With Tensorflow, 2 class classification using Neural Network - python

I'm trying 2 class classification of images by neural network using Tensorflow.
I want to extract 1000 pixels randomly.
However, I am in trouble with error:
"logits = inference(images_placeholder, keep_prob)
File "train5.py", line 83, in inference
list = random.sample(x_image(IMAGE_PIXELS),SAMPLE_PIXELS)
TypeError: 'Tensor' object is not callable"
Please tell me what should I do.
I will attach a code below.
import sys
sys.path.append('/usr/local/opt/opencv3/lib/python3.5.4/site-packages')
import cv2
import numpy as np
import tensorflow as tf
import tensorflow.python.platform
import tensorboard as tb
import os
import math
import time
import random
start_time = time.time()
# TensorBoard output information directory
log_dir = '/tmp/data1' #tensorboard --logdir=/tmp/data1
#directory delete and reconstruction
if tf.gfile.Exists(log_dir):
tf.gfile.DeleteRecursively(log_dir)
tf.gfile.MakeDirs(log_dir)
# Reserve memory
config = tf.ConfigProto(
gpu_options=tf.GPUOptions(allow_growth=True))
sess = sess = tf.Session(config=config)
NUM_CLASSES = 2
IMAGE_SIZE_x = 1024
IMAGE_SIZE_y = 768
IMAGE_CHANNELS = 1
IMAGE_PIXELS = IMAGE_SIZE_x*IMAGE_SIZE_y*IMAGE_CHANNELS
SAMPLE_PIXELS = 1000
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('train', 'train.txt', 'File name of train data')
flags.DEFINE_string('test', 'test.txt', 'File name of train data')
flags.DEFINE_string('image_dir', 'trdata', 'Directory of images')
flags.DEFINE_string('train_dir', '/tmp/data', 'Directory to put the training data.')
flags.DEFINE_integer('max_steps', 20000, 'Number of steps to run trainer.')
flags.DEFINE_integer('batch_size', 10, 'Batch size'
'Must divide evenly into the dataset sizes.')
flags.DEFINE_float('learning_rate', 1e-5, 'Initial learning rate.')
def inference(images_placeholder, keep_prob):
""" Function to create predictive model
argument:
images_placeholder: image placeholder
keep_prob: dropout rate placeholder
Return:
y_conv:
"""
# Initialie with normal distribution with weight of 0.1
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# Initialized with normal distribution with bias of 0.1
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# Reshape input
x_image = images_placeholder
# ramdom sumpling pixels
list = random.sample(x_image(IMAGE_PIXELS),SAMPLE_PIXELS)
x_list = [samples[i] for i in list]
# Input
with tf.name_scope('fc1') as scope:
W_fc1 = weight_variable([x_list,10])
b_fc1 = bias_variable([10])
h_fc1 = tf.nn.relu(tf.matmul(x_image,W_fc1) + b_fc1)
# Affine1
with tf.name_scope('fc2') as scope:
W_fc2 = weight_variable([10,10])
b_fc2 = bias_variable([10])
h_fc2 = tf.nn.relu(tf.matmul(h_fc1,W_fc2) + b_fc2)
# Affine2
with tf.name_scope('fc3') as scope:
W_fc3 = weight_variable([10,10])
b_fc3 = bias_variable([10])
h_fc3 = tf.nn.relu(tf.matmul(h_fc2,W_fc3) + b_fc3)
# Affine3
with tf.name_scope('fc4') as scope:
W_fc4 = weight_variable([10,10])
b_fc4 = bias_variable([10])
h_fc4 = tf.nn.relu(tf.matmul(h_fc3,W_fc4) + b_fc4)
# Affine4
with tf.name_scope('fc5') as scope:
W_fc5 = weight_variable([10,2])
b_fc5 = bias_variable([2])
# softmax regression
with tf.name_scope('softmax') as scope:
y_out=tf.nn.softmax(tf.matmul(h_fc4, W_fc5) + b_fc5)
# return
return y_out
def loss(logits, labels):
""" loss function
引数:
logits: logit tensor, float - [batch_size, NUM_CLASSES]
labels: labrl tensor, int32 - [batch_size, NUM_CLASSES]
返り値:
cross_entropy:tensor, float
"""
