Create new table based on every unique criteria [duplicate] - python

I have a very large dataframe (around 1 million rows) with data from an experiment (60 respondents).
I would like to split the dataframe into 60 dataframes (a dataframe for each participant).
In the dataframe, data, there is a variable called 'name', which is the unique code for each participant.
I have tried the following, but nothing happens (or execution does not stop within an hour). What I intend to do is to split the data into smaller dataframes, and append these to a list (datalist):
import pandas as pd
def splitframe(data, name='name'):
n = data[name][0]
df = pd.DataFrame(columns=data.columns)
datalist = []
for i in range(len(data)):
if data[name][i] == n:
df = df.append(data.iloc[i])
else:
datalist.append(df)
df = pd.DataFrame(columns=data.columns)
n = data[name][i]
df = df.append(data.iloc[i])
return datalist
I do not get an error message, the script just seems to run forever!
Is there a smart way to do it?

Can I ask why not just do it by slicing the data frame. Something like
#create some data with Names column
data = pd.DataFrame({'Names': ['Joe', 'John', 'Jasper', 'Jez'] *4, 'Ob1' : np.random.rand(16), 'Ob2' : np.random.rand(16)})
#create unique list of names
UniqueNames = data.Names.unique()
#create a data frame dictionary to store your data frames
DataFrameDict = {elem : pd.DataFrame() for elem in UniqueNames}
for key in DataFrameDict.keys():
DataFrameDict[key] = data[:][data.Names == key]
Hey presto you have a dictionary of data frames just as (I think) you want them. Need to access one? Just enter
DataFrameDict['Joe']

Firstly your approach is inefficient because the appending to the list on a row by basis will be slow as it has to periodically grow the list when there is insufficient space for the new entry, list comprehensions are better in this respect as the size is determined up front and allocated once.
However, I think fundamentally your approach is a little wasteful as you have a dataframe already so why create a new one for each of these users?
I would sort the dataframe by column 'name', set the index to be this and if required not drop the column.
Then generate a list of all the unique entries and then you can perform a lookup using these entries and crucially if you only querying the data, use the selection criteria to return a view on the dataframe without incurring a costly data copy.
Use pandas.DataFrame.sort_values and pandas.DataFrame.set_index:
# sort the dataframe
df.sort_values(by='name', axis=1, inplace=True)
# set the index to be this and don't drop
df.set_index(keys=['name'], drop=False,inplace=True)
# get a list of names
names=df['name'].unique().tolist()
# now we can perform a lookup on a 'view' of the dataframe
joe = df.loc[df.name=='joe']
# now you can query all 'joes'

You can convert groupby object to tuples and then to dict:
df = pd.DataFrame({'Name':list('aabbef'),
'A':[4,5,4,5,5,4],
'B':[7,8,9,4,2,3],
'C':[1,3,5,7,1,0]}, columns = ['Name','A','B','C'])
print (df)
Name A B C
0 a 4 7 1
1 a 5 8 3
2 b 4 9 5
3 b 5 4 7
4 e 5 2 1
5 f 4 3 0
d = dict(tuple(df.groupby('Name')))
print (d)
{'b': Name A B C
2 b 4 9 5
3 b 5 4 7, 'e': Name A B C
4 e 5 2 1, 'a': Name A B C
0 a 4 7 1
1 a 5 8 3, 'f': Name A B C
5 f 4 3 0}
print (d['a'])
Name A B C
0 a 4 7 1
1 a 5 8 3
It is not recommended, but possible create DataFrames by groups:
for i, g in df.groupby('Name'):
globals()['df_' + str(i)] = g
print (df_a)
Name A B C
0 a 4 7 1
1 a 5 8 3

Easy:
[v for k, v in df.groupby('name')]

Groupby can helps you:
grouped = data.groupby(['name'])
Then you can work with each group like with a dataframe for each participant. And DataFrameGroupBy object methods such as (apply, transform, aggregate, head, first, last) return a DataFrame object.
Or you can make list from grouped and get all DataFrame's by index:
l_grouped = list(grouped)
l_grouped[0][1] - DataFrame for first group with first name.

In addition to Gusev Slava's answer, you might want to use groupby's groups:
{key: df.loc[value] for key, value in df.groupby("name").groups.items()}
This will yield a dictionary with the keys you have grouped by, pointing to the corresponding partitions. The advantage is that the keys are maintained and don't vanish in the list index.

