Building complex subsets in Pandas DataFrame - python

I'm making my way around GroupBy, but I still need some help. Let's say that I've a DataFrame with columns Group, giving objects group number, some parameter R and spherical coordinates RA and Dec. Here is a mock DataFrame:
df = pd.DataFrame({
'R' : (-21.0,-21.5,-22.1,-23.7,-23.8,-20.4,-21.8,-19.3,-22.5,-24.7,-19.9),
'RA': (154.362789,154.409301,154.419191,154.474165,154.424842,162.568516,8.355454,8.346812,8.728223,8.759622,8.799796),
'Dec': (-0.495605,-0.453085,-0.481657,-0.614827,-0.584243,8.214719,8.355454,8.346812,8.728223,8.759622,8.799796),
'Group': (1,1,1,1,1,2,2,2,2,2,2)
})
I want to built a selection containing for each group the "brightest" object, i.e. the one with the smallest R (or the greatest absolute value, since Ris negative) and the 3 closest objects of the group (so I keep 4 objects in each group - we can assume that there is no group smaller than 4 objects if needed).
We assume here that we have defined the following functions:
#deg to rad
def d2r(x):
return x * np.pi / 180.0
#rad to deg
def r2d(x):
return x * 180.0 / np.pi
#Computes separation on a sphere
def calc_sep(phi1,theta1,phi2,theta2):
return np.arccos(np.sin(theta1)*np.sin(theta2) +
np.cos(theta1)*np.cos(theta2)*np.cos(phi2 - phi1) )
and that separation between two objects is given by r2d(calc_sep(RA1,Dec1,RA2,Dec2)), with RA1 as RA for the first object, and so on.
I can't figure out how to use GroupBy to achieve this...

What you can do here is build a more specific helper function that gets applied to each "sub-frame" (each group).
GroupBy is really just a facility that creates something like an iterator of (group id, DataFrame) pairs, and a function is applied to each of these when you call .groupby().apply. (That glazes over a lot of details, see here for some details on internals if you're interested.)
So after defining your three NumPy-based functions, also define:
def sep_df(df, keep=3):
min_r = df.loc[df.R.argmin()]
RA1, Dec1 = min_r.RA, min_r.Dec
sep = r2d(calc_sep(RA1,Dec1,df['RA'], df['Dec']))
idx = sep.nsmallest(keep+1).index
return df.loc[idx]
Then just apply and you get a MultiIndex DataFrame where the first index level is the group.
print(df.groupby('Group').apply(sep_df))
Dec Group R RA
Group
1 3 -0.61483 1 -23.7 154.47416
2 -0.48166 1 -22.1 154.41919
0 -0.49561 1 -21.0 154.36279
4 -0.58424 1 -23.8 154.42484
2 8 8.72822 2 -22.5 8.72822
10 8.79980 2 -19.9 8.79980
6 8.35545 2 -21.8 8.35545
9 8.75962 2 -24.7 8.75962
With some comments interspersed:
def sep_df(df, keep=3):
# Applied to each sub-Dataframe (this is what GroupBy does under the hood)
# Get RA and Dec values at minimum R
min_r = df.loc[df.R.argmin()] # Series - row at which R is minimum
RA1, Dec1 = min_r.RA, min_r.Dec # Relevant 2 scalars within this row
# Calculate separation for each pair including minimum R row
# The result is a series of separations, same length as `df`
sep = r2d(calc_sep(RA1,Dec1,df['RA'], df['Dec']))
# Get index values of `keep` (default 3) smallest results
# Retain `keep+1` values because one will be the minimum R
# row where separation=0
idx = sep.nsmallest(keep+1).index
# Restrict the result to those 3 index labels + your minimum R
return df.loc[idx]
For speed, consider passing sort=False to GroupBy if the result still works for you.

I want to built a selection containing for each group the "brightest" object...and the 3 closest objects of the group
step 1:
create a dataframe for the brightest object in each group
maxR = df.sort_values('R').groupby('Group')['Group', 'Dec', 'RA'].head(1)
step 2:
merge the two frames on Group & calculate the separation
merged = df.merge(maxR, on = 'Group', suffixes=['', '_max'])
merged['sep'] = merged.apply(
lambda x: r2d(calc_sep(x.RA, x.Dec, x.RA_max, x.Dec_max)),
axis=1
)
step 3:
order the data frame, group by 'Group', (optional) discard intermediate fields & take the first 4 rows from each group
finaldf = merged.sort_values(['Group', 'sep'], ascending=[1,1]
).groupby('Group')[df.columns].head(4)
Produces the following data frame with your sample data:
Dec Group R RA
4 -0.584243 1 -23.8 154.424842
3 -0.614827 1 -23.7 154.474165
2 -0.481657 1 -22.1 154.419191
0 -0.495605 1 -21.0 154.362789
9 8.759622 2 -24.7 8.759622
8 8.728223 2 -22.5 8.728223
10 8.799796 2 -19.9 8.799796
6 8.355454 2 -21.8 8.355454