# cross entropy
cross_entropy = -tf.reduce_sum(labels*tf.log(tf.clip_by_value(logits,1e-10,1.0)))
# TensorBoard
tf.summary.scalar("cross_entropy", cross_entropy)
return cross_entropy
def training(loss, learning_rate):
#Adam
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
return train_step
def accuracy(logits, labels):
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
tf.summary.scalar("accuracy", accuracy)
return accuracy
if __name__ == '__main__':
f = open(FLAGS.train, 'r')
# array data
train_image = []
train_label = []
for line in f:
# Separate space and remove newlines
line = line.rstrip()
l = line.split()
# Load data and resize
img = cv2.imread(FLAGS.image_dir + '/' + l[0])
img = cv2.resize(img, (IMAGE_SIZE_x, IMAGE_SIZE_y))
#transrate grayscale
img_gry = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# transrate one row and 0-1 float
train_image.append(img_gry.flatten().astype(np.float32)/255.0)
# Prepare with label 1-of-k method
tmp = np.zeros(NUM_CLASSES)
tmp[int(l[1])] = 1
train_label.append(tmp)
# transrate numpy
train_image = np.asarray(train_image)
train_label = np.asarray(train_label)
f.close()
f = open(FLAGS.test, 'r')
test_image = []
test_label = []
for line in f:
line = line.rstrip()
l = line.split()
img = cv2.imread(FLAGS.image_dir + '/' + l[0])
img = cv2.resize(img, (IMAGE_SIZE_x, IMAGE_SIZE_y))
#transrate grayscale
img_gry = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# transrate one row and 0-1 float
test_image.append(img_gry.flatten().astype(np.float32)/255.0)
tmp = np.zeros(NUM_CLASSES)
tmp[int(l[1])] = 1
test_label.append(tmp)
test_image = np.asarray(test_image)
test_label = np.asarray(test_label)
f.close()
with tf.Graph().as_default():
# Put the image Tensor
images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS))
# Put the label Tensor
labels_placeholder = tf.placeholder("float", shape=(None, NUM_CLASSES))
# Put dropout rate Tensor
keep_prob = tf.placeholder("float")
# Load inference() and make model
logits = inference(images_placeholder, keep_prob)
# Load loss() and calculate loss
loss_value = loss(logits, labels_placeholder)
# Load training() and train
train_op = training(loss_value, FLAGS.learning_rate)
# calculate accuracy
acc = accuracy(logits, labels_placeholder)
# save
saver = tf.train.Saver()
# Make Session
sess = tf.Session()
# Initialize variable
sess.run(tf.global_variables_initializer())
# TensorBoard
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)
# Start training
for step in range(FLAGS.max_steps):
for i in range(int(len(train_image)/FLAGS.batch_size)):
batch = FLAGS.batch_size*i
sess.run(train_op, feed_dict={
images_placeholder: train_image[batch:batch+FLAGS.batch_size],
labels_placeholder: train_label[batch:batch+FLAGS.batch_size],
keep_prob: 0.5})
# Accuracy calculation for every steps
train_accuracy = sess.run(acc, feed_dict={
images_placeholder: train_image,
labels_placeholder: train_label,
keep_prob: 1.0})
print("step %d, training accuracy %g" %(step, train_accuracy))
# Added value to be displayed in Tensorflow every 1step
summary_str = sess.run(summary_op, feed_dict={
images_placeholder: train_image,
labels_placeholder: train_label,
keep_prob: 1.0})
summary_writer.add_summary(summary_str, step)
# Display accuracy on test data after training
print(" test accuracy %g"%sess.run(acc, feed_dict={
images_placeholder: test_image,
labels_placeholder: test_label,
keep_prob: 1.0}))
duration = time.time() - start_time
print('%.3f sec' %duration)
# Save model
save_path = saver.save(sess, os.getcwd() + "\\model.ckpt")

