Generate Histogram of TensorFlow Predictions - python

I wish to log the predictions every N epochs\iterations and generate a histogram for each class. My question is how do I log the predictions into an array, including the label in order to generate the histograms?
How do I make sure it happens of every N epochs\iterations?
I have edited the post to add the code so you will be able to see what I am talking about. The last 2 code chunks should somehow be used for what I requested.
Thanks in advance!
import tensorflow as tf
import numpy as np
import math
from random import random
from array import array
from ROOT import TFile, TTree, TH1D, TH2D, TBranch, vector
NUM_EXAMPLES = 1.6e4
TRAIN_SPLIT = .8
MINI_BATCH_SIZE = 1000
#NUM_EPOCHS = 3500
F_PATH = "/home/cauchy/Documents/Machine_Learning"
F_TEST = []
F_TEST += ["d3pd-ckt12rmd2030pp-G_ww_qqqq_%d%d00.root" % (1,2)]
F_TEST += ["d3pd-ckt12rmd2030pp-pyj%d.root" % (4)]
F_TEST += ["d3pd-ckt12rmd2030pp-pyj%d.root" % (5)]
F_TEST += ["d3pd-ckt12rmd2030pp-pyj%d.root" % (6)]
F_TEST += ["d3pd-ckt12rmd2030pp-pyj%d.root" % (7)]
#CALIBRATION_TARGET = "pt" # you can use pt,m,eta
INPUTS = ['m', 'grootau21', 'ysfilt', 'ungrngtrk'] # Removed pt
PT_MIN = 450 #for file 1200
PT_MAX = 730 #for file 1200
F_OUTPUT = "G1200_signaltobackground_from_pt_mass_ysfilt_grootau21_ungrngtrk.root"
N_INPUTS = len(INPUTS)
#============== inputs / target ====================================
jet_features = []
target = []
#=================== branches for training and validation ===========
pt = []
m = []
grootau21 =[]
ysfilt = []
ungrngtrk = []
#weight = []
#================ Prepare the dataset ========================
# I need to change the data to include the multiplication by the weight (constant)
for fi in F_TEST: #Should it include background AND signal files? Yes.
current_e = 0
f = TFile(F_PATH + '/' + fi, 'read')
t = TTree()
f.GetObject("dibjet", t) # Changed from "Tree" to "dibjet"
for entry in t:
current_e += 1
if current_e > NUM_EXAMPLES: # NUM_EXAMPLES should change for the different files
break
if (t.jet1_pt > PT_MAX or t.jet1_pt < PT_MIN):
continue
tmp = []
if 'pt' in INPUTS: tmp += [t.jet1_pt / MAX_PT] #for file 1200
if 'm' in INPUTS: tmp += [t.jet1_m / 500] #for file 1200
if 'grootau21' in INPUTS: tmp += [t.jet1_grootau21]
if 'ysfilt' in INPUTS: tmp += [t.jet1_ysfilt]
if 'ungrngtrk' in INPUTS: tmp += [t.jet1_ungrngtrk / 110] #for file 1200
# We need only look at the class {background, signal} of the entry in terms of target
jet_features += [tmp]
# One-hot encoder
if fi == 'd3pd-ckt12rmd2030pp-G_ww_qqqq_1200.root': target += [[1, 0]]
else: target += [[0, 1]]
pt += [t.jet1_pt]
m += [t.jet1_m]
grootau21 += [t.jet1_grootau21]
ysfilt += [t.jet1_ysfilt]
ungrngtrk += [t.jet1_ungrngtrk]
#weight += [t.weight]
######################################
###### prepare inputs for NN #########
trainset = list(zip(jet_features, target)) # remove ref_target?
np.random.shuffle(trainset)
jet_features, target = zip(*trainset) # What does this line do? Rearranges jetmoments\target...
total_sample = len(target)
train_size = int(total_sample*TRAIN_SPLIT)
all_x = np.float32((jet_features)) # Converts the list type? Why double paranthesis?
all_y = np.float32(target)
train_x = all_x[:train_size] # Create training\testing partitions?