Related

Iterate over rows of a dataframe based on index in python

I am trying to build a loop that iterate over each rows of several Dataframes in order to create two new columns. The original dataframes contain two columns (time, velocity), which can vary in length and stored in nested dictionaries. Here an exemple of one of them :
time velocity
0 0.000000 0.136731
1 0.020373 0.244889
2 0.040598 0.386443
3 0.060668 0.571861
4 0.080850 0.777680
5 0.101137 1.007287
6 0.121206 1.207533
7 0.141284 1.402833
8 0.161388 1.595385
9 0.181562 1.762003
10 0.201640 1.857233
11 0.221788 2.006104
12 0.241866 2.172649
The two new columns should de a normalization of the 'time' and 'velocity' column, respectively. Each rows of the new columns should therefore be equal to the following transformation :
t_norm = (time(n) - time(n-1)) / (time(max) - time(min))
vel_norm = (velocity(n) - velocity(n-1)) / (velocity(max) - velocity(min))
Also, the first value of the two new column should be set to 0.
My problem is that I don't know how to properly indicate to python how to access to n and n-1 values to realize such operations, and I don't know if that could be done using pd.DataFrame.iterrows() or the .iloc function.
I have come with the following piece of code, but it miss the crucial parts :
for nested_dict in dict_all_raw.values():
for dflist in nested_dict.values():
dflist['t_norm'] = ? / (dflist['time'].max() - dflist['time'].min())
dflist['vel_norm'] = ? / (dflist['velocity'].max() - dflist['velocity'].min())
dflist['acc_norm'] = dflist['vel_norm'] / dflist['t_norm']
Any help is welcome..! :)
If you just want to normalise, you can write the expression directly, using Series.min and Series.max:
m = df['time'].min()
df['normtime'] = (df['time'] - m) / (df['time'].max() - m)
However, if you want the difference between successive elements, you can use Series.diff:
df['difftime'] = df['time'].diff() / (df['time'].max() - df['time'].min())
Testing:
df = pd.DataFrame({'time': [0.000000, 0.020373, 0.040598], 'velocity': [0.136731, 0.244889, 0.386443]})
print(df)
# time velocity
# 0 0.000000 0.136731
# 1 0.020373 0.244889
# 2 0.040598 0.386443
m = df['time'].min()
df['normtime'] = (df['time'] - m) / (df['time'].max() - m)
df['difftime'] = df['time'].diff() / (df['time'].max() - df['time'].min())
print(df)
# time velocity normtime difftime
# 0 0.000000 0.136731 0.000000 NaN
# 1 0.020373 0.244889 0.501823 0.501823
# 2 0.040598 0.386443 1.000000 0.498177
You can use shift (see the doc here) to create lagged columns
df['time_n-1']=df['time'].shift(1)
Also, the first value of the two new column should be set to 0.
Use df['column']=df['column'].fillna(0) after your calculations

Pandas, get pct change period mean

I have a Data Frame which contains a column like this:
pct_change
0 NaN
1 -0.029767
2 0.039884 # period of one
3 -0.026398
4 0.044498 # period of two
5 0.061383 # period of two
6 -0.006618
7 0.028240 # period of one
8 -0.009859
9 -0.012233
10 0.035714 # period of three
11 0.042547 # period of three
12 0.027874 # period of three
13 -0.008823
14 -0.000131
15 0.044907 # period of one
I want to get all the periods where the pct change was positive into a list, so with the example column it will be:
raise_periods = [1,2,1,3,1]
Assuming that the column of your dataframe is a series called y which contains the pct_changes, the following code provides a vectorized solution without loops.
y = df['pct_change']
raise_periods = (y < 0).cumsum()[y > 0]
raise_periods.groupby(raise_periods).count()
eventually, the answer provided by #gioxc88 didn't get me where I wanted, but it did put me in the right direction.
what I ended up doing is this:
def get_rise_avg_period(cls, df):
df[COMPOUND_DIFF] = df[NEWS_COMPOUND].diff()
df[CONSECUTIVE_COMPOUND] = df[COMPOUND_DIFF].apply(lambda x: 1 if x > 0 else 0)
# group together the periods of rise and down changes
unfiltered_periods = [list(group) for key, group in itertools.groupby(df.consecutive_high.values.tolist())]
# filter out only the rise periods
positive_periods = [li for li in unfiltered_periods if 0 not in li]
I wanted to get the average length of this positive periods, so I added this at the end:
period = round(np.mean(positive_periods_lens))