The error is this:
images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS))
...
x_image = images_placeholder
list = random.sample(x_image(IMAGE_PIXELS),SAMPLE_PIXELS)
x_image, just like images_placeholder is a variable node, so x_image(...) doesn't make sense and obviously leads to an error "TypeError: 'Tensor' object is not callable".
I assume you're trying to sample SAMPLE_PIXELS from each image in a batch. Note that random.sample won't work here, because x_image is a symbolic variable, its value is only known during the session. You have to use tf.boolean_mask with a random mask in order to select random pixels from the image.

Related

softmax_cross_entropy_with_logits nan

I have extracted CNN features from a pretrain vgg19 with size 4096. Then I am using a shallower architecture to train a classifier with softmax and center losses. Unfortunately, the softmax loss function returns nan. There is detailed discussion available here, however I am not able to resolve the problem with clip because labels and logits are in two different data format (int64, float32). Furthermore, I also changed the learning rate but still got the same error.
Can some please let me know, how to resolve this situation.
from __future__ import division
from __future__ import print_function
import csv
import numpy as np
import tensorflow as tf
from retrieval_model import setup_train_model
FLAGS = None
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def get_name(read_file):
feat_lst = []
identifier_lst = []
with open(read_file, 'r') as csvfile:
read_file = csv.reader(csvfile, delimiter=',')
for row in read_file:
feat = row[:-1]
s_feat = [float(i) for i in feat]
identifier = row[-1]
feat_lst.append(s_feat)
identifier_lst.append(identifier)
return feat_lst, identifier_lst
def get_batch(batch_index, batch_size, labels, f_lst):
start_ind = batch_index * batch_size
end_ind = start_ind + batch_size
return f_lst[start_ind:end_ind], labels[start_ind:end_ind]
def creat_dict(orig_labels):
dict = {}
count = 0
for x in orig_labels:
n_label = dict.get(x, None)
if n_label is None:
dict[x] = count
count += 1
return dict
def main(_):
save_dir = 'model/one-branch-ckpt'
train_file = 'gtrain.csv'
img_feat, img_labels = get_name(train_file)
map_dict = creat_dict(img_labels)
img_labels = [map_dict.get(x) for x in img_labels]
im_feat_dim = 4096
batch_size = 50
max_num_epoch = 10
steps_per_epoch = len(img_feat) // batch_size
num_steps = steps_per_epoch * max_num_epoch
# Setup placeholders for input variables.
im_feat_plh = tf.placeholder(tf.float32, shape=[batch_size, im_feat_dim])
label_plh = tf.placeholder(tf.int64, shape=(batch_size), name='labels')
train_phase_plh = tf.placeholder(tf.bool)
# Setup training operation.
t_l = setup_train_model(im_feat_plh, train_phase_plh, label_plh, classes)
# Setup optimizer.
global_step = tf.Variable(0, trainable=False)
init_learning_rate = 0.0001
learning_rate = tf.train.exponential_decay(init_learning_rate, global_step,
steps_per_epoch, 0.794, staircase=True)
optim = tf.train.AdamOptimizer(init_learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_step = optim.minimize(t_l, global_step=global_step)
# Setup model saver.
saver = tf.train.Saver(save_relative_paths=True,max_to_keep=1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(num_steps):
im_feats, labels = get_batch(
i % steps_per_epoch, batch_size, img_labels, img_feat)
feed_dict = {
im_feat_plh: im_feats,
label_plh: labels,
train_phase_plh: True,
}
[_, loss_val] = sess.run([train_step, t_l], feed_dict=feed_dict)
if i % 100 == 0:
print('Epoch: %d Step: %d Loss: %f' % (i // steps_per_epoch, i, loss_val))
if i % steps_per_epoch == 0 and i > 0:
print('Saving checkpoint at step %d' % i)
saver.save(sess, save_dir, global_step=global_step)
if __name__ == '__main__':
np.random.seed(0)
tf.set_random_seed(0)
tf.app.run(main=main)
**************************retrieval_model********************************
def setup_train_model(im_feats, train_phase, im_labels, nrof_classes):
alfa = 0.9
# nrof_classes = 28783
i_embed = embedding_model(im_feats, train_phase, im_labels)
c_l = embedding_loss(i_embed, im_labels, alfa, nrof_classes)
loss = softmax_loss(i_embed, im_labels)
total_loss = loss + c_l
return total_loss
def add_fc(inputs, outdim, train_phase, scope_in):
fc = fully_connected(inputs, outdim, activation_fn=None, scope=scope_in + '/fc')
fc_bnorm = tf.layers.batch_normalization(fc, momentum=0.1, epsilon=1e-5,
training=train_phase, name=scope_in + '/bnorm')
fc_relu = tf.nn.relu(fc_bnorm, name=scope_in + '/relu')
fc_out = tf.layers.dropout(fc_relu, seed=0, training=train_phase, name=scope_in + '/dropout')
return fc_out
def embedding_loss(features, label, alfa, nrof_classes):
nrof_features = features.get_shape()[1]
centers = tf.get_variable('centers', [nrof_classes, nrof_features], dtype=tf.float32,
initializer=tf.constant_initializer(0), trainable=False)
label = tf.reshape(label, [-1])
centers_batch = tf.gather(centers, label)
diff = (1 - alfa) * (centers_batch - features)
#centers = tf.scatter_sub(centers, label, diff)
center_loss = tf.reduce_mean(tf.square(features - centers_batch))
#softmax_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=features))
#total_loss = softmax_loss + center_loss
return center_loss
def embedding_model(im_feats, train_phase, im_labels,
fc_dim=2048, embed_dim=512):
# Image branch.
im_fc1 = add_fc(im_feats, fc_dim, train_phase, 'im_embed_1')
im_fc2 = fully_connected(im_fc1, embed_dim, activation_fn=None,
scope='im_embed_2')
return tf.nn.l2_normalize(im_fc2, 1, epsilon=1e-10)
def softmax_loss(feat, im_labels):
label = tf.reshape(im_labels, [-1])
softmax = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=feat))
return softmax

