Reading excel file in python with pandas and multiple indices - python

I am a python newbie so please excuse this basic question.
My .xlsx File looks like this
Unnamend:1 A Unnamend:2 B
2015-01-01 10 2015-01-01 10
2015-01-02 20 2015-01-01 20
2015-01-03 30 NaT NaN
When I read it in Python using pandas.read_excel(...) pandas automatically uses the first column as the time index.
Is there a one-liner that tells pandas to notice, that every second column is a time index belonging to the time series right next to it?
The desired output would look like this:
date A B
2015-01-01 10 10
2015-01-02 20 20
2015-01-03 30 NaN

In order to parse chunks of adjacent columns and align on their respective datetime indexes, you can do the following:
Starting with df:
Int64Index: 3 entries, 0 to 2
Data columns (total 4 columns):
Unnamed: 0 3 non-null datetime64[ns]
A 3 non-null int64
Unnamed: 1 2 non-null datetime64[ns]
B 2 non-null float64
dtypes: datetime64[ns](2), float64(1), int64(1)
You could iterate over chunks of 2 columns and merge on index like so:
def chunks(l, n):
""" Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
merged = df.loc[:, list(df)[:2]].set_index(list(df)[0])
for cols in chunks(list(df)[2:], 2):
merged = merged.merge(df.loc[:, cols].set_index(cols[0]).dropna(), left_index=True, right_index=True, how='outer')
to get:
A B
2015-01-01 10 10
2015-01-01 10 20
2015-01-02 20 NaN
2015-01-03 30 NaN
pd.concat unfortunately doesn't work as it can't handle duplicate index entries, otherwise one could use a list comprehension:
pd.concat([df.loc[:, cols].set_index(cols[0]) for cols in chunks(list(df), 2)], axis=1)

I use xlrd for import the data, after i use pandas to display
import xlrd
import pandas as pd
workbook = xlrd.open_workbook(xls_name)
workbook = xlrd.open_workbook(xls_name, encoding_override="cp1252")
worksheet = workbook.sheet_by_index(0)
first_row = [] # The row where we stock the name of the column
for col in range(worksheet.ncols):
first_row.append( worksheet.cell_value(0,col) )
data =[]
for row in range(10, worksheet.nrows):
elm = {}
for col in range(worksheet.ncols):
elm[first_row[col]]=worksheet.cell_value(row,col)
data.append(elm)
first_column=second_column=third_column=[]
for elm in data :
first_column.append(elm(first_row[0]))
second_column.append(elm(first_row[1]))
third_column.append(elm(first_row[2]))
dict1={}
dict1[first_row[0]]=first_column
dict1[first_row[1]]=second_column
dict1[first_row[2]]=third_column
res=pd.DataFrame(dict1, columns=['column1', 'column2', 'column3'])
print res

Related

Create new table based on every unique criteria [duplicate]