combine pandas apply results as multiple columns in a single dataframe

Summary
Suppose that you apply a function to a groupby object, so that every g.apply for every g in the df.groupby(...) gives you a series/dataframe. How do I combine these results into a single dataframe, but with the group names as columns?
Details
I have a dataframe event_df that looks like this:
index event note time
0 on C 0.5
1 on D 0.75
2 off C 1.0
...
I want to create a sampling of the event for every note, and the sampling is done at times as given by t_df:
index t
0 0
1 0.5
2 1.0
...
So that I'd get something like this.
t C D
0 off off
0.5 on off
1.0 off on
...
What I've done so far:
def get_t_note_series(notedata_row, t_arr):
"""Return the time index in the sampling that corresponds to the event."""
t_idx = np.argwhere(t_arr >= notedata_row['time']).flatten()[0]
return t_idx
def get_t_for_gb(group, **kwargs):
t_idxs = group.apply(get_t_note_series, args=(t_arr,), axis=1)
t_idxs.rename('t_arr_idx', inplace=True)
group_with_t = pd.concat([group, t_idxs], axis=1).set_index('t_arr_idx')
print(group_with_t)
return group_with_t
t_arr = np.arange(0,10,0.5)
t_df = pd.DataFrame({'t': t_arr}).rename_axis('t_arr_idx')
gb = event_df.groupby('note')
gb.apply(get_t_for_gb, **kwargs)
So what I get is a number of dataframes for each note, all of the same size (same as t_df):
t event
0 on
0.5 off
...
t event
0 off
0.5 on
...
How do I go from here to my desired dataframe, with each group corresponding to a column in a new dataframe, and the index being t?
EDIT: sorry, I didn't take into account below, that you rescale your time column and can't present a whole solution now because I have to leave, but I think, you could do the rescaling by using pandas.merge_asof with your two dataframes to get the nearest "rescaled" time and from the merged dataframe you could try the code below. I hope this is, what you wanted.
import pandas as pd
import io
sio= io.StringIO("""index event note time
0 on C 0.5
1 on D 0.75
2 off C 1.0""")
df= pd.read_csv(sio, sep='\s+', index_col=0)
df.groupby(['time', 'note']).agg({'event': 'first'}).unstack(-1).fillna('off')
Take the first row in each time-note group by agg({'event': 'first'}), then use the note-index column and transpose it, so the note values become columns. Then at the end fill all cells, for which no datapoints could be found with 'off' by fillna.
This outputs:
Out[28]:
event
note C D
time
0.50 on off
0.75 off on
1.00 off off
You might also want to try min or max in case on/off is not unambiguous for a combination of time/note (if there are more rows for the same time/note where some have on and some have off) and you prefer one of these values (say if there is one on, then no matter how many offs are there, you want an on etc.). If you want something like a mayority-vote, I would suggest to add a mayority vote column in the aggregated dataframe (before the unstack()).
Oh so I found it! All I had to do was to unstack the groupby results. Going back to generating the groupby result:
def get_t_note_series(notedata_row, t_arr):
"""Return the time index in the sampling that corresponds to the event."""
t_idx = np.argwhere(t_arr >= notedata_row['time']).flatten()[0]
return t_idx
def get_t_for_gb(group, **kwargs):
t_idxs = group.apply(get_t_note_series, args=(t_arr,), axis=1)
t_idxs.rename('t_arr_idx', inplace=True)
group_with_t = pd.concat([group, t_idxs], axis=1).set_index('t_arr_idx')
## print(group_with_t) ## unnecessary!
return group_with_t
t_arr = np.arange(0,10,0.5)
t_df = pd.DataFrame({'t': t_arr}).rename_axis('t_arr_idx')
gb = event_df.groupby('note')
result = gb.apply(get_t_for_gb, **kwargs)
At this point, result is a dataframe with note as an index:
>> print(result)
event
note t
C 0 off
0.5 on
1.0 off
....
D 0 off
0.5 off
1.0 on
....
Doing result = result.unstack('note') does the trick:
>> result = result.unstack('note')
>> print(result)
event
note C D
t
0 off off
0.5 on on
1.0 off off
....
D 0 off
0.5 off
1.0 on
....