Plateauing loss in neural style transfer

I am writing an implementation of style transfer by loading a vgg model from keras and supplying it to a tensorflow model.
I am using an adam optimizer. The loss function is reducing but it is very slow and plateaus off at about 108. Also the style loss is huge (order of 108) whereas content loss is much smaller(order of 105). This is weird as the paper for style transfer says to scale content loss down by a factor of 100 or 1000 when calculating total loss.
I tried increasing the learning rate but that only makes the gradient overshoot.
I suspect there must be a bug in my implementation but despite searching endlessly I have been unable to find what's wrong.
Here's the code:
# coding: utf-8
# In[1]:
from keras.applications.vgg16 import VGG16
from keras.models import Model
import tensorflow as tf
import tensorflow.contrib.eager as tfe
import numpy as np
import matplotlib.pyplot as plt
# In[2]:
content_image_path = './skyline.jpg'
style_image_path = './starry_night.jpg'
output_image_path = './output.jpg'
# In[4]:
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
# In[5]:
content_image = image.load_img(content_image_path, target_size=(224, 224))
#plt.imshow(content_image)
content_arr = image.img_to_array(content_image)
content_arr = tf.convert_to_tensor(preprocess_input(np.expand_dims(content_arr, axis=0)), tf.float64)
sess.run(tf.shape(content_arr))
# In[6]:
style_image = image.load_img(style_image_path, target_size=(224, 224))
#plt.imshow(style_image)
style_arr = image.img_to_array(style_image)
style_arr = tf.convert_to_tensor(preprocess_input(np.expand_dims(style_arr, axis=0)), tf.float64)
sess.run(tf.shape(style_arr))
# In[7]:
#generate random image with pixel values b/w 0 -> 255
o_input = np.random.randint(low=0, high=256, size=(224, 224, 3)).astype('float64')
plt.imshow(o_input)
o_input_old = np.copy(o_input)
o_input = preprocess_input(np.expand_dims(o_input, axis=0))
print(o_input_old)
o_input_var = tf.Variable(o_input, name="gen_img_vector", trainable=True)
# In[8]:
content_model = VGG16(include_top=False, weights='imagenet', input_tensor=content_arr, input_shape=(224, 224, 3))
style_model = VGG16(include_top=False, weights='imagenet', input_tensor=style_arr, input_shape=(224, 224, 3))
train_model = VGG16(include_top=False, weights='imagenet', input_tensor=o_input_var, input_shape=(224, 224, 3))
# In[10]:
content_model.summary()
# In[11]:
def get_feature_rep(layer_type, layer_names, model):
outputs = []
for name in layer_names:
out = model.get_layer(name=name).output
N = tf.shape(out)[3]#number of channels
M = tf.multiply(tf.shape(out)[1], tf.shape(out)[2])#product of dimensions
out = tf.transpose(tf.reshape(out, (M, N)))#Flattens each channel into 1-D tensor & reshapes layer
if layer_type == 'style':
out = get_gram_matrix(out)
print(out)
outputs.append(out)
return outputs
# In[12]:
def get_gram_matrix(F):
G = tf.matmul(F, tf.transpose(F))
return G
# In[13]:
def style_loss(Gs, As):
total = tf.Variable(tf.constant(0.0, tf.float64), name="style_loss", trainable=False)
style_reps = list(zip(Gs, As))
for layer in style_reps:
loss = tf.reduce_sum(tf.cast(tf.squared_difference(layer[0], layer[1]), tf.float64), [0, 1])
N_layer = tf.shape(layer[0])[0]
M_layer = tf.shape(layer[0])[1]
den = tf.square(tf.cast(tf.multiply(N_layer, M_layer), tf.float64))
loss = loss/den
loss = loss*0.2/4.0 #weighting loss
total = total + loss
return total
# In[14]:
def content_loss(P, F):
# loss = tf.Variable(tf.constant(0.0, tf.float64), name="content_loss", trainable=False)
loss = tf.reduce_sum(tf.cast(tf.squared_difference(P, F), tf.float64), [0, 1])
loss = loss/2.0
return loss
# In[15]:
content_layer_names = ['block4_conv2']
style_layer_names = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1']
# In[32]:
P = tf.squeeze(get_feature_rep('content', content_layer_names, content_model))
# In[34]:
F = tf.squeeze(get_feature_rep('content', content_layer_names, train_model))
# In[18]:
#Each member of As consists of a feature map corresponding to a particular layer (dim. channels x pixels per channel)
As = get_feature_rep('style', style_layer_names, style_model)
# In[19]:
Gs = get_feature_rep('style', style_layer_names, train_model)
# In[20]:
styleloss = style_loss(Gs, As)
# In[21]:
contentloss = content_loss(P, F)
# In[22]:
total_loss = tf.add(styleloss, tf.multiply(tf.constant(0.01, tf.float64), contentloss))
# In[23]:
optimizer = tf.train.AdamOptimizer(5).minimize(total_loss, var_list=[o_input_var])
# In[26]:
def reprocess(x):
VGG_MEAN = [123.68, 116.78, 103.94]
means = tf.reshape(tf.constant(VGG_MEAN, tf.float64), [1, 1, 3])
#Undo mean imagenet scale preprocessing
x = tf.add(x, means)
tf.clip_by_value(x, 0, 255)
#bgr to rgb
x = x[..., ::-1]
return x
# In[27]:
saver = tf.train.Saver(tf.global_variables())
# In[28]:
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
# saver.restore(sess, './model/nst_model.ckpt')
for epoch in range(100):
_, styleloss_curr, contentloss_curr, loss_curr, new_arr = sess.run([optimizer, styleloss, contentloss, total_loss, o_input_var])
print('Epoch: %i Content Loss: %.2f Style Loss: %.2f Total Loss: %.2f' % (epoch, contentloss_curr, styleloss_curr, loss_curr))
if epoch % 15 == 0:
saver.save(sess, './model/nst_model.ckpt')
# In[30]:
with tf.Session() as sess:
new_arr = reprocess(new_arr)
new_im = sess.run(tf.cast(tf.round(tf.squeeze(new_arr)), tf.uint8))
# new_im = new_im[...,::-1]
# print(sess.run(new_arr[0]/255))
print(sess.run(tf.shape(new_im)))
plt.imshow(new_im)