The method in the OP works, but isn't efficient. It may have seemed to run forever, because the dataset was long.
Use .groupby on the 'method' column, and create a dict of DataFrames with unique 'method' values as the keys, with a dict-comprehension.
.groupby returns a groupby object, that contains information about the groups, where g is the unique value in 'method' for each group, and d is the DataFrame for that group.
The value of each key in df_dict, will be a DataFrame, which can be accessed in the standard way, df_dict['key'].
The original question wanted a list of DataFrames, which can be done with a list-comprehension
df_list = [d for _, d in df.groupby('method')]
import pandas as pd
import seaborn as sns # for test dataset
# load data for example
df = sns.load_dataset('planets')
# display(df.head())
method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009
# Using a dict-comprehension, the unique 'method' value will be the key
df_dict = {g: d for g, d in df.groupby('method')}
print(df_dict.keys())
[out]:
dict_keys(['Astrometry', 'Eclipse Timing Variations', 'Imaging', 'Microlensing', 'Orbital Brightness Modulation', 'Pulsar Timing', 'Pulsation Timing Variations', 'Radial Velocity', 'Transit', 'Transit Timing Variations'])
# or a specific name for the key, using enumerate (e.g. df1, df2, etc.)
df_dict = {f'df{i}': d for i, (g, d) in enumerate(df.groupby('method'))}
print(df_dict.keys())
[out]:
dict_keys(['df0', 'df1', 'df2', 'df3', 'df4', 'df5', 'df6', 'df7', 'df8', 'df9'])
df_dict['df1].head(3) or df_dict['Astrometry'].head(3)
There are only 2 in this group
method number orbital_period mass distance year
113 Astrometry 1 246.36 NaN 20.77 2013
537 Astrometry 1 1016.00 NaN 14.98 2010
df_dict['df2].head(3) or df_dict['Eclipse Timing Variations'].head(3)
method number orbital_period mass distance year
32 Eclipse Timing Variations 1 10220.0 6.05 NaN 2009
37 Eclipse Timing Variations 2 5767.0 NaN 130.72 2008
38 Eclipse Timing Variations 2 3321.0 NaN 130.72 2008
df_dict['df3].head(3) or df_dict['Imaging'].head(3)
method number orbital_period mass distance year
29 Imaging 1 NaN NaN 45.52 2005
30 Imaging 1 NaN NaN 165.00 2007
31 Imaging 1 NaN NaN 140.00 2004
For more information about the seaborn datasets
NASA Exoplanets
Alternatively
This is a manual method to create separate DataFrames using pandas: Boolean Indexing
This is similar to the accepted answer, but .loc is not required.
This is an acceptable method for creating a couple extra DataFrames.
The pythonic way to create multiple objects, is by placing them in a container (e.g. dict, list, generator, etc.), as shown above.
df1 = df[df.method == 'Astrometry']
df2 = df[df.method == 'Eclipse Timing Variations']

In [28]: df = DataFrame(np.random.randn(1000000,10))
In [29]: df
Out[29]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 10 columns):
0 1000000 non-null values
1 1000000 non-null values
2 1000000 non-null values
3 1000000 non-null values
4 1000000 non-null values
5 1000000 non-null values
6 1000000 non-null values
7 1000000 non-null values
8 1000000 non-null values
9 1000000 non-null values
dtypes: float64(10)
In [30]: frames = [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
In [31]: %timeit [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
1 loops, best of 3: 849 ms per loop
In [32]: len(frames)
Out[32]: 16667
Here's a groupby way (and you could do an arbitrary apply rather than sum)
In [9]: g = df.groupby(lambda x: x/60)
In [8]: g.sum()
Out[8]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16667 entries, 0 to 16666
Data columns (total 10 columns):
0 16667 non-null values
1 16667 non-null values
2 16667 non-null values
3 16667 non-null values
4 16667 non-null values
5 16667 non-null values
6 16667 non-null values
7 16667 non-null values
8 16667 non-null values
9 16667 non-null values
dtypes: float64(10)
Sum is cythonized that's why this is so fast
In [10]: %timeit g.sum()
10 loops, best of 3: 27.5 ms per loop
In [11]: %timeit df.groupby(lambda x: x/60)
1 loops, best of 3: 231 ms per loop

The method based on list comprehension and groupby- Which stores all the split dataframe in list variable and can be accessed using the index.
Example
ans = [pd.DataFrame(y) for x, y in DF.groupby('column_name', as_index=False)]
ans[0]
ans[0].column_name

You can use the groupby command, if you already have some labels for your data.
out_list = [group[1] for group in in_series.groupby(label_series.values)]
Here's a detailed example:
Let's say we want to partition a pd series using some labels into a list of chunks
For example, in_series is:
2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 5, dtype: float64
And its corresponding label_series is:
2019-07-01 08:00:00 1
2019-07-01 08:02:00 1
2019-07-01 08:04:00 2
2019-07-01 08:06:00 2
2019-07-01 08:08:00 2
Length: 5, dtype: float64
Run
out_list = [group[1] for group in in_series.groupby(label_series.values)]
which returns out_list a list of two pd.Series:
[2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
Length: 2, dtype: float64,
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 3, dtype: float64]
Note that you can use some parameters from in_series itself to group the series, e.g., in_series.index.day

here's a small function which might help some (efficiency not perfect probably, but compact + more or less easy to understand):
def get_splited_df_dict(df: 'pd.DataFrame', split_column: 'str'):
"""
splits a pandas.DataFrame on split_column and returns it as a dict
"""
df_dict = {value: df[df[split_column] == value].drop(split_column, axis=1) for value in df[split_column].unique()}
return df_dict
it converts a DataFrame to multiple DataFrames, by selecting each unique value in the given column and putting all those entries into a separate DataFrame.
the .drop(split_column, axis=1) is just for removing the column which was used to split the DataFrame. the removal is not necessary, but can help a little to cut down on memory usage after the operation.
the result of get_splited_df_dict is a dict, meaning one can access each DataFrame like this:
splitted = get_splited_df_dict(some_df, some_column)
# accessing the DataFrame with 'some_column_value'
splitted[some_column_value]

The existing answers cover all good cases and explains fairly well how the groupby object is like a dictionary with keys and values that can be accessed via .groups. Yet more methods to do the same job as the existing answers are:
Create a list by unpacking the groupby object and casting it to a dictionary:
dict([*df.groupby('Name')]) # same as dict(list(df.groupby('Name')))
Create a tuple + dict (this is the same as #jezrael's answer):
dict((*df.groupby('Name'),))
If we only want the DataFrames, we could get the values of the dictionary (created above):
[*dict([*df.groupby('Name')]).values()]