Pandas very slow query

I have the following code which reads a csv file and then analyzes it. One patient has more than one illness and I need to find how many times an illness is seen on all patients. But the query given here
raw_data[(raw_data['Finding Labels'].str.contains(ctr)) & (raw_data['Patient ID'] == i)].size
is so slow that it takes more than 15 mins. Is there a way to make the query faster?
raw_data = pd.read_csv(r'C:\Users\omer.kurular\Desktop\Data_Entry_2017.csv')
data = ["Cardiomegaly", "Emphysema", "Effusion", "No Finding", "Hernia", "Infiltration", "Mass", "Nodule", "Atelectasis", "Pneumothorax", "Pleural_Thickening", "Pneumonia", "Fibrosis", "Edema", "Consolidation"]
illnesses = pd.DataFrame({"Finding_Label":[],
"Count_of_Patientes_Having":[],
"Count_of_Times_Being_Shown_In_An_Image":[]})
ids = raw_data["Patient ID"].drop_duplicates()
index = 0
for ctr in data[:1]:
illnesses.at[index, "Finding_Label"] = ctr
illnesses.at[index, "Count_of_Times_Being_Shown_In_An_Image"] = raw_data[raw_data["Finding Labels"].str.contains(ctr)].size / 12
for i in ids:
illnesses.at[index, "Count_of_Patientes_Having"] = raw_data[(raw_data['Finding Labels'].str.contains(ctr)) & (raw_data['Patient ID'] == i)].size
index = index + 1
Part of dataframes:
Raw_data
Finding Labels - Patient ID
IllnessA|IllnessB - 1
Illness A - 2
From what I read I understand that ctr stands for the name of a disease.
When you are doing this query:
raw_data[(raw_data['Finding Labels'].str.contains(ctr)) & (raw_data['Patient ID'] == i)].size
You are not only filtering the rows which have the disease, but also which have a specific patient id. If you have a lot of patients, you will need to do this query a lot of times. A simpler way to do it would be to not filter on the patient id and then take the count of all the rows which have the disease.
This would be:
raw_data[raw_data['Finding Labels'].str.contains(ctr)].size
And in this case since you want the number of rows, len is what you are looking for instead of size (size will be the number of cells in the dataframe).
Finally another source of error in your current code was the fact that you were not keeping the count for every patient id. You needed to increment illnesses.at[index, "Count_of_Patientes_Having"] not set it to a new value each time.
The code would be something like (for the last few lines), assuming you want to keep the disease name and the index separate:
for index, ctr in enumerate(data[:1]):
illnesses.at[index, "Finding_Label"] = ctr
illnesses.at[index, "Count_of_Times_Being_Shown_In_An_Image"] = len(raw_data[raw_data["Finding Labels"].str.contains(ctr)]) / 12
illnesses.at[index, "Count_of_Patientes_Having"] = len(raw_data[raw_data['Finding Labels'].str.contains(ctr)])
I took the liberty of using enumerate for a more pythonic way of handling indexes. I also don't really know what "Count_of_Times_Being_Shown_In_An_Image" is, but I assumed you had had the same confusion between size and len.
Likely the reason your code is slow is that you are growing a data frame row-by-row inside a loop which can involve multiple in-memory copying. Usually this is reminiscent of general purpose Python and not Pandas programming which ideally handles data in blockwise, vectorized processing.
Consider a cross join of your data (assuming a reasonable data size) to the list of illnesses to line up Finding Labels to each illness in same row to be filtered if longer string contains shorter item. Then, run a couple of groupby() to return the count and distinct count by patient.
# CROSS JOIN LIST WITH MAIN DATA FRAME (ALL ROWS MATCHED)
raw_data = (raw_data.assign(key=1)
.merge(pd.DataFrame({'ills':ills, 'key':1}), on='key')
.drop(columns=['key'])
)
# SUBSET BY ILLNESS CONTAINED IN LONGER STRING
raw_data = raw_data[raw_data.apply(lambda x: x['ills'] in x['Finding Labels'], axis=1)]
# CALCULATE GROUP BY count AND distinct count
def count_distinct(grp):
return (grp.groupby('Patient ID').size()).size
illnesses = pd.DataFrame({'Count_of_Times_Being_Shown_In_An_Image': raw_data.groupby('ills').size(),
'Count_of_Patients_Having': raw_data.groupby('ills').apply(count_distinct)})
To demonstrate, consider below with random, seeded input data and output.
Input Data (attempting to mirror original data)
import numpy as np
import pandas as pd
alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
data_tools = ['sas', 'stata', 'spss', 'python', 'r', 'julia']
ills = ["Cardiomegaly", "Emphysema", "Effusion", "No Finding", "Hernia",
"Infiltration", "Mass", "Nodule", "Atelectasis", "Pneumothorax",
"Pleural_Thickening", "Pneumonia", "Fibrosis", "Edema", "Consolidation"]
np.random.seed(542019)
raw_data = pd.DataFrame({'Patient ID': np.random.choice(data_tools, 25),
'Finding Labels': np.core.defchararray.add(
np.core.defchararray.add(np.array([''.join(np.random.choice(list(alpha), 3)) for _ in range(25)]),
np.random.choice(ills, 25).astype('str')),
np.array([''.join(np.random.choice(list(alpha), 3)) for _ in range(25)]))
})
print(raw_data.head(10))
# Patient ID Finding Labels
# 0 r xPNPneumothoraxXYm
# 1 python ScSInfiltration9Ud
# 2 stata tJhInfiltrationJtG
# 3 r thLPneumoniaWdr
# 4 stata thYAtelectasis6iW
# 5 sas 2WLPneumonia1if
# 6 julia OPEConsolidationKq0
# 7 sas UFFCardiomegaly7wZ
# 8 stata 9NQHerniaMl4
# 9 python NB8HerniapWK
Output (after running above process)
print(illnesses)
# Count_of_Times_Being_Shown_In_An_Image Count_of_Patients_Having
# ills
# Atelectasis 3 1
# Cardiomegaly 2 1
# Consolidation 1 1
# Effusion 1 1
# Emphysema 1 1
# Fibrosis 2 2
# Hernia 4 3
# Infiltration 2 2
# Mass 1 1
# Nodule 2 2
# Pleural_Thickening 1 1
# Pneumonia 3 3
# Pneumothorax 2 2

