is seaborn confidence interval computed correctly? - python

First, I must admit that my statistics knowledge is rusty at best: even when it was shining new, it's not a discipline I particularly liked, which means I had a hard time making sense of it.
Nevertheless, I took a look at how the barplot graphs were calculating error bars, and was surprised to find a "confidence interval" (CI) used instead of (the more common) standard deviation. Researching more CI led me to this wikipedia article which seems to say that, basically, a CI is computed as:
Or, in pseudocode:
def ci_wp(a):
"""calculate confidence interval using Wikipedia's formula"""
m = np.mean(a)
s = 1.96*np.std(a)/np.sqrt(len(a))
return m - s, m + s
But what we find in seaborn/utils.py is:
def ci(a, which=95, axis=None):
"""Return a percentile range from an array of values."""
p = 50 - which / 2, 50 + which / 2
return percentiles(a, p, axis)
Now maybe I'm missing this completely, but this seems just like a completely different calculation than the one proposed by Wikipedia. Can anyone explain this discrepancy?
To give another example, from comments, why do we get so different results between:
>>> sb.utils.ci(np.arange(100))
array([ 2.475, 96.525])
>>> ci_wp(np.arange(100))
[43.842250270646467,55.157749729353533]
And to compare with other statistical tools:
def ci_std(a):
"""calculate margin of error using standard deviation"""
m = np.mean(a)
s = np.std(a)
return m-s, m+s
def ci_sem(a):
"""calculate margin of error using standard error of the mean"""
m = np.mean(a)
s = sp.stats.sem(a)
return m-s, m+s
Which gives us:
>>> ci_sem(np.arange(100))
(46.598850802411796, 52.401149197588204)
>>> ci_std(np.arange(100))
(20.633929952277882, 78.366070047722118)
Or with a random sample:
rng = np.random.RandomState(10)
a = rng.normal(size=100)
print sb.utils.ci(a)
print ci_wp(a)
print ci_sem(a)
print ci_std(a)
... which yields:
[-1.9667006 2.19502303]
(-0.1101230745774124, 0.26895640045116026)
(-0.017774461397903049, 0.17660778727165088)
(-0.88762281417683186, 1.0464561400505796)
Why are Seaborn's numbers so radically different from the other results?

Your calculation using this Wikipedia formula is completely right. Seaborn just uses another method: https://en.wikipedia.org/wiki/Bootstrapping_(statistics). It's well described by Dragicevic [1]:
[It] consists of generating many alternative datasets from the experimental data by randomly drawing observations with replacement. The variability across these datasets is assumed to approximate sampling error and is used to compute so-called bootstrap confidence intervals. [...] It is very versatile and works for many kinds of distributions.
In the Seaborn's source code, a barplot uses estimate_statistic which bootstraps the data then computes the confidence interval on it:
>>> sb.utils.ci(sb.algorithms.bootstrap(np.arange(100)))
array([43.91, 55.21025])
The result is consistent with your calculation.
[1] Dragicevic, P. (2016). Fair statistical communication in HCI. In Modern Statistical Methods for HCI (pp. 291-330). Springer, Cham.

You need to check the code of percentiles. The seaborn ci code you posted simply computes the percentile limits. This interval has a defined mean of 50 (median) and a default range of 95% confidence interval. The actual mean, the standard deviation, etc. will appear in the percentiles routine.

Related

How can I generate numbers in a set range but skewed towards a specific point? [duplicate]