test_x = all_x[train_size:]
train_y = all_y[:train_size]
test_y = all_y[train_size:]
# Define important parameters and variable to work with the tensors
learning_rate = 0.3
training_epochs = 500
cost_history = np.empty(shape=[1], dtype=float)
n_dim = N_INPUTS
#print("n_dim", n_dim)
n_class = 2
model_path = "/home/cauchy/Documents/TensorFlow/Cuts_W" # Forgot what this path is used for
# Define the number of hidden layers and number of neurons for each layer
n_hidden_1 = 10
n_hidden_2 = 10
n_hidden_3 = 10
n_hidden_4 = 10
x = tf.placeholder(tf.float32, [None, n_dim])
W = tf.Variable(tf.zeros([n_dim, n_class]))
b = tf.Variable(tf.zeros([n_class]))
y_ = tf.placeholder(tf.float32, [None, n_class]) # Should we use a vector instead with 1 for signal and 0 for background?
# Define the model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with sigmoid activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.sigmoid(layer_1)
# Hidden layer with sigmoid activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.sigmoid(layer_2)
# Hidden layer with sigmoid activation
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
layer_3 = tf.nn.sigmoid(layer_3)
# Hidden layer with ReLU activation
layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
layer_4 = tf.nn.relu(layer_4)
# Output layer with linear activation
out_layer = tf.matmul(layer_4, weights['out']) + biases['out']
return out_layer
# Define the weights and the biases for each layer
weights = {
'h1': tf.Variable(tf.truncated_normal([n_dim, n_hidden_1])),
'h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3])),
'h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4])),
'out': tf.Variable(tf.truncated_normal([n_hidden_4, n_class]))
}
biases = {
'b1': tf.Variable(tf.truncated_normal([n_hidden_1])),
'b2': tf.Variable(tf.truncated_normal([n_hidden_2])),
'b3': tf.Variable(tf.truncated_normal([n_hidden_3])),
'b4': tf.Variable(tf.truncated_normal([n_hidden_4])),
'out': tf.Variable(tf.truncated_normal([n_class]))
}
# Initialize all the variables
init = tf.global_variables_initializer()
saver = tf.train.Saver()
# Call your model defined
y = multilayer_perceptron(x, weights, biases)
# Define the cost function and optimizer
cost_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
training_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)
sess = tf.Session
sess.run(init)
# Calculate the cost and the accuracy for each epoch
mse_history = [] # mean squared error
accuracy_history = []
for epoch in range(training_epochs):
sess.run(training_step, feed_dict={x: train_x, y_: train_y})
cost = sess.run(cost_function, feed_dict={x: train_x, y_: train_y})
cost_history = np.append(cost_history, cost)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# print("Accuracy: ", (sess.run(accuracy, feed_dict={x:test_x, y_:test_y})))
pred_y = sess.run(y, feed_dict={x: test_x})
mse = tf.reduce_mean(tf.square(pred_y - test_y))
mse_ = sess.run(mse)
mse_history.append(mse_)
accuracy = (sess.run(accuracy, feed_dict={x: train_x, y_: train_y}))
accuracy_history.append(accuracy)
print('epoch: ', epoch, ' - ','cost: ', cost, " - MSE: ", mse_, "- Train Accuracy: ", accuracy)
save_path = saver.save(sess, model_path)
print("Model saved in file: %s" % save_path)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Test Accuracy: ", (sess.run(accuracy, feed_dict={x: test_x, y_: test_y})))
# Print the final mean square error
pred_y = sess.run(y, feed_dict={x: test_x})
mse = tf.reduce_mean(tf.square(pred_y - test_y))
print("MSE: $.4f" % sess.run(mse))
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)

Related

softmax_cross_entropy_with_logits nan

I have extracted CNN features from a pretrain vgg19 with size 4096. Then I am using a shallower architecture to train a classifier with softmax and center losses. Unfortunately, the softmax loss function returns nan. There is detailed discussion available here, however I am not able to resolve the problem with clip because labels and logits are in two different data format (int64, float32). Furthermore, I also changed the learning rate but still got the same error.