I have a very large dataframe (around 1 million rows) with data from an experiment (60 respondents).
I would like to split the dataframe into 60 dataframes (a dataframe for each participant).
In the dataframe, data, there is a variable called 'name', which is the unique code for each participant.
I have tried the following, but nothing happens (or execution does not stop within an hour). What I intend to do is to split the data into smaller dataframes, and append these to a list (datalist):
import pandas as pd
def splitframe(data, name='name'):
n = data[name][0]
df = pd.DataFrame(columns=data.columns)
datalist = []
for i in range(len(data)):
if data[name][i] == n:
df = df.append(data.iloc[i])
else:
datalist.append(df)
df = pd.DataFrame(columns=data.columns)
n = data[name][i]
df = df.append(data.iloc[i])
return datalist
I do not get an error message, the script just seems to run forever!
Is there a smart way to do it?
Can I ask why not just do it by slicing the data frame. Something like
#create some data with Names column
data = pd.DataFrame({'Names': ['Joe', 'John', 'Jasper', 'Jez'] *4, 'Ob1' : np.random.rand(16), 'Ob2' : np.random.rand(16)})
#create unique list of names
UniqueNames = data.Names.unique()
#create a data frame dictionary to store your data frames
DataFrameDict = {elem : pd.DataFrame() for elem in UniqueNames}
for key in DataFrameDict.keys():
DataFrameDict[key] = data[:][data.Names == key]
Hey presto you have a dictionary of data frames just as (I think) you want them. Need to access one? Just enter
DataFrameDict['Joe']
Firstly your approach is inefficient because the appending to the list on a row by basis will be slow as it has to periodically grow the list when there is insufficient space for the new entry, list comprehensions are better in this respect as the size is determined up front and allocated once.
However, I think fundamentally your approach is a little wasteful as you have a dataframe already so why create a new one for each of these users?
I would sort the dataframe by column 'name', set the index to be this and if required not drop the column.
Then generate a list of all the unique entries and then you can perform a lookup using these entries and crucially if you only querying the data, use the selection criteria to return a view on the dataframe without incurring a costly data copy.
Use pandas.DataFrame.sort_values and pandas.DataFrame.set_index:
# sort the dataframe
df.sort_values(by='name', axis=1, inplace=True)
# set the index to be this and don't drop
df.set_index(keys=['name'], drop=False,inplace=True)
# get a list of names
names=df['name'].unique().tolist()
# now we can perform a lookup on a 'view' of the dataframe
joe = df.loc[df.name=='joe']
# now you can query all 'joes'
You can convert groupby object to tuples and then to dict:
df = pd.DataFrame({'Name':list('aabbef'),
'A':[4,5,4,5,5,4],
'B':[7,8,9,4,2,3],
'C':[1,3,5,7,1,0]}, columns = ['Name','A','B','C'])
print (df)
Name A B C
0 a 4 7 1
1 a 5 8 3
2 b 4 9 5
3 b 5 4 7
4 e 5 2 1
5 f 4 3 0
d = dict(tuple(df.groupby('Name')))
print (d)
{'b': Name A B C
2 b 4 9 5
3 b 5 4 7, 'e': Name A B C
4 e 5 2 1, 'a': Name A B C
0 a 4 7 1
1 a 5 8 3, 'f': Name A B C
5 f 4 3 0}
print (d['a'])
Name A B C
0 a 4 7 1
1 a 5 8 3
It is not recommended, but possible create DataFrames by groups:
for i, g in df.groupby('Name'):
globals()['df_' + str(i)] = g
print (df_a)
Name A B C
0 a 4 7 1
1 a 5 8 3
Easy:
[v for k, v in df.groupby('name')]
Groupby can helps you:
grouped = data.groupby(['name'])
Then you can work with each group like with a dataframe for each participant. And DataFrameGroupBy object methods such as (apply, transform, aggregate, head, first, last) return a DataFrame object.
Or you can make list from grouped and get all DataFrame's by index:
l_grouped = list(grouped)
l_grouped[0][1] - DataFrame for first group with first name.
In addition to Gusev Slava's answer, you might want to use groupby's groups:
{key: df.loc[value] for key, value in df.groupby("name").groups.items()}
This will yield a dictionary with the keys you have grouped by, pointing to the corresponding partitions. The advantage is that the keys are maintained and don't vanish in the list index.
The method in the OP works, but isn't efficient. It may have seemed to run forever, because the dataset was long.
Use .groupby on the 'method' column, and create a dict of DataFrames with unique 'method' values as the keys, with a dict-comprehension.
.groupby returns a groupby object, that contains information about the groups, where g is the unique value in 'method' for each group, and d is the DataFrame for that group.
The value of each key in df_dict, will be a DataFrame, which can be accessed in the standard way, df_dict['key'].
The original question wanted a list of DataFrames, which can be done with a list-comprehension
df_list = [d for _, d in df.groupby('method')]
import pandas as pd
import seaborn as sns # for test dataset
# load data for example
df = sns.load_dataset('planets')
# display(df.head())
method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009
# Using a dict-comprehension, the unique 'method' value will be the key
df_dict = {g: d for g, d in df.groupby('method')}
print(df_dict.keys())
[out]:
dict_keys(['Astrometry', 'Eclipse Timing Variations', 'Imaging', 'Microlensing', 'Orbital Brightness Modulation', 'Pulsar Timing', 'Pulsation Timing Variations', 'Radial Velocity', 'Transit', 'Transit Timing Variations'])
# or a specific name for the key, using enumerate (e.g. df1, df2, etc.)
df_dict = {f'df{i}': d for i, (g, d) in enumerate(df.groupby('method'))}
print(df_dict.keys())
[out]:
dict_keys(['df0', 'df1', 'df2', 'df3', 'df4', 'df5', 'df6', 'df7', 'df8', 'df9'])
df_dict['df1].head(3) or df_dict['Astrometry'].head(3)
There are only 2 in this group
method number orbital_period mass distance year
113 Astrometry 1 246.36 NaN 20.77 2013
537 Astrometry 1 1016.00 NaN 14.98 2010
df_dict['df2].head(3) or df_dict['Eclipse Timing Variations'].head(3)
method number orbital_period mass distance year
32 Eclipse Timing Variations 1 10220.0 6.05 NaN 2009
37 Eclipse Timing Variations 2 5767.0 NaN 130.72 2008
38 Eclipse Timing Variations 2 3321.0 NaN 130.72 2008
df_dict['df3].head(3) or df_dict['Imaging'].head(3)
method number orbital_period mass distance year
29 Imaging 1 NaN NaN 45.52 2005
30 Imaging 1 NaN NaN 165.00 2007
31 Imaging 1 NaN NaN 140.00 2004
For more information about the seaborn datasets
NASA Exoplanets
Alternatively
This is a manual method to create separate DataFrames using pandas: Boolean Indexing
This is similar to the accepted answer, but .loc is not required.
This is an acceptable method for creating a couple extra DataFrames.
The pythonic way to create multiple objects, is by placing them in a container (e.g. dict, list, generator, etc.), as shown above.
df1 = df[df.method == 'Astrometry']
df2 = df[df.method == 'Eclipse Timing Variations']
In [28]: df = DataFrame(np.random.randn(1000000,10))
In [29]: df
Out[29]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 10 columns):
0 1000000 non-null values
1 1000000 non-null values
2 1000000 non-null values
3 1000000 non-null values
4 1000000 non-null values
5 1000000 non-null values
6 1000000 non-null values
7 1000000 non-null values
8 1000000 non-null values
9 1000000 non-null values
dtypes: float64(10)
In [30]: frames = [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
In [31]: %timeit [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
1 loops, best of 3: 849 ms per loop
In [32]: len(frames)
Out[32]: 16667
Here's a groupby way (and you could do an arbitrary apply rather than sum)
In [9]: g = df.groupby(lambda x: x/60)
In [8]: g.sum()
Out[8]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16667 entries, 0 to 16666
Data columns (total 10 columns):
0 16667 non-null values
1 16667 non-null values
2 16667 non-null values
3 16667 non-null values
4 16667 non-null values
5 16667 non-null values
6 16667 non-null values
7 16667 non-null values
8 16667 non-null values
9 16667 non-null values
dtypes: float64(10)
Sum is cythonized that's why this is so fast
In [10]: %timeit g.sum()
10 loops, best of 3: 27.5 ms per loop
In [11]: %timeit df.groupby(lambda x: x/60)
1 loops, best of 3: 231 ms per loop
The method based on list comprehension and groupby- Which stores all the split dataframe in list variable and can be accessed using the index.
Example
ans = [pd.DataFrame(y) for x, y in DF.groupby('column_name', as_index=False)]
ans[0]
ans[0].column_name
You can use the groupby command, if you already have some labels for your data.
out_list = [group[1] for group in in_series.groupby(label_series.values)]
Here's a detailed example:
Let's say we want to partition a pd series using some labels into a list of chunks
For example, in_series is:
2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 5, dtype: float64
And its corresponding label_series is:
2019-07-01 08:00:00 1
2019-07-01 08:02:00 1
2019-07-01 08:04:00 2
2019-07-01 08:06:00 2
2019-07-01 08:08:00 2
Length: 5, dtype: float64
Run
out_list = [group[1] for group in in_series.groupby(label_series.values)]
which returns out_list a list of two pd.Series:
[2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
Length: 2, dtype: float64,
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 3, dtype: float64]
Note that you can use some parameters from in_series itself to group the series, e.g., in_series.index.day
here's a small function which might help some (efficiency not perfect probably, but compact + more or less easy to understand):
def get_splited_df_dict(df: 'pd.DataFrame', split_column: 'str'):
"""
splits a pandas.DataFrame on split_column and returns it as a dict
"""
df_dict = {value: df[df[split_column] == value].drop(split_column, axis=1) for value in df[split_column].unique()}
return df_dict
it converts a DataFrame to multiple DataFrames, by selecting each unique value in the given column and putting all those entries into a separate DataFrame.
the .drop(split_column, axis=1) is just for removing the column which was used to split the DataFrame. the removal is not necessary, but can help a little to cut down on memory usage after the operation.
the result of get_splited_df_dict is a dict, meaning one can access each DataFrame like this:
splitted = get_splited_df_dict(some_df, some_column)
# accessing the DataFrame with 'some_column_value'
splitted[some_column_value]
The existing answers cover all good cases and explains fairly well how the groupby object is like a dictionary with keys and values that can be accessed via .groups. Yet more methods to do the same job as the existing answers are:
Create a list by unpacking the groupby object and casting it to a dictionary:
dict([*df.groupby('Name')]) # same as dict(list(df.groupby('Name')))
Create a tuple + dict (this is the same as #jezrael's answer):
dict((*df.groupby('Name'),))
If we only want the DataFrames, we could get the values of the dictionary (created above):
[*dict([*df.groupby('Name')]).values()]
I had similar problem. I had a time series of daily sales for 10 different stores and 50 different items. I needed to split the original dataframe in 500 dataframes (10stores*50stores) to apply Machine Learning models to each of them and I couldn't do it manually.
This is the head of the dataframe:
I have created two lists;
one for the names of dataframes
and one for the couple of array [item_number, store_number].
list=[]
for i in range(1,len(items)*len(stores)+1):
global list
list.append('df'+str(i))
list_couple_s_i =[]
for item in items:
for store in stores:
global list_couple_s_i
list_couple_s_i.append([item,store])
And once the two lists are ready you can loop on them to create the dataframes you want:
for name, it_st in zip(list,list_couple_s_i):
globals()[name] = df.where((df['item']==it_st[0]) &
(df['store']==(it_st[1])))
globals()[name].dropna(inplace=True)
In this way I have created 500 dataframes.
Hope this will be helpful!