I had similar problem. I had a time series of daily sales for 10 different stores and 50 different items. I needed to split the original dataframe in 500 dataframes (10stores*50stores) to apply Machine Learning models to each of them and I couldn't do it manually.
This is the head of the dataframe:
I have created two lists;
one for the names of dataframes
and one for the couple of array [item_number, store_number].
list=[]
for i in range(1,len(items)*len(stores)+1):
global list
list.append('df'+str(i))
list_couple_s_i =[]
for item in items:
for store in stores:
global list_couple_s_i
list_couple_s_i.append([item,store])
And once the two lists are ready you can loop on them to create the dataframes you want:
for name, it_st in zip(list,list_couple_s_i):
globals()[name] = df.where((df['item']==it_st[0]) &
(df['store']==(it_st[1])))
globals()[name].dropna(inplace=True)
In this way I have created 500 dataframes.
Hope this will be helpful!

Related

Split one dataframe in 4 [duplicate]

I have a very large dataframe (around 1 million rows) with data from an experiment (60 respondents).
I would like to split the dataframe into 60 dataframes (a dataframe for each participant).
In the dataframe, data, there is a variable called 'name', which is the unique code for each participant.
I have tried the following, but nothing happens (or execution does not stop within an hour). What I intend to do is to split the data into smaller dataframes, and append these to a list (datalist):
import pandas as pd
def splitframe(data, name='name'):
n = data[name][0]
df = pd.DataFrame(columns=data.columns)
datalist = []
for i in range(len(data)):
if data[name][i] == n:
df = df.append(data.iloc[i])
else:
datalist.append(df)
df = pd.DataFrame(columns=data.columns)
n = data[name][i]
df = df.append(data.iloc[i])
return datalist
I do not get an error message, the script just seems to run forever!
Is there a smart way to do it?
Can I ask why not just do it by slicing the data frame. Something like
#create some data with Names column
data = pd.DataFrame({'Names': ['Joe', 'John', 'Jasper', 'Jez'] *4, 'Ob1' : np.random.rand(16), 'Ob2' : np.random.rand(16)})
#create unique list of names
UniqueNames = data.Names.unique()
#create a data frame dictionary to store your data frames
DataFrameDict = {elem : pd.DataFrame() for elem in UniqueNames}
for key in DataFrameDict.keys():
DataFrameDict[key] = data[:][data.Names == key]
Hey presto you have a dictionary of data frames just as (I think) you want them. Need to access one? Just enter
DataFrameDict['Joe']
Firstly your approach is inefficient because the appending to the list on a row by basis will be slow as it has to periodically grow the list when there is insufficient space for the new entry, list comprehensions are better in this respect as the size is determined up front and allocated once.
However, I think fundamentally your approach is a little wasteful as you have a dataframe already so why create a new one for each of these users?
I would sort the dataframe by column 'name', set the index to be this and if required not drop the column.
Then generate a list of all the unique entries and then you can perform a lookup using these entries and crucially if you only querying the data, use the selection criteria to return a view on the dataframe without incurring a costly data copy.
Use pandas.DataFrame.sort_values and pandas.DataFrame.set_index:
# sort the dataframe
df.sort_values(by='name', axis=1, inplace=True)
# set the index to be this and don't drop
df.set_index(keys=['name'], drop=False,inplace=True)
# get a list of names
names=df['name'].unique().tolist()
# now we can perform a lookup on a 'view' of the dataframe
joe = df.loc[df.name=='joe']
# now you can query all 'joes'
You can convert groupby object to tuples and then to dict:
df = pd.DataFrame({'Name':list('aabbef'),
'A':[4,5,4,5,5,4],
'B':[7,8,9,4,2,3],
'C':[1,3,5,7,1,0]}, columns = ['Name','A','B','C'])
print (df)
Name A B C
0 a 4 7 1
1 a 5 8 3
2 b 4 9 5
3 b 5 4 7
4 e 5 2 1
5 f 4 3 0
d = dict(tuple(df.groupby('Name')))
print (d)
{'b': Name A B C
2 b 4 9 5
3 b 5 4 7, 'e': Name A B C
4 e 5 2 1, 'a': Name A B C
0 a 4 7 1
1 a 5 8 3, 'f': Name A B C
5 f 4 3 0}
print (d['a'])
Name A B C
0 a 4 7 1
1 a 5 8 3
It is not recommended, but possible create DataFrames by groups:
for i, g in df.groupby('Name'):
globals()['df_' + str(i)] = g
print (df_a)
Name A B C
0 a 4 7 1
1 a 5 8 3
Easy:
[v for k, v in df.groupby('name')]
Groupby can helps you:
grouped = data.groupby(['name'])
Then you can work with each group like with a dataframe for each participant. And DataFrameGroupBy object methods such as (apply, transform, aggregate, head, first, last) return a DataFrame object.
Or you can make list from grouped and get all DataFrame's by index:
l_grouped = list(grouped)
l_grouped[0][1] - DataFrame for first group with first name.
In addition to Gusev Slava's answer, you might want to use groupby's groups:
{key: df.loc[value] for key, value in df.groupby("name").groups.items()}
This will yield a dictionary with the keys you have grouped by, pointing to the corresponding partitions. The advantage is that the keys are maintained and don't vanish in the list index.
The method in the OP works, but isn't efficient. It may have seemed to run forever, because the dataset was long.
Use .groupby on the 'method' column, and create a dict of DataFrames with unique 'method' values as the keys, with a dict-comprehension.
.groupby returns a groupby object, that contains information about the groups, where g is the unique value in 'method' for each group, and d is the DataFrame for that group.
The value of each key in df_dict, will be a DataFrame, which can be accessed in the standard way, df_dict['key'].
The original question wanted a list of DataFrames, which can be done with a list-comprehension
df_list = [d for _, d in df.groupby('method')]
import pandas as pd
import seaborn as sns # for test dataset
# load data for example
df = sns.load_dataset('planets')
# display(df.head())
method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009
# Using a dict-comprehension, the unique 'method' value will be the key
df_dict = {g: d for g, d in df.groupby('method')}
print(df_dict.keys())
[out]:
dict_keys(['Astrometry', 'Eclipse Timing Variations', 'Imaging', 'Microlensing', 'Orbital Brightness Modulation', 'Pulsar Timing', 'Pulsation Timing Variations', 'Radial Velocity', 'Transit', 'Transit Timing Variations'])
