stitch images together in python - python

I am trying to stitch about 50 images(all in the same 287x287 size) together. Specifically, there should be 25 images on the top row and 25 images on the bottom row, and there also exists a small distance between each two images.
I met two difficulties during my attempts:
First problem is that there are 25 images in a folder with their name 'prefix-70',...,'prefix-94' while other 25 images in another folder with the same name 'prefix-70',...,'prefix-94'. I do not know how to them in Python without conflicts.
Second problem is that I wrote the following code to read one folder images to form a row but it outputs a column.
#!/usr/bin/python3.0
#encoding=utf-8
import numpy as np
from PIL import Image
import glob,os
if __name__=='__main__':
#prefix=input('Input the prefix of images:')
prefix = 'prefix'
files=glob.glob(prefix+'-*')
num=len(files)
filename_lens=[len(x) for x in files] #length of the files
min_len=min(filename_lens) #minimal length of filenames
max_len=max(filename_lens) #maximal length of filenames
if min_len==max_len:#the last number of each filename has the same length
files=sorted(files) #sort the files in ascending order
else:
index=[0 for x in range(num)]
for i in range(num):
filename=files[i]
start=filename.rfind('-')+1
end=filename.rfind('.')
file_no=int(filename[start:end])
index[i]=file_no
index=sorted(index)
files=[prefix+'-'+str(x)+'.png' for x in index]
print(files[0])
baseimg=Image.open(files[0])
sz=baseimg.size
basemat=np.atleast_2d(baseimg)
for i in range(1,num):
file=files[i]
im=Image.open(file)
im=im.resize(sz,Image.ANTIALIAS)
mat=np.atleast_2d(im)
print(file)
basemat=np.append(basemat,mat,axis=0)
final_img=Image.fromarray(basemat)
final_img.save('merged.png')
I guess i have got into a wrong way...
How can i stitch them properly? Any suggestion is appreciated.

Try this (explanation in comments):
from PIL import Image
from os import listdir, path
space_between_row = 10
new_image_path = 'result.jpg'
im_dirs = ['images/1', 'images/2']
# get sorted list of images
im_path_list = [[path.join(p, f) for f in sorted(listdir(p))] for p in im_dirs]
# open images and calculate total widths and heights
im_list = []
total_width = 0
total_height = 0
for path_list in im_path_list:
images = list(map(Image.open, path_list))
widths, heights = zip(*(i.size for i in images))
total_width = max(total_width, sum(widths))
total_height += max(heights)
im_list.append(images)
# concat images
new_im = Image.new('RGB', (total_width, total_height))
y_offset = 0
for images in im_list:
x_offset = 0
max_height = 0
for im in images:
new_im.paste(im, (x_offset, y_offset))
x_offset += im.size[0]
max_height = max(im.size[1], max_height)
y_offset = y_offset + max_height + space_between_row
# show and save
new_im.show()
new_im.save(new_image_path)

Install ImageMagick, then tell it where your two directories are.
#!/usr/bin/python3
##=========================================================
## required ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## imagemagick.org/script/download.php
##
##=========================================================
## libs ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import subprocess as sp
##=========================================================
## vars ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
offset = 2 ## pixel gap between images
color = '#000000' ## background color to fill gaps
dir1 = '/home/me/Pictures/topRow/'
dir2 = '/home/me/Pictures/bottomRow/'
## note: windows dirs use double backslashes
## 'C:\\Users\\me\\Pictures\\topRow\\'
##=========================================================
## script ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
row1args = ['convert', '+smush', offset, '-background', color, dir1 + '*.png', 'row1.png']
row2args = ['convert', '+smush', offset, '-background', color, dir2 + '*.png', 'row2.png']
merge = ['convert', '-smush', offset, '-background', color, 'row*.png', 'merged.png']
##=========================================================
## main ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sp .call(row1args)
sp .call(row2args)
sp .call(merge)
##=========================================================
## eof ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Related