suggestion on how to solve an infinte loop problem (python-pandas)

I have a data frame with 384 rows (and an additional dummy one in the bigining).
each row has 4 variable I wrote manually. 3 calculated fields based on those 4 variables.
and 3 that are comparing each calculated variable to the row before. each field can have 1 of two values (basically True/False).
Final goal - I want to arrange the data frame in a way that the 64 possible combination of the 6 calculated fields (2^6), occur 6 times (2^6*6=384).
Each iteration does a frequency table (pivot) and if one of the fields differ from 6 it breaks and randomize the order.
The problem that there are 384!-12*6! possible combinations and my computer is running the following script for over 4 days without a solution.
import pandas as pd
from numpy import random
# a function that calculates if a row is congruent or in-congruent
def set_cong(df):
if df["left"] > df["right"] and df["left_size"] > df["right_size"] or df["left"] < df["right"] and df["left_size"] < df["right_size"]:
return "Cong"
else:
return "InC"
# open file and calculate the basic fields
DF = pd.read_csv("generator.csv")
DF["distance"] = abs(DF.right-DF.left)
DF["CR"] = DF.left > DF.right
DF["Cong"] = DF.apply(set_cong, axis=1)
again = 1
# main loop to try and find optimal order
while again == 1:
# make a copy of the DF to not have to load it each iteration
df = DF.copy()
again = 0
df["rand"] = [[random.randint(low=1, high=100000)] for i in range(df.shape[0])]
# as 3 of the fields are calculated based on the previous row the first one is a dummy and when sorted needs to stay first
df.rand.loc[0] = 0
Sorted = df.sort_values(['rand'])
Sorted["Cong_n1"] = Sorted.Cong.eq(Sorted.Cong.shift())
Sorted["Side_n1"] = Sorted.CR.eq(Sorted.CR.shift())
Sorted["Dist_n1"] = Sorted.distance.eq(Sorted.distance.shift())
# here the dummy is deleted
Sorted = Sorted.drop(0, axis=0)
grouped = Sorted.groupby(['distance', 'CR', 'Cong', 'Cong_n1', 'Dist_n1', "Side_n1"])
for name, group in grouped:
if group.shape[0] != 6:
again = 1
break
Sorted.to_csv("Edos.csv", sep="\t",index=False)
print ("bye")
the data frame looks like this:
left right size_left size_right distance cong CR distance_n1 cong_n1 side_n1
1 6 22 44 5 T F dummy dummy dummy
5 4 44 22 1 T T F T F
2 3 44 22 1 F F T F F

Categories

Resources