Can some please let me know, how to resolve this situation.
from __future__ import division
from __future__ import print_function
import csv
import numpy as np
import tensorflow as tf
from retrieval_model import setup_train_model
FLAGS = None
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def get_name(read_file):
feat_lst = []
identifier_lst = []
with open(read_file, 'r') as csvfile:
read_file = csv.reader(csvfile, delimiter=',')
for row in read_file:
feat = row[:-1]
s_feat = [float(i) for i in feat]
identifier = row[-1]
feat_lst.append(s_feat)
identifier_lst.append(identifier)
return feat_lst, identifier_lst
def get_batch(batch_index, batch_size, labels, f_lst):
start_ind = batch_index * batch_size
end_ind = start_ind + batch_size
return f_lst[start_ind:end_ind], labels[start_ind:end_ind]
def creat_dict(orig_labels):
dict = {}
count = 0
for x in orig_labels:
n_label = dict.get(x, None)
if n_label is None:
dict[x] = count
count += 1
return dict
def main(_):
save_dir = 'model/one-branch-ckpt'
train_file = 'gtrain.csv'
img_feat, img_labels = get_name(train_file)
map_dict = creat_dict(img_labels)
img_labels = [map_dict.get(x) for x in img_labels]
im_feat_dim = 4096
batch_size = 50
max_num_epoch = 10
steps_per_epoch = len(img_feat) // batch_size
num_steps = steps_per_epoch * max_num_epoch
# Setup placeholders for input variables.
im_feat_plh = tf.placeholder(tf.float32, shape=[batch_size, im_feat_dim])
label_plh = tf.placeholder(tf.int64, shape=(batch_size), name='labels')
train_phase_plh = tf.placeholder(tf.bool)
# Setup training operation.
t_l = setup_train_model(im_feat_plh, train_phase_plh, label_plh, classes)
# Setup optimizer.
global_step = tf.Variable(0, trainable=False)
init_learning_rate = 0.0001
learning_rate = tf.train.exponential_decay(init_learning_rate, global_step,
steps_per_epoch, 0.794, staircase=True)
optim = tf.train.AdamOptimizer(init_learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_step = optim.minimize(t_l, global_step=global_step)
# Setup model saver.
saver = tf.train.Saver(save_relative_paths=True,max_to_keep=1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(num_steps):
im_feats, labels = get_batch(
i % steps_per_epoch, batch_size, img_labels, img_feat)
feed_dict = {
im_feat_plh: im_feats,
label_plh: labels,
train_phase_plh: True,
}
[_, loss_val] = sess.run([train_step, t_l], feed_dict=feed_dict)
if i % 100 == 0:
print('Epoch: %d Step: %d Loss: %f' % (i // steps_per_epoch, i, loss_val))
if i % steps_per_epoch == 0 and i > 0:
print('Saving checkpoint at step %d' % i)
saver.save(sess, save_dir, global_step=global_step)
if __name__ == '__main__':
np.random.seed(0)
tf.set_random_seed(0)
tf.app.run(main=main)
**************************retrieval_model********************************
def setup_train_model(im_feats, train_phase, im_labels, nrof_classes):
alfa = 0.9
# nrof_classes = 28783
i_embed = embedding_model(im_feats, train_phase, im_labels)
c_l = embedding_loss(i_embed, im_labels, alfa, nrof_classes)
loss = softmax_loss(i_embed, im_labels)
total_loss = loss + c_l
return total_loss
def add_fc(inputs, outdim, train_phase, scope_in):
fc = fully_connected(inputs, outdim, activation_fn=None, scope=scope_in + '/fc')
fc_bnorm = tf.layers.batch_normalization(fc, momentum=0.1, epsilon=1e-5,
training=train_phase, name=scope_in + '/bnorm')
fc_relu = tf.nn.relu(fc_bnorm, name=scope_in + '/relu')
fc_out = tf.layers.dropout(fc_relu, seed=0, training=train_phase, name=scope_in + '/dropout')
return fc_out
def embedding_loss(features, label, alfa, nrof_classes):
nrof_features = features.get_shape()[1]
centers = tf.get_variable('centers', [nrof_classes, nrof_features], dtype=tf.float32,
initializer=tf.constant_initializer(0), trainable=False)
label = tf.reshape(label, [-1])
centers_batch = tf.gather(centers, label)
diff = (1 - alfa) * (centers_batch - features)
#centers = tf.scatter_sub(centers, label, diff)
center_loss = tf.reduce_mean(tf.square(features - centers_batch))
#softmax_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=features))
#total_loss = softmax_loss + center_loss
return center_loss
def embedding_model(im_feats, train_phase, im_labels,
fc_dim=2048, embed_dim=512):