csv file uploaded to s3 using boto3 is empty in s3

I have two csv files that i am uploading from an ec2 instance to the s3 bucket along with a few other files. All the other files are being uploaded just fine but my csv files, though it is uploaded, there seems ot be no data inside it even though the local copy of the file on the instance is showing the data. im not sure why its saying 0 bytes on the bucket.
the csv file is part of another larger program. here is the code.
from boto3.session import Session
import botocore
import boto3
import zipfile
import darknet
import os
import cv2
import glob
import csv
import numpy as np
global lat_start, lon_start
import shutil
#HELPER FUNCTION DEFINITIONS
ACCESS_KEY = '*********'
SECRET_KEY = '******D'
def image_detection(image_path, network, class_names, class_colors, thresh):
# Darknet doesn't accept numpy images.
# Create one with image we reuse for each detect
width = darknet.network_width(network)
height = darknet.network_height(network)
darknet_image = darknet.make_image(width, height, 3)
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_resized = cv2.resize(image_rgb, (width, height),interpolation=cv2.INTER_LINEAR)
darknet.copy_image_from_bytes(darknet_image, image_resized.tobytes())
detections = darknet.detect_image(network, class_names, darknet_image, thresh=thresh)
darknet.free_image(darknet_image)
image = darknet.draw_boxes(detections, image_resized, class_colors)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), detections
def discretize_line(lat_start, lon_start, d_element, d, bearing):
# d_element -> how many element we need in a line secment
# global lat_start, lon_start
R = 6371.0*1000.0
# -1 because in case of 10 elements/points we also want len(lat_array) the same
dstep = d/(d_element-1) #0.6524896365354135 #2.0 # meters
dist_list = np.ones(int(d/dstep))*dstep
# print(dist_list)
brg = np.radians(bearing)
# if d%dstep != 0:
# dist_list = np.append(dist_list, d%dstep)
# This will append lat and lon into array which contains
# small segments of distance
lat_array = np.array([np.radians(lat_start)]) # rads
lon_array = np.array([np.radians(lon_start)]) # rads
# lat_array = np.array([])
# lon_array = np.array([])
for i, dist in enumerate(dist_list):
## last element make the waypoint shifted, so we break it
if i >= (d_element):
break
lat1 = lat_array[i]
lon1 = lon_array[i]
# print(dist)
Ad = dist/R
lat2 = np.arcsin(np.sin(lat1)*np.cos(Ad) + np.cos(lat1)*np.sin(Ad)*np.cos(brg))
lon2 = lon1 + np.arctan2( (np.sin(brg)*np.sin(Ad)*np.cos(lat1)) , (np.cos(Ad) - np.sin(lat1)*np.sin(lat2)))
lat_array = np.append(lat_array, lat2)
lon_array = np.append(lon_array, lon2)
# print(i)
return lat_array, lon_array
def get_distance_bearing(lat1, lon1, lat2, lon2):
# global lat_start, lon_start
R = 6371.0*1000.0
lat_start = np.radians(lat1)
lon_start = np.radians(lon1)
lat_end = np.radians(lat2)
lon_end = np.radians(lon2)
dLat = lat_end - lat_start
dLon = lon_end - lon_start
a = np.sin(dLat/2.0)*np.sin(dLat/2.0) + np.cos(lat_start)*np.cos(lat_end)*np.sin(dLon/2.0)*np.sin(dLon/2.0)
c = 2.0*np.arctan2(np.sqrt(a),np.sqrt(1-a))
d = c*R
y = np.sin(dLon)*np.cos(lat_end)
x = np.cos(lat_start)*np.sin(lat_end) - np.sin(lat_start)*np.cos(lat_end)*np.cos(dLon)
bearing = np.degrees(np.arctan2(y,x))
return d, bearing
def upload_to_aws(local_file, bucket, s3_file):
s3 = boto3.client('s3', aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)
try:
s3.upload_file(local_file, bucket, s3_file)
print("Upload Successful")
return True
except FileNotFoundError:
print("The file was not found")
return False
except NoCredentialsError:
print("Credentials not available")
return False
##END OF FUNCTION DEFINITIONS ##
#Unzip the zip file and its contents
print("unzipping")
path_to_zip_file = "/home/ubuntu/pano/Zip/Videos.zip"
with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref:
zip_ref.extractall("/home/ubuntu/pano/Video")
print("Finished Unzipping")
#End of Unzip
# CSV open and declaration##
data_file_path = "/home/ubuntu/pano/stack/quantity.csv"