Split one dataframe in 4 [duplicate]

I have a very large dataframe (around 1 million rows) with data from an experiment (60 respondents).
I would like to split the dataframe into 60 dataframes (a dataframe for each participant).
In the dataframe, data, there is a variable called 'name', which is the unique code for each participant.
I have tried the following, but nothing happens (or execution does not stop within an hour). What I intend to do is to split the data into smaller dataframes, and append these to a list (datalist):
import pandas as pd
def splitframe(data, name='name'):
n = data[name][0]
df = pd.DataFrame(columns=data.columns)
datalist = []
for i in range(len(data)):
if data[name][i] == n:
df = df.append(data.iloc[i])
else:
datalist.append(df)
df = pd.DataFrame(columns=data.columns)
n = data[name][i]
df = df.append(data.iloc[i])
return datalist
I do not get an error message, the script just seems to run forever!
Is there a smart way to do it?
Can I ask why not just do it by slicing the data frame. Something like
#create some data with Names column
data = pd.DataFrame({'Names': ['Joe', 'John', 'Jasper', 'Jez'] *4, 'Ob1' : np.random.rand(16), 'Ob2' : np.random.rand(16)})
#create unique list of names
UniqueNames = data.Names.unique()
#create a data frame dictionary to store your data frames
DataFrameDict = {elem : pd.DataFrame() for elem in UniqueNames}
for key in DataFrameDict.keys():
DataFrameDict[key] = data[:][data.Names == key]
Hey presto you have a dictionary of data frames just as (I think) you want them. Need to access one? Just enter
DataFrameDict['Joe']
Firstly your approach is inefficient because the appending to the list on a row by basis will be slow as it has to periodically grow the list when there is insufficient space for the new entry, list comprehensions are better in this respect as the size is determined up front and allocated once.
However, I think fundamentally your approach is a little wasteful as you have a dataframe already so why create a new one for each of these users?
I would sort the dataframe by column 'name', set the index to be this and if required not drop the column.
Then generate a list of all the unique entries and then you can perform a lookup using these entries and crucially if you only querying the data, use the selection criteria to return a view on the dataframe without incurring a costly data copy.
Use pandas.DataFrame.sort_values and pandas.DataFrame.set_index:
# sort the dataframe
df.sort_values(by='name', axis=1, inplace=True)
# set the index to be this and don't drop
df.set_index(keys=['name'], drop=False,inplace=True)
# get a list of names
names=df['name'].unique().tolist()
# now we can perform a lookup on a 'view' of the dataframe
joe = df.loc[df.name=='joe']
# now you can query all 'joes'
You can convert groupby object to tuples and then to dict:
df = pd.DataFrame({'Name':list('aabbef'),
'A':[4,5,4,5,5,4],
'B':[7,8,9,4,2,3],
'C':[1,3,5,7,1,0]}, columns = ['Name','A','B','C'])
print (df)
Name A B C
0 a 4 7 1
1 a 5 8 3
2 b 4 9 5
3 b 5 4 7
4 e 5 2 1
5 f 4 3 0
d = dict(tuple(df.groupby('Name')))
print (d)
{'b': Name A B C
2 b 4 9 5
3 b 5 4 7, 'e': Name A B C
4 e 5 2 1, 'a': Name A B C
0 a 4 7 1
1 a 5 8 3, 'f': Name A B C
5 f 4 3 0}
print (d['a'])
Name A B C
0 a 4 7 1
1 a 5 8 3
It is not recommended, but possible create DataFrames by groups:
for i, g in df.groupby('Name'):
globals()['df_' + str(i)] = g
print (df_a)
Name A B C
0 a 4 7 1
1 a 5 8 3
Easy:
[v for k, v in df.groupby('name')]
Groupby can helps you:
grouped = data.groupby(['name'])
Then you can work with each group like with a dataframe for each participant. And DataFrameGroupBy object methods such as (apply, transform, aggregate, head, first, last) return a DataFrame object.
Or you can make list from grouped and get all DataFrame's by index:
l_grouped = list(grouped)
l_grouped[0][1] - DataFrame for first group with first name.
In addition to Gusev Slava's answer, you might want to use groupby's groups:
{key: df.loc[value] for key, value in df.groupby("name").groups.items()}
This will yield a dictionary with the keys you have grouped by, pointing to the corresponding partitions. The advantage is that the keys are maintained and don't vanish in the list index.
The method in the OP works, but isn't efficient. It may have seemed to run forever, because the dataset was long.
Use .groupby on the 'method' column, and create a dict of DataFrames with unique 'method' values as the keys, with a dict-comprehension.
.groupby returns a groupby object, that contains information about the groups, where g is the unique value in 'method' for each group, and d is the DataFrame for that group.
The value of each key in df_dict, will be a DataFrame, which can be accessed in the standard way, df_dict['key'].
The original question wanted a list of DataFrames, which can be done with a list-comprehension
df_list = [d for _, d in df.groupby('method')]
import pandas as pd
import seaborn as sns # for test dataset
# load data for example
df = sns.load_dataset('planets')
# display(df.head())
method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009
# Using a dict-comprehension, the unique 'method' value will be the key
df_dict = {g: d for g, d in df.groupby('method')}
print(df_dict.keys())
[out]:
dict_keys(['Astrometry', 'Eclipse Timing Variations', 'Imaging', 'Microlensing', 'Orbital Brightness Modulation', 'Pulsar Timing', 'Pulsation Timing Variations', 'Radial Velocity', 'Transit', 'Transit Timing Variations'])
# or a specific name for the key, using enumerate (e.g. df1, df2, etc.)
df_dict = {f'df{i}': d for i, (g, d) in enumerate(df.groupby('method'))}
print(df_dict.keys())
[out]:
dict_keys(['df0', 'df1', 'df2', 'df3', 'df4', 'df5', 'df6', 'df7', 'df8', 'df9'])
df_dict['df1].head(3) or df_dict['Astrometry'].head(3)
There are only 2 in this group
method number orbital_period mass distance year
113 Astrometry 1 246.36 NaN 20.77 2013
537 Astrometry 1 1016.00 NaN 14.98 2010