Generate Histogram of TensorFlow Predictions

I wish to log the predictions every N epochs\iterations and generate a histogram for each class. My question is how do I log the predictions into an array, including the label in order to generate the histograms?
How do I make sure it happens of every N epochs\iterations?
I have edited the post to add the code so you will be able to see what I am talking about. The last 2 code chunks should somehow be used for what I requested.
Thanks in advance!
import tensorflow as tf
import numpy as np
import math
from random import random
from array import array
from ROOT import TFile, TTree, TH1D, TH2D, TBranch, vector
NUM_EXAMPLES = 1.6e4
TRAIN_SPLIT = .8
MINI_BATCH_SIZE = 1000
#NUM_EPOCHS = 3500
F_PATH = "/home/cauchy/Documents/Machine_Learning"
F_TEST = []
F_TEST += ["d3pd-ckt12rmd2030pp-G_ww_qqqq_%d%d00.root" % (1,2)]
F_TEST += ["d3pd-ckt12rmd2030pp-pyj%d.root" % (4)]
F_TEST += ["d3pd-ckt12rmd2030pp-pyj%d.root" % (5)]
F_TEST += ["d3pd-ckt12rmd2030pp-pyj%d.root" % (6)]
F_TEST += ["d3pd-ckt12rmd2030pp-pyj%d.root" % (7)]
#CALIBRATION_TARGET = "pt" # you can use pt,m,eta
INPUTS = ['m', 'grootau21', 'ysfilt', 'ungrngtrk'] # Removed pt
PT_MIN = 450 #for file 1200
PT_MAX = 730 #for file 1200
F_OUTPUT = "G1200_signaltobackground_from_pt_mass_ysfilt_grootau21_ungrngtrk.root"
N_INPUTS = len(INPUTS)
#============== inputs / target ====================================
jet_features = []
target = []
#=================== branches for training and validation ===========
pt = []
m = []
grootau21 =[]
ysfilt = []
ungrngtrk = []
#weight = []
#================ Prepare the dataset ========================
# I need to change the data to include the multiplication by the weight (constant)
for fi in F_TEST: #Should it include background AND signal files? Yes.
current_e = 0
f = TFile(F_PATH + '/' + fi, 'read')
t = TTree()
f.GetObject("dibjet", t) # Changed from "Tree" to "dibjet"
for entry in t:
current_e += 1
if current_e > NUM_EXAMPLES: # NUM_EXAMPLES should change for the different files
break
if (t.jet1_pt > PT_MAX or t.jet1_pt < PT_MIN):
continue
tmp = []
if 'pt' in INPUTS: tmp += [t.jet1_pt / MAX_PT] #for file 1200
if 'm' in INPUTS: tmp += [t.jet1_m / 500] #for file 1200
if 'grootau21' in INPUTS: tmp += [t.jet1_grootau21]
if 'ysfilt' in INPUTS: tmp += [t.jet1_ysfilt]
if 'ungrngtrk' in INPUTS: tmp += [t.jet1_ungrngtrk / 110] #for file 1200
# We need only look at the class {background, signal} of the entry in terms of target
jet_features += [tmp]
# One-hot encoder
if fi == 'd3pd-ckt12rmd2030pp-G_ww_qqqq_1200.root': target += [[1, 0]]
else: target += [[0, 1]]
pt += [t.jet1_pt]
m += [t.jet1_m]
grootau21 += [t.jet1_grootau21]
ysfilt += [t.jet1_ysfilt]
ungrngtrk += [t.jet1_ungrngtrk]
#weight += [t.weight]
######################################
###### prepare inputs for NN #########
trainset = list(zip(jet_features, target)) # remove ref_target?
np.random.shuffle(trainset)
jet_features, target = zip(*trainset) # What does this line do? Rearranges jetmoments\target...
total_sample = len(target)
train_size = int(total_sample*TRAIN_SPLIT)
all_x = np.float32((jet_features)) # Converts the list type? Why double paranthesis?
all_y = np.float32(target)
train_x = all_x[:train_size] # Create training\testing partitions?
test_x = all_x[train_size:]
train_y = all_y[:train_size]
test_y = all_y[train_size:]
# Define important parameters and variable to work with the tensors
learning_rate = 0.3
training_epochs = 500
cost_history = np.empty(shape=[1], dtype=float)
n_dim = N_INPUTS
#print("n_dim", n_dim)
n_class = 2
model_path = "/home/cauchy/Documents/TensorFlow/Cuts_W" # Forgot what this path is used for
# Define the number of hidden layers and number of neurons for each layer
n_hidden_1 = 10
n_hidden_2 = 10
n_hidden_3 = 10
n_hidden_4 = 10
x = tf.placeholder(tf.float32, [None, n_dim])
W = tf.Variable(tf.zeros([n_dim, n_class]))
b = tf.Variable(tf.zeros([n_class]))
y_ = tf.placeholder(tf.float32, [None, n_class]) # Should we use a vector instead with 1 for signal and 0 for background?
# Define the model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with sigmoid activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.sigmoid(layer_1)
# Hidden layer with sigmoid activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.sigmoid(layer_2)
# Hidden layer with sigmoid activation
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
layer_3 = tf.nn.sigmoid(layer_3)
# Hidden layer with ReLU activation
layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
layer_4 = tf.nn.relu(layer_4)
# Output layer with linear activation
out_layer = tf.matmul(layer_4, weights['out']) + biases['out']
return out_layer
# Define the weights and the biases for each layer
weights = {
'h1': tf.Variable(tf.truncated_normal([n_dim, n_hidden_1])),
'h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3])),
'h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4])),
'out': tf.Variable(tf.truncated_normal([n_hidden_4, n_class]))
}
biases = {
'b1': tf.Variable(tf.truncated_normal([n_hidden_1])),
'b2': tf.Variable(tf.truncated_normal([n_hidden_2])),
'b3': tf.Variable(tf.truncated_normal([n_hidden_3])),
'b4': tf.Variable(tf.truncated_normal([n_hidden_4])),
'out': tf.Variable(tf.truncated_normal([n_class]))
}
# Initialize all the variables
init = tf.global_variables_initializer()
saver = tf.train.Saver()
# Call your model defined
y = multilayer_perceptron(x, weights, biases)
# Define the cost function and optimizer
cost_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
training_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)
sess = tf.Session
sess.run(init)
# Calculate the cost and the accuracy for each epoch
mse_history = [] # mean squared error
accuracy_history = []
for epoch in range(training_epochs):
sess.run(training_step, feed_dict={x: train_x, y_: train_y})
cost = sess.run(cost_function, feed_dict={x: train_x, y_: train_y})
cost_history = np.append(cost_history, cost)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# print("Accuracy: ", (sess.run(accuracy, feed_dict={x:test_x, y_:test_y})))
pred_y = sess.run(y, feed_dict={x: test_x})
mse = tf.reduce_mean(tf.square(pred_y - test_y))
mse_ = sess.run(mse)
mse_history.append(mse_)
accuracy = (sess.run(accuracy, feed_dict={x: train_x, y_: train_y}))
accuracy_history.append(accuracy)
print('epoch: ', epoch, ' - ','cost: ', cost, " - MSE: ", mse_, "- Train Accuracy: ", accuracy)
save_path = saver.save(sess, model_path)
print("Model saved in file: %s" % save_path)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Test Accuracy: ", (sess.run(accuracy, feed_dict={x: test_x, y_: test_y})))
# Print the final mean square error
pred_y = sess.run(y, feed_dict={x: test_x})
mse = tf.reduce_mean(tf.square(pred_y - test_y))
print("MSE: $.4f" % sess.run(mse))
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)