I would like to implement a function in python (using numpy) that takes a mathematical function (for ex. p(x) = e^(-x) like below) as input and generates random numbers, that are distributed according to that mathematical-function's probability distribution. And I need to plot them, so we can see the distribution.
I need actually exactly a random number generator function for exactly the following 2 mathematical functions as input, but if it could take other functions, why not:
1) p(x) = e^(-x)
2) g(x) = (1/sqrt(2*pi)) * e^(-(x^2)/2)
Does anyone have any idea how this is doable in python?
For simple distributions like the ones you need, or if you have an easy to invert in closed form CDF, you can find plenty of samplers in NumPy as correctly pointed out in Olivier's answer.
For arbitrary distributions you could use Markov-Chain Montecarlo sampling methods.
The simplest and maybe easier to understand variant of these algorithms is Metropolis sampling.
The basic idea goes like this:
start from a random point x and take a random step xnew = x + delta
evaluate the desired probability distribution in the starting point p(x) and in the new one p(xnew)
if the new point is more probable p(xnew)/p(x) >= 1 accept the move
if the new point is less probable randomly decide whether to accept or reject depending on how probable1 the new point is
new step from this point and repeat the cycle
It can be shown, see e.g. Sokal2, that points sampled with this method follow the acceptance probability distribution.
An extensive implementation of Montecarlo methods in Python can be found in the PyMC3 package.
Example implementation
Here's a toy example just to show you the basic idea, not meant in any way as a reference implementation. Please refer to mature packages for any serious work.
def uniform_proposal(x, delta=2.0):
return np.random.uniform(x - delta, x + delta)
def metropolis_sampler(p, nsamples, proposal=uniform_proposal):
x = 1 # start somewhere
for i in range(nsamples):
trial = proposal(x) # random neighbour from the proposal distribution
acceptance = p(trial)/p(x)
# accept the move conditionally
if np.random.uniform() < acceptance:
x = trial
yield x
Let's see if it works with some simple distributions
Gaussian mixture
def gaussian(x, mu, sigma):
return 1./sigma/np.sqrt(2*np.pi)*np.exp(-((x-mu)**2)/2./sigma/sigma)
p = lambda x: gaussian(x, 1, 0.3) + gaussian(x, -1, 0.1) + gaussian(x, 3, 0.2)
samples = list(metropolis_sampler(p, 100000))
Cauchy
def cauchy(x, mu, gamma):
return 1./(np.pi*gamma*(1.+((x-mu)/gamma)**2))
p = lambda x: cauchy(x, -2, 0.5)
samples = list(metropolis_sampler(p, 100000))
Arbitrary functions
You don't really have to sample from proper probability distributions. You might just have to enforce a limited domain where to sample your random steps3
p = lambda x: np.sqrt(x)
samples = list(metropolis_sampler(p, 100000, domain=(0, 10)))
p = lambda x: (np.sin(x)/x)**2
samples = list(metropolis_sampler(p, 100000, domain=(-4*np.pi, 4*np.pi)))
Conclusions
There is still way too much to say, about proposal distributions, convergence, correlation, efficiency, applications, Bayesian formalism, other MCMC samplers, etc.
I don't think this is the proper place and there is plenty of much better material than what I could write here available online.
The idea here is to favor exploration where the probability is higher but still look at low probability regions as they might lead to other peaks. Fundamental is the choice of the proposal distribution, i.e. how you pick new points to explore. Too small steps might constrain you to a limited area of your distribution, too big could lead to a very inefficient exploration.
Physics oriented. Bayesian formalism (Metropolis-Hastings) is preferred these days but IMHO it's a little harder to grasp for beginners. There are plenty of tutorials available online, see e.g. this one from Duke university.
Implementation not shown not to add too much confusion, but it's straightforward you just have to wrap trial steps at the domain edges or make the desired function go to zero outside the domain.
NumPy offers a wide range of probability distributions.
The first function is an exponential distribution with parameter 1.
np.random.exponential(1)
The second one is a normal distribution with mean 0 and variance 1.
np.random.normal(0, 1)
Note that in both case, the arguments are optional as these are the default values for these distributions.
As a sidenote, you can also find those distributions in the random module as random.expovariate and random.gauss respectively.
More general distributions
While NumPy will likely cover all your needs, remember that you can always compute the inverse cumulative distribution function of your distribution and input values from a uniform distribution.
inverse_cdf(np.random.uniform())
By example if NumPy did not provide the exponential distribution, you could do this.
def exponential():
return -np.log(-np.random.uniform())
If you encounter distributions which CDF is not easy to compute, then consider filippo's great answer.