df_dict['df2].head(3) or df_dict['Eclipse Timing Variations'].head(3)
method number orbital_period mass distance year
32 Eclipse Timing Variations 1 10220.0 6.05 NaN 2009
37 Eclipse Timing Variations 2 5767.0 NaN 130.72 2008
38 Eclipse Timing Variations 2 3321.0 NaN 130.72 2008
df_dict['df3].head(3) or df_dict['Imaging'].head(3)
method number orbital_period mass distance year
29 Imaging 1 NaN NaN 45.52 2005
30 Imaging 1 NaN NaN 165.00 2007
31 Imaging 1 NaN NaN 140.00 2004
For more information about the seaborn datasets
NASA Exoplanets
Alternatively
This is a manual method to create separate DataFrames using pandas: Boolean Indexing
This is similar to the accepted answer, but .loc is not required.
This is an acceptable method for creating a couple extra DataFrames.
The pythonic way to create multiple objects, is by placing them in a container (e.g. dict, list, generator, etc.), as shown above.
df1 = df[df.method == 'Astrometry']
df2 = df[df.method == 'Eclipse Timing Variations']
In [28]: df = DataFrame(np.random.randn(1000000,10))
In [29]: df
Out[29]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 10 columns):
0 1000000 non-null values
1 1000000 non-null values
2 1000000 non-null values
3 1000000 non-null values
4 1000000 non-null values
5 1000000 non-null values
6 1000000 non-null values
7 1000000 non-null values
8 1000000 non-null values
9 1000000 non-null values
dtypes: float64(10)
In [30]: frames = [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
In [31]: %timeit [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
1 loops, best of 3: 849 ms per loop
In [32]: len(frames)
Out[32]: 16667
Here's a groupby way (and you could do an arbitrary apply rather than sum)
In [9]: g = df.groupby(lambda x: x/60)
In [8]: g.sum()
Out[8]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16667 entries, 0 to 16666
Data columns (total 10 columns):
0 16667 non-null values
1 16667 non-null values
2 16667 non-null values
3 16667 non-null values
4 16667 non-null values
5 16667 non-null values
6 16667 non-null values
7 16667 non-null values
8 16667 non-null values
9 16667 non-null values
dtypes: float64(10)
Sum is cythonized that's why this is so fast
In [10]: %timeit g.sum()
10 loops, best of 3: 27.5 ms per loop
In [11]: %timeit df.groupby(lambda x: x/60)
1 loops, best of 3: 231 ms per loop
The method based on list comprehension and groupby- Which stores all the split dataframe in list variable and can be accessed using the index.
Example
ans = [pd.DataFrame(y) for x, y in DF.groupby('column_name', as_index=False)]
ans[0]
ans[0].column_name
You can use the groupby command, if you already have some labels for your data.
out_list = [group[1] for group in in_series.groupby(label_series.values)]
Here's a detailed example:
Let's say we want to partition a pd series using some labels into a list of chunks
For example, in_series is:
2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 5, dtype: float64
And its corresponding label_series is:
2019-07-01 08:00:00 1
2019-07-01 08:02:00 1
2019-07-01 08:04:00 2
2019-07-01 08:06:00 2
2019-07-01 08:08:00 2
Length: 5, dtype: float64
Run
out_list = [group[1] for group in in_series.groupby(label_series.values)]
which returns out_list a list of two pd.Series:
[2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
Length: 2, dtype: float64,
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 3, dtype: float64]
Note that you can use some parameters from in_series itself to group the series, e.g., in_series.index.day
here's a small function which might help some (efficiency not perfect probably, but compact + more or less easy to understand):
def get_splited_df_dict(df: 'pd.DataFrame', split_column: 'str'):
"""
splits a pandas.DataFrame on split_column and returns it as a dict
"""
df_dict = {value: df[df[split_column] == value].drop(split_column, axis=1) for value in df[split_column].unique()}
return df_dict
it converts a DataFrame to multiple DataFrames, by selecting each unique value in the given column and putting all those entries into a separate DataFrame.
the .drop(split_column, axis=1) is just for removing the column which was used to split the DataFrame. the removal is not necessary, but can help a little to cut down on memory usage after the operation.
the result of get_splited_df_dict is a dict, meaning one can access each DataFrame like this:
splitted = get_splited_df_dict(some_df, some_column)
# accessing the DataFrame with 'some_column_value'
splitted[some_column_value]
The existing answers cover all good cases and explains fairly well how the groupby object is like a dictionary with keys and values that can be accessed via .groups. Yet more methods to do the same job as the existing answers are:
Create a list by unpacking the groupby object and casting it to a dictionary:
dict([*df.groupby('Name')]) # same as dict(list(df.groupby('Name')))
Create a tuple + dict (this is the same as #jezrael's answer):
dict((*df.groupby('Name'),))
If we only want the DataFrames, we could get the values of the dictionary (created above):
[*dict([*df.groupby('Name')]).values()]
I had similar problem. I had a time series of daily sales for 10 different stores and 50 different items. I needed to split the original dataframe in 500 dataframes (10stores*50stores) to apply Machine Learning models to each of them and I couldn't do it manually.
This is the head of the dataframe:
I have created two lists;
one for the names of dataframes
and one for the couple of array [item_number, store_number].
list=[]
for i in range(1,len(items)*len(stores)+1):
global list
list.append('df'+str(i))
list_couple_s_i =[]
for item in items:
for store in stores:
global list_couple_s_i
list_couple_s_i.append([item,store])
And once the two lists are ready you can loop on them to create the dataframes you want:
for name, it_st in zip(list,list_couple_s_i):
globals()[name] = df.where((df['item']==it_st[0]) &
(df['store']==(it_st[1])))
globals()[name].dropna(inplace=True)
In this way I have created 500 dataframes.
Hope this will be helpful!