# or a specific name for the key, using enumerate (e.g. df1, df2, etc.)
df_dict = {f'df{i}': d for i, (g, d) in enumerate(df.groupby('method'))}
print(df_dict.keys())
[out]:
dict_keys(['df0', 'df1', 'df2', 'df3', 'df4', 'df5', 'df6', 'df7', 'df8', 'df9'])
df_dict['df1].head(3) or df_dict['Astrometry'].head(3)
There are only 2 in this group
method number orbital_period mass distance year
113 Astrometry 1 246.36 NaN 20.77 2013
537 Astrometry 1 1016.00 NaN 14.98 2010
df_dict['df2].head(3) or df_dict['Eclipse Timing Variations'].head(3)
method number orbital_period mass distance year
32 Eclipse Timing Variations 1 10220.0 6.05 NaN 2009
37 Eclipse Timing Variations 2 5767.0 NaN 130.72 2008
38 Eclipse Timing Variations 2 3321.0 NaN 130.72 2008
df_dict['df3].head(3) or df_dict['Imaging'].head(3)
method number orbital_period mass distance year
29 Imaging 1 NaN NaN 45.52 2005
30 Imaging 1 NaN NaN 165.00 2007
31 Imaging 1 NaN NaN 140.00 2004
For more information about the seaborn datasets
NASA Exoplanets
Alternatively
This is a manual method to create separate DataFrames using pandas: Boolean Indexing
This is similar to the accepted answer, but .loc is not required.
This is an acceptable method for creating a couple extra DataFrames.
The pythonic way to create multiple objects, is by placing them in a container (e.g. dict, list, generator, etc.), as shown above.
df1 = df[df.method == 'Astrometry']
df2 = df[df.method == 'Eclipse Timing Variations']
In [28]: df = DataFrame(np.random.randn(1000000,10))
In [29]: df
Out[29]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 10 columns):
0 1000000 non-null values
1 1000000 non-null values
2 1000000 non-null values
3 1000000 non-null values
4 1000000 non-null values
5 1000000 non-null values
6 1000000 non-null values
7 1000000 non-null values
8 1000000 non-null values
9 1000000 non-null values
dtypes: float64(10)
In [30]: frames = [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
In [31]: %timeit [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
1 loops, best of 3: 849 ms per loop
In [32]: len(frames)
Out[32]: 16667
Here's a groupby way (and you could do an arbitrary apply rather than sum)
In [9]: g = df.groupby(lambda x: x/60)
In [8]: g.sum()
Out[8]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16667 entries, 0 to 16666
Data columns (total 10 columns):
0 16667 non-null values
1 16667 non-null values
2 16667 non-null values
3 16667 non-null values
4 16667 non-null values
5 16667 non-null values
6 16667 non-null values
7 16667 non-null values
8 16667 non-null values
9 16667 non-null values
dtypes: float64(10)
Sum is cythonized that's why this is so fast
In [10]: %timeit g.sum()
10 loops, best of 3: 27.5 ms per loop
In [11]: %timeit df.groupby(lambda x: x/60)
1 loops, best of 3: 231 ms per loop
The method based on list comprehension and groupby- Which stores all the split dataframe in list variable and can be accessed using the index.
Example
ans = [pd.DataFrame(y) for x, y in DF.groupby('column_name', as_index=False)]
ans[0]
ans[0].column_name
You can use the groupby command, if you already have some labels for your data.
out_list = [group[1] for group in in_series.groupby(label_series.values)]
Here's a detailed example:
Let's say we want to partition a pd series using some labels into a list of chunks
For example, in_series is:
2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 5, dtype: float64
And its corresponding label_series is:
2019-07-01 08:00:00 1
2019-07-01 08:02:00 1
2019-07-01 08:04:00 2
2019-07-01 08:06:00 2
2019-07-01 08:08:00 2
Length: 5, dtype: float64
Run
out_list = [group[1] for group in in_series.groupby(label_series.values)]
which returns out_list a list of two pd.Series:
[2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
Length: 2, dtype: float64,
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 3, dtype: float64]
Note that you can use some parameters from in_series itself to group the series, e.g., in_series.index.day
here's a small function which might help some (efficiency not perfect probably, but compact + more or less easy to understand):
def get_splited_df_dict(df: 'pd.DataFrame', split_column: 'str'):
"""
splits a pandas.DataFrame on split_column and returns it as a dict
"""
df_dict = {value: df[df[split_column] == value].drop(split_column, axis=1) for value in df[split_column].unique()}
return df_dict
it converts a DataFrame to multiple DataFrames, by selecting each unique value in the given column and putting all those entries into a separate DataFrame.
the .drop(split_column, axis=1) is just for removing the column which was used to split the DataFrame. the removal is not necessary, but can help a little to cut down on memory usage after the operation.
the result of get_splited_df_dict is a dict, meaning one can access each DataFrame like this:
splitted = get_splited_df_dict(some_df, some_column)
# accessing the DataFrame with 'some_column_value'
splitted[some_column_value]
The existing answers cover all good cases and explains fairly well how the groupby object is like a dictionary with keys and values that can be accessed via .groups. Yet more methods to do the same job as the existing answers are:
Create a list by unpacking the groupby object and casting it to a dictionary:
dict([*df.groupby('Name')]) # same as dict(list(df.groupby('Name')))
Create a tuple + dict (this is the same as #jezrael's answer):
dict((*df.groupby('Name'),))
If we only want the DataFrames, we could get the values of the dictionary (created above):
[*dict([*df.groupby('Name')]).values()]
I had similar problem. I had a time series of daily sales for 10 different stores and 50 different items. I needed to split the original dataframe in 500 dataframes (10stores*50stores) to apply Machine Learning models to each of them and I couldn't do it manually.
This is the head of the dataframe:
I have created two lists;
one for the names of dataframes
and one for the couple of array [item_number, store_number].
list=[]
for i in range(1,len(items)*len(stores)+1):
global list
list.append('df'+str(i))
list_couple_s_i =[]
for item in items:
for store in stores:
global list_couple_s_i
list_couple_s_i.append([item,store])
And once the two lists are ready you can loop on them to create the dataframes you want:
for name, it_st in zip(list,list_couple_s_i):
globals()[name] = df.where((df['item']==it_st[0]) &
(df['store']==(it_st[1])))
globals()[name].dropna(inplace=True)
In this way I have created 500 dataframes.
Hope this will be helpful!