data_file = open(data_file_path, "w+")
dataCSVWriter = csv.writer(data_file, delimiter=',',quotechar='|', quoting=csv.QUOTE_MINIMAL)
dataCSVWriter.writerow(['lat', 'lon', 'Quantity'])
#CSV for lane thumbnail
thumbnail_data_file_path = "/home/ubuntu/pano/stack/lane_thumbnail.csv"
thumbnail_data_file = open(thumbnail_data_file_path, "w+")
thumbnail_dataCSVWriter = csv.writer(thumbnail_data_file, delimiter=',',quotechar='|', quoting=csv.QUOTE_MINIMAL)
thumbnail_dataCSVWriter.writerow(['lat', 'lon'])
#Define start and end point lists
#start_point_list = [(35.841454251754755, 139.52427014959153),(35.84147944801779, 139.52420150963678)]
start_point_list = [(36.12083710338884, 139.21630320454503),(36.12080527337101, 139.2164926108044)]
#end_point_list = [(35.84151350159559, 139.52424466860762),(35.84144222040454, 139.52422739581436)]
end_point_list = [(36.12083735438514, 139.2164757318577),(36.12081575161991, 139.21630345327617)]
wp_lat_array = np.array([])
wp_lon_array = np.array([])
##Split th eline into points and it is stored in lat array lon array
"""for i in range(len(start_point_list)):
## input two points and find a slicing waypoint between it
distance, bearing_deg = get_distance_bearing(start_point_list[i][0], start_point_list[i][1], end_point_list[i][0], end_point_list[i][1])
print(distance)
lat_array, lon_array = discretize_line(start_point_list[i][0], start_point_list[i][1], float(d_element[i]), distance, bearing_deg)"""
#Initialize the detector variables and paths
quantity_bottles_frame = []
config_file = "/home/ubuntu/darknet_bottle_example/yolov4_bottle_can.cfg"
data_file = "/home/ubuntu/darknet_bottle_example/obj_bottle_can.data"
weights = "/home/ubuntu/darknet_bottle_example/yolov4_bottle_can_best.weights"
network, class_names, class_colors = darknet.load_network(
config_file,
data_file,
weights,
batch_size=1
)
image_dir = "/home/ubuntu/pano/Frames"
#1.Split into frames
path = "/home/ubuntu/pano/Video/Panorama/Videos"
j = 0
"""Order of events
1. Split into frames
2. Rotate images if needed
3. Running through detctor
4. Calculate count and draw bounding boxes
5. Store these images in respective directoies
6. Take start point of lane and end point and split into many coordinates in between based on number of frames
7. Write to csv file
8. Stack the images per lane
9. Empty the Frames folder after every lane
10. Upload stacked images and csv to cloud """
# Parameter to change is fps in the ffmpeg command. Change accoprding to need based on reference
for filename in os.listdir(path):
if (filename.endswith(".mp4")): #or .avi, .mpeg, whatever.
j += 1
path1 = path + filename
print(path1)
os.system("ffmpeg -i /home/ubuntu/pano/Video/Panorama/Videos/{0} -vf fps=0.07 /home/ubuntu/pano/Frames/{1}-%3d.jpg".format(filename,j))
#2. Rotate images if needed
frames_path = "/home/ubuntu/pano/Frames/*.jpg"
list_images = glob.glob(frames_path)
list_sorted = sorted(list_images)
#for image in list_sorted:
#read the image
# temp = cv2.imread(image)
# image1 = cv2.rotate(temp, cv2.ROTATE_90_COUNTERCLOCKWISE)
# cv2.imwrite("{0}".format(image), image1)
## according to how many partial panorama we have in each lane
d_element =[len(list_images)]
print(f"Now detecting objects in lane {j}")
#3. Running through detctor
frame_number = 1
for image in sorted(os.listdir(image_dir)):
#Path to the input images for the detector i.e Frames
quantity_frame = 0
image_name = f"{image}"
ext = '.jpg'
input_image_name = image_name
image_path = os.path.join(image_dir, input_image_name)
print(image_path)
#Path to output images to be stored after running through detector
output_dir = f"/home/ubuntu/pano/lane{j}"
output_name = "yolo_" + image_name
output_path = os.path.join(output_dir, output_name)
# image = load_images(image_path)
dn_frame_width = 416
dn_frame_height = 416
frame = cv2.imread(image_path)
frame_width = frame.shape[1]
frame_height = frame.shape[0]
#### Passing the image to darknet
image, detections = image_detection(image_path, network, class_names, class_colors, thresh=0.05)