How to get higher accuracy with tensorflow CNN.

I have created a CNN for classifing images of weeds. The images are 128*128 and I am getting horrible accuracy. Between 18-32%, where I have four classes. Three of them are different types of weed and the last is no weed. Total there is around 1000 images. What am I doing so wrong that my accuracy is this horrible (sometimes worse than guessing). Are my images scaled down to much? (Originally 425*425), are my layers wrong? Are there too little images to train on?
And is there any way I can with my current setup improve the results? I am currently new to tensorflow so this is not necessarily optimal. The code are partly from tutorials modified to suit my needs.
My code looks like this:
Helper functions:
def parse_function(filename, label):
image_string = tf.read_file(filename)
image = tf.image.decode_png(image_string, channels=3)
#image_resized = tf.image.resize_image_with_crop_or_pad(image, 128, 128)
new_image = tf.image.resize_image_with_crop_or_pad(image, 128,128)
return new_image, label
# INIT weights
def init_weights(shape):
init_random_dist = tf.truncated_normal(shape, stddev=0.1)
return (tf.Variable(init_random_dist))
# INIT Bias
def init_bias(shape):
init_bias_vals = tf.constant(0.1, shape=shape)
return tf.Variable(init_bias_vals)
# CONV2D
def conv2d(x, W):
# x --> input tensor [batch, H, W, Channels]
# W --> [filter H, filter W, Channels IN, Channels OUT]
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# Pooling
def max_pooling_2by2(x):
# x --> [batch, h, w, c]
return tf.nn.max_pool(
x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#Convolutional layer
def convolutional_layer(input_x, shape):
W = init_weights(shape)
b = init_bias([shape[3]])
return tf.nn.relu(conv2d(input_x, W) + b)
# Normal (FULLY CONNTCTED)
def normal_full_layer(input_layer, size):
input_size = int(input_layer.get_shape()[1])
W = init_weights([input_size, size])
b = init_bias([size])
return tf.matmul(input_layer, W) + b
My main class
def main():
one_hot_encoded_labels_dummy = []
one_hot_encoded_test_labels_dummy = []
filenames_dummy, labels_dummy, test_filenames_dummy, test_labels_dummy = image_util.run_it()
for x in labels_dummy:
one_hot_encoded_labels_dummy.append(wd.one_hot_encoder(x))
for y in test_labels_dummy:
one_hot_encoded_test_labels_dummy.append(wd.one_hot_encoder(y))
filenames = tf.constant(filenames_dummy)
labels = tf.constant(one_hot_encoded_labels_dummy)
test_filenames = tf.constant(test_filenames_dummy)
test_lables = tf.constant(one_hot_encoded_test_labels_dummy)
dataset = tf.contrib.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(wd.parse_function)
test_dataset = tf.contrib.data.Dataset.from_tensor_slices((test_filenames,
test_lables))
test_dataset = test_dataset.map(wd.parse_function)
dataset = dataset.batch(5)
dataset = dataset.shuffle(len(filenames_dummy))
dataset = dataset.repeat()
test_dataset = test_dataset.batch(60)
test_dataset = test_dataset.repeat()
iterator = dataset.make_one_shot_iterator()
test_iterator = test_dataset.make_one_shot_iterator()
# PLACEHOLDERS
x = tf.placeholder(tf.float32, shape=[None, 128, 128, 3])
y_true = tf.placeholder(tf.float32, shape=[None, 4])
convo_1 = wd.convolutional_layer(x, shape=[5,5,3,128])
convo_1_pooling = wd.max_pooling_2by2(convo_1)
convo_2 = wd.convolutional_layer(convo_1_pooling, shape=[5,5,128, 128*2])
convo_2_pooling = wd.max_pooling_2by2(convo_2)
convo_2_flat = tf.reshape(convo_2_pooling, [-1,32*32*256])
full_layer_one = tf.nn.relu(wd.normal_full_layer(convo_2_flat, 1024))
# Dropout
hold_prob = tf.placeholder(tf.float32)
full_one_dropout = tf.nn.dropout(full_layer_one, keep_prob=hold_prob)
y_pred = wd.normal_full_layer(full_one_dropout, 4)
# LOSS function
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred))
# Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cross_entropy)
init = tf.global_variables_initializer()
steps = 1000
with tf.Session() as sess:
sess.run(init)
for i in range(steps):
value_x, value_y = iterator.get_next()
batch_x, batch_y = sess.run([value_x, value_y])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred))
_, loss_val = sess.run([
optimizer, cross_entropy], feed_dict={
x: batch_x,
y_true: batch_y,
hold_prob: 0.5
})
print(loss_val, " is the loss")
if i % 10 == 0:
print("ON STEP {}".format(i))
print("Accuracy: ")
matches = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_true, 1))
accuracy = tf.reduce_mean(tf.cast(matches, tf.float32))
test_1, test_2 = test_iterator.get_next()
test_batch_x, test_batch_y = sess.run([test_1, test_2])
print(sess.run(
accuracy,
feed_dict={
x: test_batch_x,
y_true: test_batch_y,
hold_prob: 1.0
}))
main()