How to divide Dataframes to list of Dataframes based on values in columns, but without changing any structures [duplicate]

I have a very large dataframe (around 1 million rows) with data from an experiment (60 respondents).
I would like to split the dataframe into 60 dataframes (a dataframe for each participant).
In the dataframe, data, there is a variable called 'name', which is the unique code for each participant.
I have tried the following, but nothing happens (or execution does not stop within an hour). What I intend to do is to split the data into smaller dataframes, and append these to a list (datalist):
import pandas as pd
def splitframe(data, name='name'):
n = data[name][0]
df = pd.DataFrame(columns=data.columns)
datalist = []
for i in range(len(data)):
if data[name][i] == n:
df = df.append(data.iloc[i])
else:
datalist.append(df)
df = pd.DataFrame(columns=data.columns)
n = data[name][i]
df = df.append(data.iloc[i])
return datalist
I do not get an error message, the script just seems to run forever!
Is there a smart way to do it?
Can I ask why not just do it by slicing the data frame. Something like
#create some data with Names column
data = pd.DataFrame({'Names': ['Joe', 'John', 'Jasper', 'Jez'] *4, 'Ob1' : np.random.rand(16), 'Ob2' : np.random.rand(16)})
#create unique list of names
UniqueNames = data.Names.unique()
#create a data frame dictionary to store your data frames
DataFrameDict = {elem : pd.DataFrame() for elem in UniqueNames}
for key in DataFrameDict.keys():
DataFrameDict[key] = data[:][data.Names == key]
Hey presto you have a dictionary of data frames just as (I think) you want them. Need to access one? Just enter
DataFrameDict['Joe']
Firstly your approach is inefficient because the appending to the list on a row by basis will be slow as it has to periodically grow the list when there is insufficient space for the new entry, list comprehensions are better in this respect as the size is determined up front and allocated once.
However, I think fundamentally your approach is a little wasteful as you have a dataframe already so why create a new one for each of these users?
I would sort the dataframe by column 'name', set the index to be this and if required not drop the column.
Then generate a list of all the unique entries and then you can perform a lookup using these entries and crucially if you only querying the data, use the selection criteria to return a view on the dataframe without incurring a costly data copy.
Use pandas.DataFrame.sort_values and pandas.DataFrame.set_index:
# sort the dataframe
df.sort_values(by='name', axis=1, inplace=True)
# set the index to be this and don't drop
df.set_index(keys=['name'], drop=False,inplace=True)
# get a list of names
names=df['name'].unique().tolist()
# now we can perform a lookup on a 'view' of the dataframe
joe = df.loc[df.name=='joe']
# now you can query all 'joes'
You can convert groupby object to tuples and then to dict:
df = pd.DataFrame({'Name':list('aabbef'),
'A':[4,5,4,5,5,4],
'B':[7,8,9,4,2,3],
'C':[1,3,5,7,1,0]}, columns = ['Name','A','B','C'])
print (df)
Name A B C
0 a 4 7 1
1 a 5 8 3
2 b 4 9 5
3 b 5 4 7
4 e 5 2 1
5 f 4 3 0
d = dict(tuple(df.groupby('Name')))
print (d)
{'b': Name A B C
2 b 4 9 5
3 b 5 4 7, 'e': Name A B C
4 e 5 2 1, 'a': Name A B C
0 a 4 7 1
1 a 5 8 3, 'f': Name A B C
5 f 4 3 0}
print (d['a'])
Name A B C
0 a 4 7 1
1 a 5 8 3
It is not recommended, but possible create DataFrames by groups:
for i, g in df.groupby('Name'):
globals()['df_' + str(i)] = g
print (df_a)
Name A B C
0 a 4 7 1
1 a 5 8 3
Easy:
[v for k, v in df.groupby('name')]
Groupby can helps you:
grouped = data.groupby(['name'])
Then you can work with each group like with a dataframe for each participant. And DataFrameGroupBy object methods such as (apply, transform, aggregate, head, first, last) return a DataFrame object.
Or you can make list from grouped and get all DataFrame's by index:
l_grouped = list(grouped)
l_grouped[0][1] - DataFrame for first group with first name.
In addition to Gusev Slava's answer, you might want to use groupby's groups:
{key: df.loc[value] for key, value in df.groupby("name").groups.items()}
This will yield a dictionary with the keys you have grouped by, pointing to the corresponding partitions. The advantage is that the keys are maintained and don't vanish in the list index.
The method in the OP works, but isn't efficient. It may have seemed to run forever, because the dataset was long.
Use .groupby on the 'method' column, and create a dict of DataFrames with unique 'method' values as the keys, with a dict-comprehension.
.groupby returns a groupby object, that contains information about the groups, where g is the unique value in 'method' for each group, and d is the DataFrame for that group.
The value of each key in df_dict, will be a DataFrame, which can be accessed in the standard way, df_dict['key'].
The original question wanted a list of DataFrames, which can be done with a list-comprehension
df_list = [d for _, d in df.groupby('method')]
import pandas as pd
import seaborn as sns # for test dataset
# load data for example
df = sns.load_dataset('planets')
# display(df.head())
method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009
# Using a dict-comprehension, the unique 'method' value will be the key
df_dict = {g: d for g, d in df.groupby('method')}
print(df_dict.keys())
[out]:
dict_keys(['Astrometry', 'Eclipse Timing Variations', 'Imaging', 'Microlensing', 'Orbital Brightness Modulation', 'Pulsar Timing', 'Pulsation Timing Variations', 'Radial Velocity', 'Transit', 'Transit Timing Variations'])
# or a specific name for the key, using enumerate (e.g. df1, df2, etc.)
df_dict = {f'df{i}': d for i, (g, d) in enumerate(df.groupby('method'))}
print(df_dict.keys())
[out]:
dict_keys(['df0', 'df1', 'df2', 'df3', 'df4', 'df5', 'df6', 'df7', 'df8', 'df9'])
df_dict['df1].head(3) or df_dict['Astrometry'].head(3)
There are only 2 in this group
method number orbital_period mass distance year
113 Astrometry 1 246.36 NaN 20.77 2013
537 Astrometry 1 1016.00 NaN 14.98 2010