#cv2.imwrite(f'/home/ubuntu/temp/Inference{frame_number}.jpg', image)
#cv2.imwrite(f'/home/ubuntu/temp/orignal_detect{frame_number}.jpg', frame)
###Based on the detections, running them through a loop to draw bounding box and also incrememnt count of object in the frame
#4. Calculate count and draw bounding boxes
for i in range(len(detections)):
xc_percent = detections[i][2][0]/dn_frame_width
yc_percent = detections[i][2][1]/dn_frame_height
w_percent = detections[i][2][2]/dn_frame_width
h_percent = detections[i][2][3]/dn_frame_height
xc = xc_percent*frame_width
yc = yc_percent*frame_height
w = w_percent*frame_width
h = h_percent*frame_height
xmin = xc - w/2.0
ymin = yc - h/2.0
xmax = xc + w/2.0
ymax = yc + h/2.0
#If object is detected, increase the count of the object in the frame
if detections[i][0] == "bottle":
cv2.rectangle(frame, (int(xmin),int(ymin)),(int(xmax),int(ymax)),(0,0,255),2)
cv2.putText(frame, "bottle", (int(xmin), int(ymin-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,0,255), 2)
quantity_frame += 1
elif detections[i][0] == "can":
cv2.rectangle(frame, (int(xmin),int(ymin)),(int(xmax),int(ymax)),(255,0,0),2)
cv2.putText(frame, "can", (int(xmin), int(ymin-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,0,0), 2)
else:
print(f"{image} has no objects ")
print(f"Quantity in frame {frame_number} = {quantity_frame}")
#5. Store these images in respective directoies
cv2.imwrite(output_path, frame)
quantity_bottles_frame.append(quantity_frame)
frame_number += 1
###Split the points into equidistant points between start point and end point
##6. Take start point of lane and end point and split into many coordinates in between based on number of frames
distance, bearing_deg = get_distance_bearing(start_point_list[j-1][0], start_point_list[j-1][1], end_point_list[j-1][0], end_point_list[j-1][1])
print(distance)
lat_array, lon_array = discretize_line(start_point_list[j-1][0], start_point_list[j-1][1], float(d_element[0]), distance, bearing_deg)
lat_csv = []
lon_csv = []
##Convery those points into degrees
for lat,lon in zip(lat_array, lon_array):
lat_degrees = "{:}".format(np.degrees(lat))
lon_degrees = "{:}".format(np.degrees(lon))
lat_csv.append(lat_degrees)
lon_csv.append(lon_degrees)
#lat_csv = "{:}".format(np.degrees(lat))
#lon_csv = "{:}".format(np.degrees(lon))
##7.Write each row in the csv file
for k in range(d_element[0]):
dataCSVWriter.writerow([lat_csv[k], lon_csv[k], quantity_bottles_frame[k]])
#if k != d_element[0]-1:
# dataCSVWriter.writerow([lat_csv[k], lon_csv[k], quantity_bottles_frame[k], "-", "-" ])
if k ==d_element[0]-1:
print(lat_csv[int(d_element[0]/2)])
thumbnail_dataCSVWriter.writerow([ lat_csv[int(d_element[0]/2)],lon_csv[int(d_element[0]/2)]])
#####8.STACKING THE IMAGES ######
images = []
stacking_input = f"/home/ubuntu/pano/lane{j}/*.jpg"
list_images = glob.glob(stacking_input)
#print(list_images)
stacking_input_reverse = sorted(list_images, reverse = True)
print(stacking_input_reverse)
for image in stacking_input_reverse:
img = cv2.imread(image)
images.append(img)
final_image = cv2.hconcat(images)
image_name = f"cloud_lane{j}_stack.jpg"
stacking_output = f"/home/ubuntu/pano/stack"
output_path = os.path.join(stacking_output, image_name)
cv2.imwrite(output_path, final_image)
##### 9. DELETE FRAMES AFTER ONE ITERATION OF LOOP #####
for f in os.listdir(image_dir):
del_path = "/home/ubuntu/pano/Frames/" + f
os.remove(del_path)
else:
continue
#Close csv file
#data_file.close()
#thumbnail_data_file.close()
### 10. Upload to s3 bucket ####
stack_path = "/home/ubuntu/pano/stack"
for file in sorted(os.listdir(stack_path)):
print(f"Uploading {file}")
uploaded = upload_to_aws(f'/home/ubuntu/pano/stack/{file}', 'fbt-pano-test', f'{file}')
Do i need to close the csv file in any way? Or does s3 not support csv upload through boto3?
I found it. Turns out, the csv files werent closed at the end. So i moved the upload to s3 part to another program. now python closes the csv files at the end of this program automatically. and so when the upload program runs next, it gets uploaded properly.