Tensorflow The same training accuracy continues

I'm stuck on CNN model on Tensorflow.
My code as below.
Libraries
# -*- coding: utf-8 -*-
import tensorflow as tf
import time
import json
import numpy as np
import matplotlib.pyplot as plt
import random
import multiprocessing as mp
import glob
import os
Model
def inference(images_placeholder, keep_prob):
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# convolution
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# X2 pooling
def max_pool_2x128(x):
return tf.nn.max_pool(x, ksize=[1, 2, 1, 1],strides=[1, 2, 1, 1], padding='VALID')
# X4 pooling
def max_pool_4x128(x):
return tf.nn.max_pool(x, ksize=[1, 4, 1, 1],strides=[1, 4, 1, 1], padding='VALID')
x_image = tf.reshape(images_placeholder, [-1,599,1,128])
#1st conv
with tf.name_scope('conv1') as scope:
W_conv1 = weight_variable([4, 1, 128, 256])
b_conv1 = bias_variable([256])
print "image変形後のshape"
print tf.Tensor.get_shape(x_image)
print "conv1の形"
print tf.Tensor.get_shape(conv2d(x_image, W_conv1))
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
#1st pooling X4
with tf.name_scope('pool1') as scope:
h_pool1 = max_pool_4x128(h_conv1)
print "h_pool1の形"
print tf.Tensor.get_shape(h_pool1)
#2nd conv
with tf.name_scope('conv2') as scope:
W_conv2 = weight_variable([4, 1, 256, 256])
b_conv2 = bias_variable([256])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#2nd pooling X2
with tf.name_scope('pool2') as scope:
h_pool2 = max_pool_2x128(h_conv2)
print "h_pool2の形"
print tf.Tensor.get_shape(h_pool2)
#3rd conv
with tf.name_scope('conv3') as scope:
W_conv3 = weight_variable([4, 1, 256, 512])
b_conv3 = bias_variable([512])
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
#3rd pooling X2
with tf.name_scope('pool3') as scope:
h_pool3 = max_pool_2x128(h_conv3)
print "h_pool3の形"
print tf.Tensor.get_shape(h_pool3)
#flatten + 1st fully connected
with tf.name_scope('fc1') as scope:
W_fc1 = weight_variable([37 * 1 * 512, 2048])
b_fc1 = bias_variable([2048])
h_pool3_flat = tf.reshape(h_pool3, [-1, 37 * 1 * 512])
h_fc1 = tf.nn.relu(tf.matmul(h_pool3_flat, W_fc1) + b_fc1)
#ドロップ層の設定
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#2nd fully connected
with tf.name_scope('fc2') as scope:
W_fc2 = weight_variable([2048, NUM_CLASSES])
b_fc2 = bias_variable([NUM_CLASSES])
#softmax output
with tf.name_scope('softmax') as scope:
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
return y_conv
Loss
def loss(logits, labels):
# cross entropy
cross_entropy = -tf.reduce_sum(labels*tf.log(tf.clip_by_value(logits,1e-10,1.0)))
# TensorBoard
tf.scalar_summary("cross_entropy", cross_entropy)
return cross_entropy
Training
def training(loss, learning_rate):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
return train_step
Accuracy
def accuracy(logits, labels):
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
tf.scalar_summary("accuracy", accuracy)
return accuracy
Main
if __name__ == '__main__':
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('train_dir', '/tmp/data', 'Directory to put the training data.')
flags.DEFINE_integer('max_steps', , 'Number of steps to run trainer.')
flags.DEFINE_integer('batch_size', 10, 'Batch size'
'Must divide evenly into the dataset sizes.')
flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.')
#num output
NUM_CLASSES = 5
#num frame
IMAGE_SIZE = 599
#tensor shape
IMAGE_PIXELS = IMAGE_SIZE*1*128
##################
#modify the data #
##################
#number of training data
train_num = 70
#loading data limit
data_limit = 100
flatten_data = []
flatten_label = []
# データの整形
filenames = glob.glob(os.path.join('/Users/kosukefukui/Qosmo/WASABEAT/song_features/*.json'))