df_dict['df2].head(3) or df_dict['Eclipse Timing Variations'].head(3)
method number orbital_period mass distance year
32 Eclipse Timing Variations 1 10220.0 6.05 NaN 2009
37 Eclipse Timing Variations 2 5767.0 NaN 130.72 2008
38 Eclipse Timing Variations 2 3321.0 NaN 130.72 2008
df_dict['df3].head(3) or df_dict['Imaging'].head(3)
method number orbital_period mass distance year
29 Imaging 1 NaN NaN 45.52 2005
30 Imaging 1 NaN NaN 165.00 2007
31 Imaging 1 NaN NaN 140.00 2004
For more information about the seaborn datasets
NASA Exoplanets
Alternatively
This is a manual method to create separate DataFrames using pandas: Boolean Indexing
This is similar to the accepted answer, but .loc is not required.
This is an acceptable method for creating a couple extra DataFrames.
The pythonic way to create multiple objects, is by placing them in a container (e.g. dict, list, generator, etc.), as shown above.
df1 = df[df.method == 'Astrometry']
df2 = df[df.method == 'Eclipse Timing Variations']
In [28]: df = DataFrame(np.random.randn(1000000,10))
In [29]: df
Out[29]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 10 columns):
0 1000000 non-null values
1 1000000 non-null values
2 1000000 non-null values
3 1000000 non-null values
4 1000000 non-null values
5 1000000 non-null values
6 1000000 non-null values
7 1000000 non-null values
8 1000000 non-null values
9 1000000 non-null values
dtypes: float64(10)
In [30]: frames = [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
In [31]: %timeit [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
1 loops, best of 3: 849 ms per loop
In [32]: len(frames)
Out[32]: 16667
Here's a groupby way (and you could do an arbitrary apply rather than sum)
In [9]: g = df.groupby(lambda x: x/60)
In [8]: g.sum()
Out[8]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16667 entries, 0 to 16666
Data columns (total 10 columns):
0 16667 non-null values
1 16667 non-null values
2 16667 non-null values
3 16667 non-null values
4 16667 non-null values
5 16667 non-null values
6 16667 non-null values
7 16667 non-null values
8 16667 non-null values
9 16667 non-null values
dtypes: float64(10)
Sum is cythonized that's why this is so fast
In [10]: %timeit g.sum()
10 loops, best of 3: 27.5 ms per loop
In [11]: %timeit df.groupby(lambda x: x/60)
1 loops, best of 3: 231 ms per loop
The method based on list comprehension and groupby- Which stores all the split dataframe in list variable and can be accessed using the index.
Example
ans = [pd.DataFrame(y) for x, y in DF.groupby('column_name', as_index=False)]
ans[0]
ans[0].column_name
You can use the groupby command, if you already have some labels for your data.
out_list = [group[1] for group in in_series.groupby(label_series.values)]
Here's a detailed example:
Let's say we want to partition a pd series using some labels into a list of chunks
For example, in_series is:
2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 5, dtype: float64
And its corresponding label_series is:
2019-07-01 08:00:00 1
2019-07-01 08:02:00 1
2019-07-01 08:04:00 2
2019-07-01 08:06:00 2
2019-07-01 08:08:00 2
Length: 5, dtype: float64
Run
out_list = [group[1] for group in in_series.groupby(label_series.values)]
which returns out_list a list of two pd.Series:
[2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
Length: 2, dtype: float64,
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 3, dtype: float64]
Note that you can use some parameters from in_series itself to group the series, e.g., in_series.index.day
here's a small function which might help some (efficiency not perfect probably, but compact + more or less easy to understand):
def get_splited_df_dict(df: 'pd.DataFrame', split_column: 'str'):
"""
splits a pandas.DataFrame on split_column and returns it as a dict
"""
df_dict = {value: df[df[split_column] == value].drop(split_column, axis=1) for value in df[split_column].unique()}
return df_dict
it converts a DataFrame to multiple DataFrames, by selecting each unique value in the given column and putting all those entries into a separate DataFrame.
the .drop(split_column, axis=1) is just for removing the column which was used to split the DataFrame. the removal is not necessary, but can help a little to cut down on memory usage after the operation.
the result of get_splited_df_dict is a dict, meaning one can access each DataFrame like this:
splitted = get_splited_df_dict(some_df, some_column)
# accessing the DataFrame with 'some_column_value'
splitted[some_column_value]
The existing answers cover all good cases and explains fairly well how the groupby object is like a dictionary with keys and values that can be accessed via .groups. Yet more methods to do the same job as the existing answers are:
Create a list by unpacking the groupby object and casting it to a dictionary:
dict([*df.groupby('Name')]) # same as dict(list(df.groupby('Name')))
Create a tuple + dict (this is the same as #jezrael's answer):
dict((*df.groupby('Name'),))
If we only want the DataFrames, we could get the values of the dictionary (created above):
[*dict([*df.groupby('Name')]).values()]
I had similar problem. I had a time series of daily sales for 10 different stores and 50 different items. I needed to split the original dataframe in 500 dataframes (10stores*50stores) to apply Machine Learning models to each of them and I couldn't do it manually.
This is the head of the dataframe:
I have created two lists;
one for the names of dataframes
and one for the couple of array [item_number, store_number].
list=[]
for i in range(1,len(items)*len(stores)+1):
global list
list.append('df'+str(i))
list_couple_s_i =[]
for item in items:
for store in stores:
global list_couple_s_i
list_couple_s_i.append([item,store])
And once the two lists are ready you can loop on them to create the dataframes you want:
for name, it_st in zip(list,list_couple_s_i):
globals()[name] = df.where((df['item']==it_st[0]) &
(df['store']==(it_st[1])))
globals()[name].dropna(inplace=True)
In this way I have created 500 dataframes.
Hope this will be helpful!