Question regarding differences in calculating T statistics in Python for the difference in means

I am re-learning introductory statistics and wanted to try implementing my own versions of the general and unpooled formulas that find the T Value. I implemented it in 2 ways, one by just replicating the formulas as is as Python Functions. The other was to use Python's ability to generate a normal distribution and use that to find the difference in means. But I noticed my values were pretty different in both versions. So my question is why is there a difference? Is it with how the function works itself?
Here's the "generate a distribution itself" method:
from numpy.random import seed
from numpy.random import normal
from scipy import stats
from datetime import datetime
import math
#Plan: Generate 2 random normal distributions of the desired critiera. And T Test them
data1 = normal(loc=65.2, scale=7.8, size=30)
data2 = normal(loc=70.3, scale=8.4, size=30)
stats.ttest_ind(a=data1, b=data2)
Ttest_indResult(statistic=-2.029830829733737, pvalue=0.04696953433513939)
As you can see, it gives a T statistic of ~-2.0298 and a p value of ~ 0.0470.
Here's my "manual version":
def pop_2_mean_pooled_t(mean1, mean2, s1, s2, n1, n2):
dof = (n1+n2)-2
mean_diff = mean1 - mean2
#The N part on the right
right_n = math.sqrt((1/n1) + (1/n2))
#The Sp part
sp_numereator_left = ((n1-1)*(s1**2))
sp_numberator_right = ((n2-1)*(s2**2))
sp = math.sqrt((sp_numereator_left + sp_numberator_right)/(dof))
pooled_sp = sp*right_n
t = mean_diff/pooled_sp
p = stats.t.cdf(t, dof)
print("T is " +str(t))
print("p is " +str(p))
return t, p
pop_2_mean_pooled_t(65.2, 70.3, 7.8, 8.4, 30, 30)
T is -2.4368742610942298
p is 0.00895208222413155
(-2.4368742610942298, 0.00895208222413155)
As you can see, it gives a T statistic of ~-2.439 and a p value of ~ 0.009.
My question is why is there a discrepancy here? My "manual version" is closer to the example I was referencing. But surely the generator one should also be?
My understanding is that if a sample is significantly large enough, it would resemble a normal distribution. Therefore, one could generate a normal distribution using code and use that to approximate the corresponding T Values. For some reason, that differed quite a bit from my "manual" version
Your thinking is basically correct (I did not check your formulae though). What your encountering is in the nature of the problem: the two random samples you're drawing are, well, random and they differ in subsequent runs, so you will always get a different p-value ant the t-statistics.
Two suggestions from me:
increase the sample size in the first snippet to hundreds (not 30): you should get much closer to the stats from the second snippet.
keep 30 samples in the first snippet but run the simulation several times; you will learn the distributions of p-values and t-statistics and, again, you can check the values from your second snippet against the simulated distributions.
(Some conceptual flaws occur in this approach, e.g. repeated testing affects the p-value, but let us put them aside for now; the goal is to see your two sets of values converge.)

How to generate a Q-Q plot manually without inverse distribution function in python