How to divide Dataframes to list of Dataframes based on values in columns, but without changing any structures [duplicate]

I have a very large dataframe (around 1 million rows) with data from an experiment (60 respondents).
I would like to split the dataframe into 60 dataframes (a dataframe for each participant).
In the dataframe, data, there is a variable called 'name', which is the unique code for each participant.
I have tried the following, but nothing happens (or execution does not stop within an hour). What I intend to do is to split the data into smaller dataframes, and append these to a list (datalist):
import pandas as pd
def splitframe(data, name='name'):
n = data[name][0]
df = pd.DataFrame(columns=data.columns)
datalist = []
for i in range(len(data)):
if data[name][i] == n:
df = df.append(data.iloc[i])
else:
datalist.append(df)
df = pd.DataFrame(columns=data.columns)
n = data[name][i]
df = df.append(data.iloc[i])
return datalist
I do not get an error message, the script just seems to run forever!
Is there a smart way to do it?
Can I ask why not just do it by slicing the data frame. Something like
#create some data with Names column
data = pd.DataFrame({'Names': ['Joe', 'John', 'Jasper', 'Jez'] *4, 'Ob1' : np.random.rand(16), 'Ob2' : np.random.rand(16)})
#create unique list of names
UniqueNames = data.Names.unique()
#create a data frame dictionary to store your data frames
DataFrameDict = {elem : pd.DataFrame() for elem in UniqueNames}
for key in DataFrameDict.keys():
DataFrameDict[key] = data[:][data.Names == key]
Hey presto you have a dictionary of data frames just as (I think) you want them. Need to access one? Just enter
DataFrameDict['Joe']
Firstly your approach is inefficient because the appending to the list on a row by basis will be slow as it has to periodically grow the list when there is insufficient space for the new entry, list comprehensions are better in this respect as the size is determined up front and allocated once.
However, I think fundamentally your approach is a little wasteful as you have a dataframe already so why create a new one for each of these users?
I would sort the dataframe by column 'name', set the index to be this and if required not drop the column.
Then generate a list of all the unique entries and then you can perform a lookup using these entries and crucially if you only querying the data, use the selection criteria to return a view on the dataframe without incurring a costly data copy.
Use pandas.DataFrame.sort_values and pandas.DataFrame.set_index:
# sort the dataframe
df.sort_values(by='name', axis=1, inplace=True)
# set the index to be this and don't drop
df.set_index(keys=['name'], drop=False,inplace=True)
# get a list of names
names=df['name'].unique().tolist()
# now we can perform a lookup on a 'view' of the dataframe
joe = df.loc[df.name=='joe']
# now you can query all 'joes'
You can convert groupby object to tuples and then to dict:
df = pd.DataFrame({'Name':list('aabbef'),
'A':[4,5,4,5,5,4],
'B':[7,8,9,4,2,3],
'C':[1,3,5,7,1,0]}, columns = ['Name','A','B','C'])
print (df)
Name A B C
0 a 4 7 1
1 a 5 8 3
2 b 4 9 5
3 b 5 4 7
4 e 5 2 1
5 f 4 3 0
d = dict(tuple(df.groupby('Name')))
print (d)
{'b': Name A B C
2 b 4 9 5
3 b 5 4 7, 'e': Name A B C
4 e 5 2 1, 'a': Name A B C
0 a 4 7 1
1 a 5 8 3, 'f': Name A B C
5 f 4 3 0}
print (d['a'])
Name A B C
0 a 4 7 1
1 a 5 8 3
It is not recommended, but possible create DataFrames by groups:
for i, g in df.groupby('Name'):
globals()['df_' + str(i)] = g
print (df_a)
Name A B C
0 a 4 7 1
1 a 5 8 3
Easy:
[v for k, v in df.groupby('name')]
Groupby can helps you:
grouped = data.groupby(['name'])
Then you can work with each group like with a dataframe for each participant. And DataFrameGroupBy object methods such as (apply, transform, aggregate, head, first, last) return a DataFrame object.
Or you can make list from grouped and get all DataFrame's by index:
l_grouped = list(grouped)
l_grouped[0][1] - DataFrame for first group with first name.
In addition to Gusev Slava's answer, you might want to use groupby's groups:
{key: df.loc[value] for key, value in df.groupby("name").groups.items()}
This will yield a dictionary with the keys you have grouped by, pointing to the corresponding partitions. The advantage is that the keys are maintained and don't vanish in the list index.
The method in the OP works, but isn't efficient. It may have seemed to run forever, because the dataset was long.
Use .groupby on the 'method' column, and create a dict of DataFrames with unique 'method' values as the keys, with a dict-comprehension.
.groupby returns a groupby object, that contains information about the groups, where g is the unique value in 'method' for each group, and d is the DataFrame for that group.
The value of each key in df_dict, will be a DataFrame, which can be accessed in the standard way, df_dict['key'].
The original question wanted a list of DataFrames, which can be done with a list-comprehension
df_list = [d for _, d in df.groupby('method')]
import pandas as pd
import seaborn as sns # for test dataset
# load data for example
df = sns.load_dataset('planets')
# display(df.head())
method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009
# Using a dict-comprehension, the unique 'method' value will be the key
df_dict = {g: d for g, d in df.groupby('method')}
print(df_dict.keys())
[out]:
dict_keys(['Astrometry', 'Eclipse Timing Variations', 'Imaging', 'Microlensing', 'Orbital Brightness Modulation', 'Pulsar Timing', 'Pulsation Timing Variations', 'Radial Velocity', 'Transit', 'Transit Timing Variations'])
# or a specific name for the key, using enumerate (e.g. df1, df2, etc.)
df_dict = {f'df{i}': d for i, (g, d) in enumerate(df.groupby('method'))}
print(df_dict.keys())
[out]:
dict_keys(['df0', 'df1', 'df2', 'df3', 'df4', 'df5', 'df6', 'df7', 'df8', 'df9'])
df_dict['df1].head(3) or df_dict['Astrometry'].head(3)
There are only 2 in this group
method number orbital_period mass distance year
113 Astrometry 1 246.36 NaN 20.77 2013
537 Astrometry 1 1016.00 NaN 14.98 2010