# Image branch.
im_fc1 = add_fc(im_feats, fc_dim, train_phase, 'im_embed_1')
im_fc2 = fully_connected(im_fc1, embed_dim, activation_fn=None,
scope='im_embed_2')
return tf.nn.l2_normalize(im_fc2, 1, epsilon=1e-10)
def softmax_loss(feat, im_labels):
label = tf.reshape(im_labels, [-1])
softmax = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=feat))
return softmax

why get train accuracy not test accuracy in tensorboard

I want to see test accuracy in tensorboard, but it seems I get accuracy with training data. I print test accuracy on console, and it is showing about 70%, but in tensorboard, the curve showed accuracy is growing and finally almost 100%.
This is my code:
def train_crack_captcha_cnn(is_train, checkpoint_dir):
global max_acc
X = tf.placeholder(tf.float32, [None, dr.ROWS, dr.COLS, dr.CHANNELS])
Y = tf.placeholder(tf.float32, [None, 1, 1, 2])
output, end_points = resnet_v2_50(X, num_classes = 2)
global_steps = tf.Variable(1, trainable=False)
learning_rate = tf.train.exponential_decay(0.001, global_steps, 100, 0.9)
with tf.device('/device:GPU:0'):
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=Y, logits=output))
# optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss, global_step=global_steps)
predict = tf.argmax(output, axis = 3)
l = tf.argmax(Y, axis = 3)
correct_pred = tf.equal(predict, l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
## tensorboard
tf.summary.scalar('test_accuracy', accuracy)
tf.summary.scalar("loss", loss)
tf.summary.scalar("learning_rate", learning_rate)
saver = tf.train.Saver()
with tf.Session(config=tf.ConfigProto(allow_soft_placement = True)) as sess:
if is_train:
writer = tf.summary.FileWriter("/tmp/cnn_log/log", graph = sess.graph)
sess.run(tf.global_variables_initializer())
step_value = sess.run(global_steps)
while step_value < 100000:
step_value = sess.run(global_steps)
merged = tf.summary.merge_all()
batch_x, batch_y = get_next_batch()
result, _, _loss= sess.run([merged, optimizer, loss], feed_dict={X: batch_x, Y: batch_y})
writer.add_summary(result, step_value)
print('step : {} loss : {}'.format(step_value, _loss))
# 每100 step计算一次准确率
if step_value % 20 == 0:
acc = sess.run(accuracy, feed_dict={X: validation, Y: validation_labels})
print('accuracy : {}'.format(acc))
# 如果准确率大于max_acc,保存模型,完成训练
if acc > max_acc:
max_acc = float(acc) #转换类型防止变为同一个引用
saver.save(sess, checkpoint_dir + "/" + str(step_value) + '-' + str(acc) + "/model.ckpt", global_step=global_steps)
##### predict #####
# predict_y = sess.run(output, feed_dict={X: test})
# data = pd.DataFrame([i for i in range(1, len(predict_y) + 1)], columns = ['id'])
# predict_y = np.argmax(predict_y, axis = 3)
# predict_y = np.reshape(predict_y,(-1))
# print(predict_y)
# predict_y = pd.Series(predict_y, name='label')
# data['label'] = predict_y
# data.to_csv("gender_submission.csv" + str(step), index=False)
##### end #####
writer.close()
else:
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
acc = sess.run(accuracy, feed_dict={X: validation, Y: validation_labels})
print('accuracy : {}'.format(acc))
I add accuracy into tensorboard like this:
tf.summary.scalar('test_accuracy', accuracy)
and every 20 step, I get one accuracy about test data, and print the result to console, which is not the same with data shown on tensorboard.