I have 4 different distributions which I've fitted to a sample of observations. Now I want to compare my results and find the best solution. I know there are a lot of different methods to do that, but I'd like to use a quantile-quantile (q-q) plot.
The formulas for my 4 distributions are:
where K0 is the modified Bessel function of the second kind and zeroth order, and Γ is the gamma function.
My sample style looks roughly like this: (0.2, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.4, 0.4, 0.6, 0.7 ...), so I have multiple identical values and also gaps in between them.
I've read the instructions on this site and tried to implement them in python. So, like in the link:
1) I sorted my data from the smallest to the largest value.
2) I computed "n" evenly spaced points on the interval (0,1), where "n" is my sample size.
3) And this is the point I can't manage.
As far as I understand, I should now use the values I calculated beforehand (those evenly spaced values), put them in the inverse functions of my above distributions and thus compute the theoretical quantiles of my distributions.
For reference, here are the inverse functions (partly calculated with wolframalpha, and as far it was possible):
where W is the Lambert W-function and everything in brackets afterwards is the argument.
The problem is, apparently there doesn't exist an inverse function for the first distribution. The next one would probably produce complex values (negative under the root, because b = 0.55 according to the fit) and the last two of them have a Lambert W-Function (where I'm unsecure how to implement them in python).
So my question is, is there a way to calculate the q-q plots without the analytical expressions of the inverse distribution functions?
I'd appreciate any help you could give me very much!
A simpler and more conventional way to go about this is to compute the log likelihood for each model and choose that one that has the greatest log likelihood. You don't need the cdf or quantile function for that, only the density function, which you have already.
The log likelihood is just the sum of log p(x|model) where p(x|model) is the probability density of datum x under a given model. Here "model" = model with parameters selected by maximizing the log likelihood over the possible values of the parameters.
You can be more careful about this by integrating the log likelihood over the parameter space, taking into account also any prior probability assigned to each model; that would be a Bayesian approach.
It sounds like you are essentially looking to choose a model by minimizing the Kolmogorov-Smirnov (KS) statistic, which despite it's heavy name, is pretty simple -- it is the difference between the would-be quantile function and the empirical quantile. That's defensible, but I think comparing log likelihoods is more conventional, and also simpler since you need only the pdf.
It happens that there is an easier way. It's taken me a day or two to dig around until I was pointed toward the right method in scipy.stats. I was looking for the wrong sort of name!
First, build a subclass of rv_continuous to represent one of your distributions. We know the pdf for your distributions, so that's what we define. In this case there's just one parameter. If more are needed just add them to the def statement and use them in the return statement as required.
>>> from scipy import stats
>>> param = 3/2
>>> from math import exp
>>> class NoName(stats.rv_continuous):
... def _pdf(self, x, param):
... return param*exp(-param*x)
...
Now create an instance of this object, declare the lower end of its support (ie, the lowest value that the r.v. can assume), and what the parameters are called.
>>> noname = NoName(a=0, shapes='param')
I don't have an actual sample of values to play with. I'll create a pseudo-random sample.
>>> sample = noname.rvs(size=100, param=param)
Sort it to make it into the so-called 'empirical cdf'.
>>> empirical_cdf = sorted(sample)
The sample has 100 elements, therefore generate 100 points at which to sample the inverse cdf, or quantile function, as discussed in the paper your referenced.
>>> theoretical_points = [(_-0.5)/len(sample) for _ in range(1, 1+len(sample))]
Get the quantile function values at these points.
>>> theoretical_cdf = [noname.ppf(_, param=param) for _ in theoretical_points]
Plot it all.
>>> from matplotlib import pyplot as plt
>>> plt.plot([0,3.5], [0, 3.5], 'b-')
[<matplotlib.lines.Line2D object at 0x000000000921B400>]
>>> plt.scatter(empirical_cdf, theoretical_cdf)
<matplotlib.collections.PathCollection object at 0x000000000921BD30>
>>> plt.show()
Here's the Q-Q plot that results.
Darn it ... Sorry, I was fixated on a slick solution to somehow bypass the missing inverse CDF and calculate the quantiles directly (and avoid any numerically approaches). But it can also be done by simple brute force.
At first you have to define the quantiles for your distributions yourself (for instance ten times more accurate than the original/empirical quantiles). Then you need to calculate the corresponding CDF values. Then you have to compare these values one by one with the ones which were calculated in step 2 in the question. The according quantiles of the CDF values with the smallest deviations are the ones you were looking for.
The precision of this solution is limited by the resolution of the quantiles you defined yourself.
But maybe I'm wrong and there is a more elegant way to solve this problem, then I would be happy to hear it!