Set Author, Title, and Subject for PDF using Reportlab

How can you correctly set the Author, Title and Subject attributes for a PDF File using Reportlab?
I have found the methods in the Reportlab User Guide on page 56, but I am not sure how to implement them correctly.
Below in my PDF cropping and scaling script, I have added the annotations method, but I don't know where to call them from, or if a whole new Canvas object is needed. Please excuse the lengthy code, but only after line 113 is the doc being created, above are mostly auxiliary methods, including the annotations method on line 30.
# All the necessary parameters are accessible after line 92,
# but can of course be changed manually in the Code
# imports for the crop, rename to avoid conflict with reportlab Image import
from PIL import Image as imgPIL
from PIL import ImageChops, ImageOps, ImageFilter
import os.path, sys
# import for the PDF creation
import glob
from reportlab.lib.pagesizes import A4
from reportlab.lib import utils
from reportlab.platypus import Image, SimpleDocTemplate, Spacer
from reportlab.pdfgen import canvas
# get os path for Cropping
path = (os.path.dirname(os.path.abspath("cropPDF.py")))
dirs = os.listdir(path)
def trim(im, border="white"):
bg = imgPIL.new(im.mode, im.size, border)
diff = ImageChops.difference(im, bg)
bbox = diff.getbbox()
if bbox:
return im.crop(bbox)
def annotations(canvas):
canvas.setAuthor("the ReportLab Team")
canvas.setTitle("ReportLab PDF Generation User Guide")
canvas.setSubject("How to Generate PDF files using the ReportLab modules")
def findMaxWidth():
maxWidth = 0
for item in dirs:
try:
fullpath = os.path.join(path, item)
if os.path.isfile(fullpath):
im = imgPIL.open(fullpath)
maxWidth = max(maxWidth, im.size[0])
except:
pass
return maxWidth
def padImages(docHeight):
maxWidth = findMaxWidth()
for item in dirs:
try:
fullpath = os.path.join(path, item)
if os.path.isfile(fullpath):
im = imgPIL.open(fullpath)
f, e = os.path.splitext(fullpath)
width, height = im.size # get the image dimensions, the height is needed for the blank image
if not docHeight <= height: # to prevent oversized images from bein padded, such that they remain centered
image = imgPIL.new('RGB', (maxWidth, height),
(255, 255, 255)) # create a white image with the max width
image.paste(im, (0, 0)) # paste the original image overtop the blank one, flush on the left side
image.save(f + ".png", "PNG", quality=100)
except:
pass
def crop():
for item in dirs:
try:
fullpath = os.path.join(path, item)
if os.path.isfile(fullpath):
im = imgPIL.open(fullpath)
f, e = os.path.splitext(fullpath)
imCrop = trim(im, "white")
imCrop.save(f + ".png", "PNG", quality=100)
except:
pass
def add_page_number(canvas, doc):
canvas.saveState()
canvas.setFont('Times-Roman', numberFontSize)
page_number_text = "%d" % (doc.page)
canvas.drawCentredString(
pageNumberSpacing * mm,
pageNumberSpacing * mm,
