clf_params will be expanded to get all possible combinations separate using ParameterGrid.
features will now be split into features_train and features_test using cv. Same for labels
Now the gridSearch estimator (pipe) will be trained using features_train and labels_inner and scored using features_test and labels_test.
For each possible combination of parameters in step 3, The steps 4 and 5 will be repeated for cv_iterations. The average of score across cv iterations will be calculated, which will be assigned to that parameter combination. This can be accessed using cv_results_ attribute of gridSearch.
For the parameters which give the best score, the internal estimator will be re initialized using those parameters and refit for the whole data supplied into it(features and labels).
Because of last step, you are getting different scores in first and second approach. Because in the first approach, all data is used for training and you are predicting for that data only. Second approach has prediction on previously unseen data.
Basically the grid search will:
Try every combination of your parameter grid
For each of them it will do a K-fold cross validation
Select the best available.
So your second case is the good one. Otherwise you are actually predicting data that you trained with (which is not the case in the second option, there you only keep the best parameters from your gridsearch)

Categories

Resources