Plotting confidence intervals for Maximum Likelihood Estimate

I am trying to write code to produce confidence intervals for the number of different books in a library (as well as produce an informative plot).
My cousin is at elementary school and every week is given a book by his teacher. He then reads it and returns it in time to get another one the next week. After a while we started noticing that he was getting books he had read before and this became gradually more common over time.
Say the true number of books in the library is N and the teacher picks one uniformly at random (with replacement) to give to you each week. If at week t the number of occasions on which you have received a book you have read is x, then I can produce a maximum likelihood estimate for the number of books in the library following https://math.stackexchange.com/questions/615464/how-many-books-are-in-a-library .
Example: Consider a library with five books A, B, C, D, and E. If you receive books [A, B, A, C, B, B, D] in seven successive weeks, then the value for x (the number of duplicates) will be [0, 0, 1, 1, 2, 3, 3] after each of those weeks, meaning after seven weeks, you have received a book you have already read on three occasions.
To visualise the likelihood function (assuming I have understood what one is correctly) I have written the following code which I believe plots the likelihood function. The maximum is around 135 which is indeed the maximum likelihood estimate according to the MSE link above.
from __future__ import division
import random
import matplotlib.pyplot as plt
import numpy as np
#N is the true number of books. t is the number of weeks.unk is the true number of repeats found
t = 30
unk = 3
def numberrepeats(N, t):
return t - len(set([random.randint(0,N) for i in xrange(t)]))
iters = 1000
ydata = []
for N in xrange(10,500):
sampledunk = [numberrepeats(N,t) for i in xrange(iters)].count(unk)
ydata.append(sampledunk/iters)
print "MLE is", np.argmax(ydata)
xdata = range(10, 500)
print len(xdata), len(ydata)
plt.plot(xdata,ydata)
plt.show()
The output looks like
My questions are these:
Is there an easy way to get a 95% confidence interval and plot it on the diagram?
How can you superimpose a smoothed curve over the plot?
Is there a better way my code should have been written? It isn't very elegant and is also quite slow.
Finding the 95% confidence interval means finding the range of the x axis so that 95% of the time the empirical maximum likelihood estimate we get by sampling (which should theoretically be 135 in this example) will fall within it. The answer #mbatchkarov has given does not currently do this correctly.
There is now a mathematical answer at https://math.stackexchange.com/questions/656101/how-to-find-a-confidence-interval-for-a-maximum-likelihood-estimate .
Looks like you're ok on the first part, so I'll tackle your second and third points.
There are plenty of ways to fit smooth curves, with scipy.interpolate and splines, or with scipy.optimize.curve_fit. Personally, I prefer curve_fit, because you can supply your own function and let it fit the parameters for you.
Alternatively, if you don't want to learn a parametric function, you could do simple rolling-window smoothing with numpy.convolve.
As for code quality: you're not taking advantage of numpy's speed, because you're doing things in pure python. I would write your (existing) code like this:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
# N is the true number of books.
# t is the number of weeks.
# unk is the true number of repeats found
t = 30
unk = 3
def numberrepeats(N, t, iters):
rand = np.random.randint(0, N, size=(t, iters))
return t - np.array([len(set(r)) for r in rand])
iters = 1000
ydata = np.empty(500-10)
for N in xrange(10,500):
sampledunk = np.count_nonzero(numberrepeats(N,t,iters) == unk)
ydata[N-10] = sampledunk/iters
print "MLE is", np.argmax(ydata)
xdata = range(10, 500)
print len(xdata), len(ydata)
plt.plot(xdata,ydata)
plt.show()
It's probably possible to optimize this even more, but this change brings your code's runtime from ~30 seconds to ~2 seconds on my machine.