page_number_text
)
canvas.restoreState()
#############################
executeCrop = True
executePad = True
outputName = "output.pdf" #The name of the file that will be created
fileAuthor = "Roman Stadler" #these 3 attributes are visible in the file info menu
fileTitle = ""
fileSubject = ""
margin = 0.5
imageWidthDefault = 550
spacerHeight = 7
scalingIfImageTooTall = 0.95 # larger than 95 can result in an empty page after the image
includePagenumbers = True
numberFontSize = 10
pageNumberSpacing = 5
############################
doc = SimpleDocTemplate(
outputName,
topMargin=margin * mm,
leftMargin=margin * mm,
rightMargin=margin * mm,
bottomMargin=margin * mm,
pagesize=A4
)
if executeCrop:
crop()
if executePad:
padImages(doc.height)
filelist = glob.glob("*.png") # Get a list of files in the current directory
filelist.sort()
story = [] # create the list of images for the PDF
for fn in filelist:
img = utils.ImageReader(fn)
img_width, img_height = img.getSize() # necessary for the aspect ratio
aspect = img_height / float(img_width)
documentHeight = doc.height
imageWidth = imageWidthDefault
imageHeight = imageWidth * aspect
if imageHeight > documentHeight:
imageHeight = documentHeight * scalingIfImageTooTall
imageWidth = imageHeight / aspect
img = Image(
fn,
width=imageWidth,
height=imageHeight
)
story.append(img)
space = Spacer(width=0, height=spacerHeight)
story.append(space)
if includePagenumbers and not len(filelist) == 0: # if pagenumbers are desired, or not
doc.build(
story,
onFirstPage=add_page_number,
onLaterPages=add_page_number,
)
elif not len(filelist) == 0:
doc.build(story)
else: # to prevent an empty PDF that can't be opened
print("no files found")
In the meantime, I have found another way, that does not use reportlab, but instead relies on PyPDF2:
The following import is needed:
# PyPDF2 for the metadata modification
from PyPDF2 import PdfFileReader, PdfFileWriter
Then the metadata can be edited like this:
author = "Roman Stadler"
title = "CropPDF"
subject = "Stackoverflow"
#rest of the script
#attemp the metadate edit
try:
file = open('output.pdf', 'rb+')
reader = PdfFileReader(file)
writer = PdfFileWriter()
writer.appendPagesFromReader(reader)
metadata = reader.getDocumentInfo()
writer.addMetadata(metadata)
writer.addMetadata({
'/Author': author,
'/Title': title,
'/Subject' : subject,
'/Producer' : "CropPDF",
'/Creator' : "CropPDF",
})
writer.write(file)
file.close()
except:
print("Error while editing metadata")
You can define attributes like the author when defining the doc as a SimpleDocTemplate
doc = SimpleDocTemplate(
outputName,
topMargin=margin * mm,
leftMargin=margin * mm,
rightMargin=margin * mm,
bottomMargin=margin * mm,
pagesize=A4,
title="This is the title of the document", #exchange with your title
author="John Smith", #exchange with your authors name
subject"Adding metadata to pdf via reportlab" #exchange with your subject
)