df_dict['df2].head(3) or df_dict['Eclipse Timing Variations'].head(3)
method number orbital_period mass distance year
32 Eclipse Timing Variations 1 10220.0 6.05 NaN 2009
37 Eclipse Timing Variations 2 5767.0 NaN 130.72 2008
38 Eclipse Timing Variations 2 3321.0 NaN 130.72 2008
df_dict['df3].head(3) or df_dict['Imaging'].head(3)
method number orbital_period mass distance year
29 Imaging 1 NaN NaN 45.52 2005
30 Imaging 1 NaN NaN 165.00 2007
31 Imaging 1 NaN NaN 140.00 2004
For more information about the seaborn datasets
NASA Exoplanets
Alternatively
This is a manual method to create separate DataFrames using pandas: Boolean Indexing
This is similar to the accepted answer, but .loc is not required.
This is an acceptable method for creating a couple extra DataFrames.
The pythonic way to create multiple objects, is by placing them in a container (e.g. dict, list, generator, etc.), as shown above.
df1 = df[df.method == 'Astrometry']
df2 = df[df.method == 'Eclipse Timing Variations']
In [28]: df = DataFrame(np.random.randn(1000000,10))
In [29]: df
Out[29]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 10 columns):
0 1000000 non-null values
1 1000000 non-null values
2 1000000 non-null values
3 1000000 non-null values
4 1000000 non-null values
5 1000000 non-null values
6 1000000 non-null values
7 1000000 non-null values
8 1000000 non-null values
9 1000000 non-null values
dtypes: float64(10)
In [30]: frames = [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
In [31]: %timeit [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
1 loops, best of 3: 849 ms per loop
In [32]: len(frames)
Out[32]: 16667
Here's a groupby way (and you could do an arbitrary apply rather than sum)
In [9]: g = df.groupby(lambda x: x/60)
In [8]: g.sum()
Out[8]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16667 entries, 0 to 16666
Data columns (total 10 columns):
0 16667 non-null values
1 16667 non-null values
2 16667 non-null values
3 16667 non-null values
4 16667 non-null values
5 16667 non-null values
6 16667 non-null values
7 16667 non-null values
8 16667 non-null values
9 16667 non-null values
dtypes: float64(10)
Sum is cythonized that's why this is so fast
In [10]: %timeit g.sum()
10 loops, best of 3: 27.5 ms per loop
In [11]: %timeit df.groupby(lambda x: x/60)
1 loops, best of 3: 231 ms per loop
The method based on list comprehension and groupby- Which stores all the split dataframe in list variable and can be accessed using the index.
Example
ans = [pd.DataFrame(y) for x, y in DF.groupby('column_name', as_index=False)]
ans[0]
ans[0].column_name
You can use the groupby command, if you already have some labels for your data.
out_list = [group[1] for group in in_series.groupby(label_series.values)]
Here's a detailed example:
Let's say we want to partition a pd series using some labels into a list of chunks
For example, in_series is:
2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 5, dtype: float64
And its corresponding label_series is:
2019-07-01 08:00:00 1
2019-07-01 08:02:00 1
2019-07-01 08:04:00 2
2019-07-01 08:06:00 2
2019-07-01 08:08:00 2
Length: 5, dtype: float64
Run
out_list = [group[1] for group in in_series.groupby(label_series.values)]
which returns out_list a list of two pd.Series:
[2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
Length: 2, dtype: float64,
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 3, dtype: float64]
Note that you can use some parameters from in_series itself to group the series, e.g., in_series.index.day
here's a small function which might help some (efficiency not perfect probably, but compact + more or less easy to understand):
def get_splited_df_dict(df: 'pd.DataFrame', split_column: 'str'):
"""
splits a pandas.DataFrame on split_column and returns it as a dict
"""
df_dict = {value: df[df[split_column] == value].drop(split_column, axis=1) for value in df[split_column].unique()}
return df_dict
it converts a DataFrame to multiple DataFrames, by selecting each unique value in the given column and putting all those entries into a separate DataFrame.
the .drop(split_column, axis=1) is just for removing the column which was used to split the DataFrame. the removal is not necessary, but can help a little to cut down on memory usage after the operation.
the result of get_splited_df_dict is a dict, meaning one can access each DataFrame like this:
splitted = get_splited_df_dict(some_df, some_column)
# accessing the DataFrame with 'some_column_value'
splitted[some_column_value]
The existing answers cover all good cases and explains fairly well how the groupby object is like a dictionary with keys and values that can be accessed via .groups. Yet more methods to do the same job as the existing answers are:
Create a list by unpacking the groupby object and casting it to a dictionary:
dict([*df.groupby('Name')]) # same as dict(list(df.groupby('Name')))
Create a tuple + dict (this is the same as #jezrael's answer):
dict((*df.groupby('Name'),))
If we only want the DataFrames, we could get the values of the dictionary (created above):
[*dict([*df.groupby('Name')]).values()]
I had similar problem. I had a time series of daily sales for 10 different stores and 50 different items. I needed to split the original dataframe in 500 dataframes (10stores*50stores) to apply Machine Learning models to each of them and I couldn't do it manually.
This is the head of the dataframe:
I have created two lists;
one for the names of dataframes
and one for the couple of array [item_number, store_number].
list=[]
for i in range(1,len(items)*len(stores)+1):
global list
list.append('df'+str(i))
list_couple_s_i =[]
for item in items:
for store in stores:
global list_couple_s_i
list_couple_s_i.append([item,store])
And once the two lists are ready you can loop on them to create the dataframes you want:
for name, it_st in zip(list,list_couple_s_i):
globals()[name] = df.where((df['item']==it_st[0]) &
(df['store']==(it_st[1])))
globals()[name].dropna(inplace=True)
In this way I have created 500 dataframes.
Hope this will be helpful!