The a simple (numerical) way to get a confidence interval is simply to run your script many times, and see how much your estimate varies. You can use that standard deviation to calculate the confidence interval.
In the interest of time, another option is to run a bunch of trials at each value of N (I used 2000), and then use random subsampling of those trials to get an estimate of the estimator standard deviation. Basically, this involves selecting a subset of the trials, generating your likelihood curve using that subset, then finding the maximum of that curve to get your estimator. You do this over many subsets and this gives you a bunch of estimators, which you can use to find a confidence interval on your estimator. My full script is as follows:
import numpy as np
t = 30
k = 3
def trial(N):
return t - len(np.unique(np.random.randint(0, N, size=t)))
def trials(N, n_trials):
return np.asarray([trial(N) for i in xrange(n_trials)])
n_trials = 2000
Ns = np.arange(1, 501)
results = np.asarray([trials(N, n_trials=n_trials) for N in Ns])
def likelihood(results):
L = (results == 3).mean(-1)
# boxcar filtering
n = 10
L = np.convolve(L, np.ones(n) / float(n), mode='same')
return L
def max_likelihood_estimate(Ns, results):
i = np.argmax(likelihood(results))
return Ns[i]
def max_likelihood(Ns, results):
# calculate mean from all trials
mean = max_likelihood_estimate(Ns, results)
# randomly subsample results to estimate std
n_samples = 100
sample_frac = 0.25
estimates = np.zeros(n_samples)
for i in xrange(n_samples):
mask = np.random.uniform(size=results.shape[1]) < sample_frac
estimates[i] = max_likelihood_estimate(Ns, results[:,mask])
std = estimates.std()
sterr = std * np.sqrt(sample_frac) # is this mathematically sound?
ci = (mean - 1.96*sterr, mean + 1.96*sterr)
return mean, std, sterr, ci
mean, std, sterr, ci = max_likelihood(Ns, results)
print "Max likelihood estimate: ", mean
print "Max likelihood 95% ci: ", ci
There are two drawbacks to this method. One is that, since you're taking many subsamples from the same set of trials, your estimates are not independent. To limit the effect of this, I only used 25% of the results for each subset. Another drawback is that each subsample is only a fraction of your data, so estimates derived from these subsets will have more variance than estimates derived from running the full script many times. To account for this, I computed the standard error as the standard deviation divided by the square root of 4, since I had four times as much data in my full data set than in one of the subsamples. However, I'm not familiar enough with Monte Carlo theory to know if this is mathematically sound. Running my script a number of times did seem to indicate that my results were reasonable.
Lastly, I did use a boxcar filter on the likelihood curves to smooth them out a bit. Ideally, this should improve results, but even with the filtering there was still a considerable amount of variability in the results. When calculating the value for the overall estimator, I wasn't sure if it would be better compute one likelihood curve from all the results and use the max of that (this is what I ended up doing), or to use the mean of all the subset estimators. Using the mean of the subset estimators might be able to help cancel out some of the roughness in the curves that remains after filtering, but I'm not sure on this.
Here is an answer to your first question and a pointer to a solution for the second:
plot(xdata,ydata)
# calculate the cumulative distribution function
cdf = np.cumsum(ydata)/sum(ydata)
# get the left and right boundary of the interval that contains 95% of the probability mass
right=argmax(cdf>0.975)
left=argmax(cdf>0.025)
# indicate confidence interval with vertical lines
vlines(xdata[left], 0, ydata[left])
vlines(xdata[right], 0, ydata[right])
# hatch confidence interval
fill_between(xdata[left:right], ydata[left:right], facecolor='blue', alpha=0.5)
This produces the following figure:
I'll try to answer question 3 when I have more time :)