filenames = filenames[0:data_limit]
print "----loading data---"
for file_path in filenames:
data = json.load(open(file_path))
data = np.array(data)
for_flat = np.array(data)
assert for_flat.flatten().shape == (IMAGE_PIXELS,)
flatten_data.append(for_flat.flatten().tolist())
# ラベルの整形
f2 = open("id_information.txt")
print "---loading labels----"
for line in f2:
line = line.rstrip()
l = line.split(",")
tmp = np.zeros(NUM_CLASSES)
tmp[int(l[4])] = 1
flatten_label.append(tmp)
flatten_label = flatten_label[0:data_limit]
print "データ数 %s" % len(flatten_data)
print "ラベルデータ数 %s" % len(flatten_label)
#train data
train_image = np.asarray(flatten_data[0:train_num], dtype=np.float32)
train_label = np.asarray(flatten_label[0:train_num],dtype=np.float32)
print "訓練データ数 %s" % len(train_image)
#test data
test_image = np.asarray(flatten_data[train_num:data_limit], dtype=np.float32)
test_label = np.asarray(flatten_label[train_num:data_limit],dtype=np.float32)
print "テストデータ数 %s" % len(test_image)
print "599×128 = "
print len(train_image[0])
f2.close()
if 1==1:
# Image Tensor
images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS))
# Label Tensor
labels_placeholder = tf.placeholder("float", shape=(None, NUM_CLASSES))
# dropout Tensor
keep_prob = tf.placeholder("float")
# construct model
logits = inference(images_placeholder, keep_prob)
# calculate loss
loss_value = loss(logits, labels_placeholder)
# training
train_op = training(loss_value, FLAGS.learning_rate)
# accuracy
acc = accuracy(logits, labels_placeholder)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.initialize_all_variables())
# for TensorBoard
summary_op = tf.merge_all_summaries()
summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph_def)
# Training
for step in range(FLAGS.max_steps):
for i in range(len(train_image)/FLAGS.batch_size):
# train for batch_size
batch = FLAGS.batch_size*i
sess.run(train_op, feed_dict={
images_placeholder: train_image[batch:batch+FLAGS.batch_size],
labels_placeholder: train_label[batch:batch+FLAGS.batch_size],
keep_prob: 0.5})
# calculate accuracy at each step
train_accuracy = sess.run(acc, feed_dict={
images_placeholder: train_image,
labels_placeholder: train_label,
keep_prob: 1.0})
print "step %d, training accuracy %g"%(step, train_accuracy)
# add value for Tensorboard at each step
summary_str = sess.run(summary_op, feed_dict={
images_placeholder: train_image,
labels_placeholder: train_label,
keep_prob:1.0})
summary_writer.add_summary(summary_str, step)
# show accuracy for test data
print "test accuracy %g"%sess.run(acc, feed_dict={
images_placeholder: test_image,
labels_placeholder: test_label,
keep_prob: 1.0})
# save the last model
save_path = saver.save(sess, "model.ckpt")
However, I got the same training accuracy. How to fix this problem?
step 0, training accuracy 0.142857
step 1, training accuracy 0.142857
step 2, training accuracy 0.142857
step 3, training accuracy 0.142857
step 4, training accuracy 0.142857
step 5, training accuracy 0.142857
step 6, training accuracy 0.142857
step 7, training accuracy 0.142857
step 8, training accuracy 0.142857
step 9, training accuracy 0.142857
test accuracy 0.133333
I referred the following model and my tensorboard is as below.
Could it be that you are not minimizing the right tensor?
You are minimizing cross_entropy, but should be cross_entropy_mean (accuracy in your code).
Basically with the following logic:
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
logits, ground_truth_placeholder)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
train_step = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(
cross_entropy_mean)

Categories

Resources