Pandas Time Series shows NaN after converting entries to float

I'm trying to get a time series going from a dataframe. My dataframe contains two desired columns - Timestamp and Speed. This is my code so far:
Step 1: I replaced all the spaces in the desired Speed column with 0
bus1354['Speed'].replace(' ',0,inplace=True)
Step 2: I then check to see if there are any NaN values in the Speed column after this
assert not bus1354['Speed'].isnull().any()
Step 3: I then check the first few entries of Timestamp and Speed columns together in the dataframe
bus1354[['Timestamp','Speed']].head()
This is the result I get (so far so good):
Step 4: I then truncate the Timestamp so as to only show hh:mm:ss and remove the milliseconds. I also convert to datetime format.
bus1354['Timestamp'] = pd.to_datetime(bus1354['Timestamp'].apply(lambda x : x[:7]))
Step 5: I check the result of the truncation
bus1354['Timestamp'].head()
Here's what that looks like:
Step 6: I then convert the speed to float64 from non-null object
bus1354['Speed'] = bus1354['Speed'].apply(float)
Step 7: I create a timerange and Time Series
bstimeRng = bus1354['Timestamp']
bs1354Ser = pd.Series(bus1354['Speed'], index=bstimeRng)
Step 8: Once I output my Time Series however, I get a bunch of NaN's for my Speed column.
bs1354Ser
I'm still learning the ins and outs of pandas so bear with me if this sounds like a basic question. Why is it that even after I changed the Speed column into float64, the Time Series still shows my desired Speed values as "NaN"?
Here better is use set_index:
s1354Ser = bus1354.set_index('Timestamp')['Speed']
Sample:
bus1354 = pd.DataFrame(
{'Timestamp':['08:38:00:009','08:38:00:013','08:38:00:019'],
'Speed':[42,42,43]})
print (bus1354)
Timestamp Speed
0 08:38:00:009 42
1 08:38:00:013 42
2 08:38:00:019 43
bus1354['Timestamp'] = pd.to_datetime(bus1354['Timestamp'].str[:7])
bus1354['Speed'] = bus1354['Speed'].astype(float)
s1354Ser = bus1354.set_index('Timestamp')['Speed']
print (s1354Ser)
Timestamp
2019-01-19 08:38:00 42.0
2019-01-19 08:38:00 42.0
2019-01-19 08:38:00 43.0
Name: Speed, dtype: float64
Missing values in your solution is problem data alignment:
#sample data
df = pd.DataFrame(
{'a':[0,2,3],
'b':[41,42,43]})
print (df)
a b
0 0 41
1 2 42
2 3 43
If check index of original data:
print (df.index.tolist())
[0, 1, 2]
And values of column a used for new index:
print (df['a'].tolist())
[0, 2, 3]
Then Series contructor if possible align data - old index from original by new index from a column, if value not exist are created NaNs:
s = pd.Series(df['b'], index=df['a'])
print (s)
a
0 41.0 <-align by 0 from original index
2 43.0 <-align by 2 from original index
3 NaN <- not exist 3, so NaN
Name: b, dtype: float64
But if convert values of Speed to numpy 1d array by values, then array have no index like Series:
s1354Ser = pd.Series(bus1354['Speed'].values, index=bstimeRng)
s = pd.Series(df['b'].values, index=df['a'])
print (s)
a
0 41
2 42
3 43
dtype: int64