Merging and saving images in PIL Python

I have two folders of images and I am trying to build one large image from all the slices in each folder. I need to alternate between folders to build the image. For example the first slice comes from folder 1, the second slice comes from folder 2, the third from folder 1 ect. I have the files ordered by filename in the individual folders so I am trying to iterate through the folders and add a new strip to an image. The code runs BUT it doesn't seem to be saving the composite image. I am new to PIL, so I am sure that it is something simple, but your help is appreciated. Thanks!
def merge_images(file1, file2):
"""Merge two images into one, displayed above and below
:param file1: path to first image file
:param file2: path to second image file
:return: the merged Image object
"""
if file1.startswith('.'):
return None
image1 = Image.open(file1)
image2 = Image.open(file2)
(width1, height1) = image1.size
(width2, height2) = image2.size
result_width = width1 + width2
result_height = max(height1, height2)
result = Image.new('RGB', (result_width, result_height))
result.paste(im=image1, box=(0, 0))
result.paste(im=image2, box=(0, height1))
return result
imageCounter = 0
firstPass = True
compImage = Image.new('RGBA', img.size, (0,0,0,0))
for i in range(len(boundingBoxes)+1):
if firstPass:
compImage = merge_images('./image_processing/'+ os.listdir('./image_processing/')[imageCounter],
'./img_patches/outputs/'+os.listdir('./img_patches/outputs/')[imageCounter])
if compImage is not None:
firstPass = False
compImage.save('./image_processing/compImage.jpg')
else:
compImage = merge_images('./image_processing/compImage.jpg','./image_processing/'+ os.listdir('./image_processing/')[imageCounter])
compImage.save('./image_processing/compImage.jpg')
compImage = merge_images('./image_processing/compImage.jpg','./img_patches/outputs/'+ os.listdir('./img_patches/outputs/')[imageCounter])
compImage.save('./image_processing/compImage.jpg')
imageCounter = imageCounter + 1
You have to tell PIL to save the images:
for i in range(len(boundingBoxes)+1):
if firstPass:
compImage = merge_images('./image_processing/'+ os.listdir('./image_processing/')[imageCounter],
'./img_patches/outputs/'+os.listdir('./img_patches/outputs/')[imageCounter])
compImage.save(open('output/{}.png'.format(imageCounter), 'w'))

Python 3.5.1 - Assign variables to all Files (Filetype: .jpg) inside target folder

I am fairly new to Python and have a difficult Problem to solve:
Here is what I am trying to do -->
I have a Folder (path known) with 1 - x picture files (.jpg) in it, whereas x can be as high as 1000
These picture files should be stiched together (one on top of the other)
To do so I want Python to assign a variable to each Picture file in the known folder and then create a loop which stiches these variable-stored pictures together and outputs it as 1 picture (.jpg)
Here is what I have coded so far:
from PIL import Image
import glob
#The following GLOB part doesn't work, I tried to make a List with all the
#files (.jpg) inside the main directory
#image_list = []
#for filename in glob.glob('*.jpg'):
# test = Image.open(filename)
# image_list.append(test)
img1 = Image.open("img1.jpg")
img2 = Image.open("img2.jpg")
def merge_images(img1, img2):
(width1, height1) = img1.size
(width2, height2) = img2.size
result_width = max(width1, width2)
result_height = height1 + height2
result = Image.new('RGB', (result_width, result_height))
result.paste(im=img2, box=(0,0))
result.paste(im=img1, box=(0,height1-2890))
return result
merged = merge_images(img1, img2)
merged.save("test.jpg")
What this does is to assign img1.jpg and img2.jpg to a variable and then stack them on top of oneanother and save this stacked picture as "test.jpg". Where do I go from here if I want to assign many pictures (.jpg) to variables and stack them on top of each other without typing a line of code for each new picture (see description further up?)
Thanks a lot for your help!
Chris
If you start with a 0x0 image, you can stack further images onto it like this:
stacked_img = Image.new('RGB', (0, 0))
for filename in glob.glob('*.jpg'):
stacked_img = merge_images(stacked_img, Image.open(filename))
stacked_img.save('stacked.jpg')
You might also like to change the height1-2890 to height2 in the merge_images() function if you are trying to stack the second image below the first image, i.e.
result.paste(im=img1, box=(0,height2))
Why not use a container such as a list?
images = [Image.open(img_name) for img_name in os.listdir(my_folder) if img_name.endswith('.jpg')
def merge_images(list_images):
result_width = max(img.size[0] for img in images)
result_height = sum(img.size[1] for img in images)
result = Image.new('RGB', (result_width, result_height))
for idx, img in enumerate(list_images):
result.paste(im=img, box=(0,list_images[0].size[1]-idx*2890))
See Data Structures for more information.
If performance is important, consider using map instead of a loop.
this is my code in which I implemented your approach. As a result, I am getting an image where 2 of the 4 images are displayed and the rest of the image is black. In the source directory I have 4 images (img1.jpg - img4.jpg)
from PIL import Image
import glob
stacked_img = Image.new('RGB', (0,0))
def merge_images(img1, img2):
(width1, height1) = img1.size
(width2, height2) = img2.size
result_width = max(width1, width2)
result_height = height1 + height2
result = Image.new('RGB', (result_width, result_height))
result.paste(im=img2, box=(0,0))
result.paste(im=img1, box=(0,height1))
return result
for filename in glob.glob('*.jpg'):
stacked_img = merge_images(stacked_img, Image.open(filename))
stacked_img.save('stacked.jpg')