pandas: Conditionally Aggregate Consecutive Rows

I have a dataframe with a consecutive index (date for every calendar day) and a reference vector that does not contain every date (only working days).
I want to reindex the dataframe to only the dates in the reference vector with the missing data being aggregated to the latest entry before a missing-date-section (i.e. weekend data shall be aggregated together to the last Friday).
Currently I have implemented this by looping over the reversed index and collecting the weekend data, then adding it later in the loop. I'm asking if there is a more efficient "array-way" to do it.
import pandas as pd
import numpy as np
df = pd.DataFrame({'x': np.arange(10), 'y': np.arange(10)**2},
index=pd.date_range(start="2018-01-01", periods=10))
print(df)
ref_dates = pd.date_range(start="2018-01-01", periods=10)
ref_dates = ref_dates[:5].append(ref_dates[7:]) # omit 2018-01-06 and -07
# inefficient approach by reverse-traversing the dates, collecting the data
# and aggregating it together with the first date that's in ref_dates
df.sort_index(ascending=False, inplace=True)
collector = []
for dt in df.index:
if collector and dt in ref_dates:
# data from previous iteration was collected -> aggregate it and reset collector
# first append also the current data
collector.append(df.loc[dt, :].values)
collector = np.array(collector)
# applying aggregation function, here sum as example
aggregates = np.sum(collector, axis=0)
# setting the new data
df.loc[dt,:] = aggregates
# reset collector
collector = []
if dt not in ref_dates:
collector.append(df.loc[dt, :].values)
df = df.reindex(ref_dates)
print(df)
Gives the output (first: source dataframe, second: target dataframe)
x y
2018-01-01 0 0
2018-01-02 1 1
2018-01-03 2 4
2018-01-04 3 9
2018-01-05 4 16
2018-01-06 5 25
2018-01-07 6 36
2018-01-08 7 49
2018-01-09 8 64
2018-01-10 9 81
x y
2018-01-01 0 0
2018-01-02 1 1
2018-01-03 2 4
2018-01-04 3 9
2018-01-05 15 77 # contains the sum of Jan 5th, 6th and 7th
2018-01-08 7 49
2018-01-09 8 64
2018-01-10 9 81
Still has a list comprehension loop, but works.
import pandas as pd
import numpy as np
# Create dataframe which contains all days
df = pd.DataFrame({'x': np.arange(10), 'y': np.arange(10)**2},
index=pd.date_range(start="2018-01-01", periods=10))
# create second dataframe which only contains week-days or whatever dates you need.
ref_dates = [x for x in df.index if x.weekday() < 5]
# Set the index of df to a forward filled version of the ref days
df.index = pd.Series([x if x in ref_dates else float('nan') for x in df.index]).fillna(method='ffill')
# Group by unique dates and sum
df = df.groupby(level=0).sum()
print(df)