Tracking down the assumptions made by SciPy's `ttest_ind()` function

I'm trying to write my own Python code to compute t-statistics and p-values for one and two tailed independent t tests. I can use the normal approximation, but for the moment I am trying to just use the t-distribution. I've been unsuccessful in matching the results of SciPy's stats library on my test data. I could use a fresh pair of eyes to see if I'm just making a dumb mistake somewhere.
Note, this is cross-posted from Cross-Validated because it's been up for a while over there with no responses, so I thought it can't hurt to also get some software developer opinions. I'm trying to understand if there's an error in the algorithm I'm using, which should reproduce SciPy's result. This is a simple algorithm, so it's puzzling why I can't locate the mistake.
My code:
import numpy as np
import scipy.stats as st
def compute_t_stat(pop1,pop2):
num1 = pop1.shape[0]; num2 = pop2.shape[0];
# The formula for t-stat when population variances differ.
t_stat = (np.mean(pop1) - np.mean(pop2))/np.sqrt( np.var(pop1)/num1 + np.var(pop2)/num2 )
# ADDED: The Welch-Satterthwaite degrees of freedom.
df = ((np.var(pop1)/num1 + np.var(pop2)/num2)**(2.0))/( (np.var(pop1)/num1)**(2.0)/(num1-1) + (np.var(pop2)/num2)**(2.0)/(num2-1) )
# Am I computing this wrong?
# It should just come from the CDF like this, right?
# The extra parameter is the degrees of freedom.
one_tailed_p_value = 1.0 - st.t.cdf(t_stat,df)
two_tailed_p_value = 1.0 - ( st.t.cdf(np.abs(t_stat),df) - st.t.cdf(-np.abs(t_stat),df) )
# Computing with SciPy's built-ins
# My results don't match theirs.
t_ind, p_ind = st.ttest_ind(pop1, pop2)
return t_stat, one_tailed_p_value, two_tailed_p_value, t_ind, p_ind
Update:
After reading a bit more on the Welch's t-test, I saw that I should be using the Welch-Satterthwaite formula to calculate degrees of freedom. I updated the code above to reflect this.
With the new degrees of freedom, I get a closer result. My two-sided p-value is off by about 0.008 from the SciPy version's... but this is still much too big an error so I must still be doing something incorrect (or SciPy distribution functions are very bad, but it's hard to believe they are only accurate to 2 decimal places).
Second update:
While continuing to try things, I thought maybe SciPy's version automatically computes the Normal approximation to the t-distribution when the degrees of freedom are high enough (roughly > 30). So I re-ran my code using the Normal distribution instead, and the computed results are actually further away from SciPy's than when I use the t-distribution.
Bonus question :)
(More statistical theory related; feel free to ignore)
Also, the t-statistic is negative. I was just wondering what this means for the one-sided t-test. Does this typically mean that I should be looking in the negative axis direction for the test? In my test data, population 1 is a control group who did not receive a certain employment training program. Population 2 did receive it, and the measured data are wage differences before/after treatment.
So I have some reason to think that the mean for population 2 will be larger. But from a statistical theory point of view, it doesn't seem right to concoct a test this way. How could I have known to check (for the one-sided test) in the negative direction without relying on subjective knowledge about the data? Or is this just one of those frequentist things that, while not philosophically rigorous, needs to be done in practice?
By using the SciPy built-in function source(), I could see a printout of the source code for the function ttest_ind(). Based on the source code, the SciPy built-in is performing the t-test assuming that the variances of the two samples are equal. It is not using the Welch-Satterthwaite degrees of freedom. SciPy assumes equal variances but does not state this assumption.
I just want to point out that, crucially, this is why you should not just trust library functions. In my case, I actually do need the t-test for populations of unequal variances, and the degrees of freedom adjustment might matter for some of the smaller data sets I will run this on.
As I mentioned in some comments, the discrepancy between my code and SciPy's is about 0.008 for sample sizes between 30 and 400, and then slowly goes to zero for larger sample sizes. This is an effect of the extra (1/n1 + 1/n2) term in the equal-variances t-statistic denominator. Accuracy-wise, this is pretty important, especially for small sample sizes. It definitely confirms to me that I need to write my own function. (Possibly there are other, better Python libraries, but this at least should be known. Frankly, it's surprising this isn't anywhere up front and center in the SciPy documentation for ttest_ind()).
You are not calculating the sample variance, but instead you are using population variances. Sample variance divides by n-1, instead of n. np.var has an optional argument called ddof for reasons similar to this.
This should give you your expected result:
import numpy as np
import scipy.stats as st
def compute_t_stat(pop1,pop2):
num1 = pop1.shape[0]
num2 = pop2.shape[0];
var1 = np.var(pop1, ddof=1)
var2 = np.var(pop2, ddof=1)
# The formula for t-stat when population variances differ.
t_stat = (np.mean(pop1) - np.mean(pop2)) / np.sqrt(var1/num1 + var2/num2)
# ADDED: The Welch-Satterthwaite degrees of freedom.
df = ((var1/num1 + var2/num2)**(2.0))/((var1/num1)**(2.0)/(num1-1) + (var2/num2)**(2.0)/(num2-1))
# Am I computing this wrong?
# It should just come from the CDF like this, right?
# The extra parameter is the degrees of freedom.
one_tailed_p_value = 1.0 - st.t.cdf(t_stat,df)
two_tailed_p_value = 1.0 - ( st.t.cdf(np.abs(t_stat),df) - st.t.cdf(-np.abs(t_stat),df) )
# Computing with SciPy's built-ins
# My results don't match theirs.
t_ind, p_ind = st.ttest_ind(pop1, pop2)
return t_stat, one_tailed_p_value, two_tailed_p_value, t_ind, p_ind
PS: SciPy is open source and mostly implemented with Python. You could have checked the source code for ttest_ind and find out your mistake yourself.
For the bonus side: You don't decide on the side of the one-tail test by looking at your t-value. You decide it beforehand with your hypothesis. If your null hypothesis is that the means are equal and your alternative hypothesis is that the second mean is larger, then your tail should be on the left (negative) side. Because sufficiently small (negative) values of your t-value would indicate that the alternative hypothesis is more likely to be true instead of the null hypothesis.
Looks like you forgot **2 to the numerator of your df. The Welch-Satterthwaite degrees of freedom.
df = (np.var(pop1)/num1 + np.var(pop2)/num2)/( (np.var(pop1)/num1)**(2.0)/(num1-1) + (np.var(pop2)/num2)**(2.0)/(num2-1) )
should be:
df = (np.var(pop1)/num1 + np.var(pop2)/num2)**2/( (np.var(pop1)/num1)**(2.0)/(num1-1) + (np.var(pop2)/num2)**(2.0)/(num2-1) )

Categories

Resources