Saving a mayavi animation

I am currently trying to save a mayavi animation generated by my simulation, so I don't have to rerun the code each time to see it.
plt = points3d(x_coord, y_coord, z_coord)
msplt = plt.mlab_source
#mlab.animate(delay=100)
def anim():
f = mlab.gcf()
while True:
#animation updates here
msplt.set(x = x_coord, y = y_coord, z = z_coord)
yield
anim()
mlab.savefig(filename = 'ani.mp4')
mlab.show()
I have tried saving it through the pipleline editor and just get a still of the frame it is on, and mlab.savefig doesn't generate a file. Any help appreciated.
The following will will work for both viewing the animation, saving each frame as a 'png', and then converting them to a movie, BUT it is perhaps fastest in this case to forgo playing the animation, and just cycle through the data saving figures, and then using this method to make a video.
from mayavi import mlab
import numpy as np
import os
# Output path for you animation images
out_path = './'
out_path = os.path.abspath(out_path)
fps = 20
prefix = 'ani'
ext = '.png'
# Produce some nice data.
n_mer, n_long = 6, 11
pi = np.pi
dphi = pi/1000.0
phi = np.arange(0.0, 2*pi + 0.5*dphi, dphi, 'd')
mu = phi*n_mer
x = np.cos(mu)*(1+np.cos(n_long*mu/n_mer)*0.5)
y = np.sin(mu)*(1+np.cos(n_long*mu/n_mer)*0.5)
z = np.sin(n_long*mu/n_mer)*0.5
# Init plot
plt = mlab.points3d(x[0], y[0], z[0])
padding = len(str(len(x)))
# Define data source and update routine
msplt = plt.mlab_source
#mlab.animate(delay=10)
def anim():
f = mlab.gcf()
for i in range(len(x)):
#animation updates here
msplt.set(x=x[i], y=y[i], z=z[i])
# create zeros for padding index positions for organization
zeros = '0'*(padding - len(str(i)))
# concate filename with zero padded index number as suffix
filename = os.path.join(out_path, '{}_{}{}{}'.format(prefix, zeros, i, ext))
mlab.savefig(filename=filename)
yield
anim()
mlab.view(distance=15)
mlab.show()
import subprocess
ffmpeg_fname = os.path.join(out_path, '{}_%0{}d{}'.format(prefix, padding, ext))
cmd = 'ffmpeg -f image2 -r {} -i {} -vcodec mpeg4 -y {}.mp4'.format(fps,
ffmpeg_fname,
prefix)
print cmd
subprocess.check_output(['bash','-c', cmd])
# Remove temp image files with extension
[os.remove(f) for f in os.listdir(out_path) if f.endswith(ext)]
Instead of saving the images to disk and then stitching them together it's also possible to pipe them directly to ffmpeg using the python-ffmpeg package.
import ffmpeg
# Set up the figure
width = 200
height = 200
mlab.options.offscreen = True # Stops the view window popping up and makes sure you get the correct size screenshots.
fig = mlab.figure(size=(width, height))
# ... set up the scene ...
# Define update function
def update_scene(idx):
# -- update the scene
return
# Initialise ffmpeg process
output_args = {
'pix_fmt': 'yuv444p',
'vcodec': 'libx264',
'r': 25,
}
process = (
ffmpeg
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{width}x{height}')
.output('animation.mp4', **output_args)
.overwrite_output()
.run_async(pipe_stdin=True)
)
fig.scene._lift() # Throws an error without this.
for i in range(100):
update_scene(i)
screenshot = mlab.screenshot(mode='rgb', antialiased=True)
frame = Image.fromarray(screenshot, 'RGB')
process.stdin.write(frame.tobytes())
# Flush video
process.stdin.close()
process.wait()

Categories

Resources