Pandas: how to concisely detrend subset of columns

I would like to calculate and subtract the average over a subset of columns. Here is one way to do it:
#!/usr/bin/env python3
import numpy as np
import pandas as pd
def col_avg(df, col_ids):
'''Calculate and subtract average over *col_ids*
*df* is modified in-place.
'''
cols = [ df.columns[i] for i in col_ids ]
acc = df[cols[0]].copy()
for col in cols[1:]:
acc += df[col]
acc /= len(cols)
for col in cols:
df[col] -= acc
# Create example data
np.random.seed(42)
df = pd.DataFrame(data=np.random.random((433,80)) + np.arange(433)[:, np.newaxis],
columns=['col-%d' % x for x in range(80)])
#df = pd.DataFrame.from_csv('data.csv')
# Calculate average over columns 2, 3 and 6
df_old = df.copy()
col_avg(df, [ 1, 2, 5])
assert any(df_old.iloc[0] != df.iloc[0])
Now and I don't particularly like the two for loops, so I tried to express the same operation more concisely:
def col_avg(df, col_ids):
dfT = df.T
mean = dfT.iloc[col_ids].mean()
dfT.iloc[col_ids] -= mean
This implementation looks a lot nicer (IMO), but it has one drawback: it only works for some datasets. With the example above, it works. But e.g. when loading this csv file it fails.
The only explanation that I have is that in some cases the dfT.iloc[col_ids] expression must be internally creating a copy of the value array instead of modifying it in-place.
Is this the right explanation?
If so, what is it about the DataFrame that makes pandas decide to copy the data in one case but no the other?
Is there another way to perform this task that always works and does not require explicit iteration?
EDIT: When suggesting alternative implementations, please state why you think your implementation will always work. After all, the above code seems to work for some inputs as well.
The transpose of the DataFrame, dfT = df.T, may return a new DataFrame, not a view.
In that case, modifying dfT does nothing to df.
In your toy example,
df = pd.DataFrame(data=np.random.random((433,80)) + np.arange(433)[:, np.newaxis],
columns=['col-%d' % x for x in range(80)])
all the columns have the same dtype:
In [83]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 433 entries, 0 to 432
Data columns (total 80 columns):
col-0 433 non-null float64
col-1 433 non-null float64
col-2 433 non-null float64
...
dtypes: float64(80)
memory usage: 274.0 KB
whereas in the DataFrame built from CSV, some columns have int64 dtype:
In [55]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 492 entries, 0 to 491
Data columns (total 72 columns):
sample no 492 non-null int64
index 492 non-null int64
plasma-r 492 non-null float64
plasma-z 492 non-null float64
...
Columns of a DataFrame always have a single dtype. So when you transpose this
CSV-based df, the new DataFrame can not be formed by simply transposing a
single underlying NumPy array. The integers which were in columns by themselves
is now spread across rows. Each column of df.T must have a single dtype, so
the integers are upcasted to floats. So all the columns of df.T have dtype
float64. Data has to be copied when dtypes change.
The bottom line is: So when df has mixed types, df.T is a copy.
col_avg could be simplified to
def col_avg2(df, col_ids):
means = df.iloc[:, col_ids].mean(axis=1)
for i in col_ids:
df.iloc[:, i] -= means
Note that the expression df.iloc[:, col_ids] will return a copy since cols_ids is not a basic slice. But assignment to df.iloc[...] (or df.loc[...]) is guaranteed to modify df.
This is why assigning to df.iloc or df.loc is the recommended way to avoid the assignment-with-chained-indexing pitfall.
From my understanding of the question, this does what you are asking. I don't understand why you're transposing the dataframe. Note: I got rid of the string column names for simplicity, but you can replace those easily.
np.random.seed(42)
df = pd.DataFrame(data=np.random.random((6,8)) + np.arange(6)[:, np.newaxis])#,
#columns=['col-%d' % x for x in range(80)])
# Calculate average over columns 2, 3 and 6
df_old = df.copy()
col_ids=[1,2,5]
df[col_ids] = df[col_ids] - np.mean(df[col_ids].values)
df_old-df # to make sure average is calculated over all three columns
Out[139]:
0 1 2 3 4 5 6 7
0 0 2.950637 2.950637 0 0 2.950637 0 0
1 0 2.950637 2.950637 0 0 2.950637 0 0
2 0 2.950637 2.950637 0 0 2.950637 0 0
3 0 2.950637 2.950637 0 0 2.950637 0 0
4 0 2.950637 2.950637 0 0 2.950637 0 0
5 0 2.950637 2.950637 0 0 2.950637 0 0
OP, say you want the average computed over similar columns and subtracted (say the "Psi at ..." columns). The easiest way is
df = pd.read_csv('data.csv')
psi_cols = [c for c in df.columns if c.startswith('Psi')]
df[psi_cols] -= df[psi_cols].mean().mean()
This computes the total mean across all columns. If you want to subtract the column mean from each column, do
df[psi_cols] -= df[psi_cols].mean()

Categories

Resources