How to return average of one group-by column out of multiple columns

I have a dataframe that looks like:
Type Time Node Bytes
A 1 0 11
A 1 0 12
B 1 0 13
B 1 1 14
I want to group by dataframe by type, time and node and mean the data based on Type. The resultant dataframe should look like:
Mean_A Mean_B
11.5 13.5
Being a beginner in pandas dataframe, I have written a code that simply does group by and mean.
total_kilobytes = data.groupby(['Time','Node','Type'])['KilobytesRaw'].sum().mean().
This returns mean of all types , but I want individual mean for each type and store result as a dataframe and not a series.
I believe you need:
total_kilobytes = data.groupby('Type')['Bytes'].mean().to_frame().T.add_prefix('Mean_')
print (total_kilobytes)
Type Mean_A Mean_B
Bytes 11.5 13.5
Using pd.pivot_table:
res = pd.pivot_table(df, columns='Type', values=['Bytes']).add_prefix('Mean_')
print(res)
Type Mean_A Mean_B
Bytes 11.5 13.5

Pandas pivot table with conditional aggfunc

My pandas dataframe is as follows:
df = pd.DataFrame({"PAR NAME":['abc','def','def','def','abc'], "value":[1,2,3,4,5],"DESTCD":['E','N','E','E','S']})
I need to pivot df for PAR NAME and find out what %age of its value comes from places where DESTCD is 'E'. Something like this (which obviously didnt work!)
df.pivot_table(index="PAR NAME",values=["value"],aggfunc={'value':lambda x: (x.sum() if x["DESTCD"]=="E")*100.0/x.sum()})
I am currently doing this through adding a conditional column and then summing it along with 'value' in pivot and then dividing, but my database is huge (1gb+) and there has got to be an easier way.
Edit: Expected Output
abc 16.67 (since abc and E is 1 out of total abc which is 6)
def 77.78 (since def and E is 7 out of total def of 9);
(Note: Please dont recommend slicing multiple dataframes as mentioned my data is huge and efficiency is critical :) )
I tried to solve the problem without specifically referencing 'E' so it is generalizable to any alphabet letter. The output is a dataframe that you can then index on E to get your answer. I simply did the aggregation separately and then used an efficient join method.
df = pd.DataFrame({"PAR NAME":['abc','def','def','def','abc'], "value":[1,2,3,4,5],"DESTCD":['E','N','E','E','S']})
# First groupby 'DESTCD' and 'PAR NAME'
gb = df.groupby(['DESTCD', 'PAR NAME'], as_index=False).sum()
print(gb)
DESTCD PAR NAME value
0 E abc 1
1 E def 7
2 N def 2
3 S abc 5
gb_parname = gb.groupby(['PAR NAME']).sum()
out = gb.join(gb_parname, on='PAR NAME', rsuffix='Total')
print(out)
DESTCD PAR NAME value valueTotal
0 E abc 1 6
1 E def 7 9
2 N def 2 9
3 S abc 5 6
out.loc[:, 'derived']= out.apply(lambda df: df.value/df.valueTotal, axis=1)
print(out)
DESTCD PAR NAME value valueTotal derived
0 E abc 1 6 0.166667
1 E def 7 9 0.777778
2 N def 2 9 0.222222
3 S abc 5 6 0.833333
It's also a relatively efficient operation
%%timeit
gb = df.groupby(['DESTCD', 'PAR NAME'], as_index=False).sum()
gb_parname = gb.groupby(['PAR NAME']).sum()
out = gb.join(gb_parname, on='PAR NAME', rsuffix='Total')
out.loc[:, 'derived']= out.apply(lambda df: df.value/df.valueTotal, axis=1)
100 loops, best of 3: 6.31 ms per loop
Instead of pivot table you can use multiple groupby methods based on PAR NAME and then apply the operation you want. i.e
new = df[df['DESTCD']=='E'].groupby('PAR NAME')['value'].sum()*100/df.groupby('PAR NAME')['value'].sum()
Output:
PAR NAME
abc 16.666667
def 77.777778
Name: value, dtype: float64
If you want timings
%%timeit
df[df['DESTCD']=='E'].groupby('PAR NAME')['value'].sum()*100/df.groupby('PAR NAME')['value'].sum()
100 loops, best of 3: 4.03 ms per loop
%%timeit
df = pd.concat([df]*10000)
df[df['DESTCD']=='E'].groupby('PAR NAME')['value'].sum()*100/df.groupby('PAR NAME')['value'].sum()
100 loops, best of 3: 15.6 ms per loop
I also found a way to answer the question via pivot which is equally efficient as the selected answer! Adding here for convenience of others:
df.pivot_table(index="PAR NAME",values=["value"],aggfunc={'value':lambda x: x[df.iloc[x.index]['DESTCD']=='E'].sum()*100.0/x.sum()})
Logic being that aggfunc only works with series in question and cannot reference any other series till you get them via indexing the main df.

Categories

Resources