Why?

With Tensorflow, 2 class classification using Neural Network

I'm trying 2 class classification of images by neural network using Tensorflow.
I want to extract 1000 pixels randomly.
However, I am in trouble with error:
"logits = inference(images_placeholder, keep_prob)
File "train5.py", line 83, in inference
list = random.sample(x_image(IMAGE_PIXELS),SAMPLE_PIXELS)
TypeError: 'Tensor' object is not callable"
Please tell me what should I do.
I will attach a code below.
import sys
sys.path.append('/usr/local/opt/opencv3/lib/python3.5.4/site-packages')
import cv2
import numpy as np
import tensorflow as tf
import tensorflow.python.platform
import tensorboard as tb
import os
import math
import time
import random
start_time = time.time()
# TensorBoard output information directory
log_dir = '/tmp/data1' #tensorboard --logdir=/tmp/data1
#directory delete and reconstruction
if tf.gfile.Exists(log_dir):
tf.gfile.DeleteRecursively(log_dir)
tf.gfile.MakeDirs(log_dir)
# Reserve memory
config = tf.ConfigProto(
gpu_options=tf.GPUOptions(allow_growth=True))
sess = sess = tf.Session(config=config)
NUM_CLASSES = 2
IMAGE_SIZE_x = 1024
IMAGE_SIZE_y = 768
IMAGE_CHANNELS = 1
IMAGE_PIXELS = IMAGE_SIZE_x*IMAGE_SIZE_y*IMAGE_CHANNELS
SAMPLE_PIXELS = 1000
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('train', 'train.txt', 'File name of train data')
flags.DEFINE_string('test', 'test.txt', 'File name of train data')
flags.DEFINE_string('image_dir', 'trdata', 'Directory of images')
flags.DEFINE_string('train_dir', '/tmp/data', 'Directory to put the training data.')
flags.DEFINE_integer('max_steps', 20000, 'Number of steps to run trainer.')
flags.DEFINE_integer('batch_size', 10, 'Batch size'
'Must divide evenly into the dataset sizes.')
flags.DEFINE_float('learning_rate', 1e-5, 'Initial learning rate.')
def inference(images_placeholder, keep_prob):
""" Function to create predictive model
argument:
images_placeholder: image placeholder
keep_prob: dropout rate placeholder
Return:
y_conv:
"""
# Initialie with normal distribution with weight of 0.1
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# Initialized with normal distribution with bias of 0.1
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# Reshape input
x_image = images_placeholder
# ramdom sumpling pixels
list = random.sample(x_image(IMAGE_PIXELS),SAMPLE_PIXELS)
x_list = [samples[i] for i in list]
# Input
with tf.name_scope('fc1') as scope:
W_fc1 = weight_variable([x_list,10])
b_fc1 = bias_variable([10])
h_fc1 = tf.nn.relu(tf.matmul(x_image,W_fc1) + b_fc1)
# Affine1
with tf.name_scope('fc2') as scope:
W_fc2 = weight_variable([10,10])
b_fc2 = bias_variable([10])
h_fc2 = tf.nn.relu(tf.matmul(h_fc1,W_fc2) + b_fc2)
# Affine2
with tf.name_scope('fc3') as scope:
W_fc3 = weight_variable([10,10])
b_fc3 = bias_variable([10])
h_fc3 = tf.nn.relu(tf.matmul(h_fc2,W_fc3) + b_fc3)
# Affine3
with tf.name_scope('fc4') as scope:
W_fc4 = weight_variable([10,10])
b_fc4 = bias_variable([10])
h_fc4 = tf.nn.relu(tf.matmul(h_fc3,W_fc4) + b_fc4)
# Affine4
with tf.name_scope('fc5') as scope:
W_fc5 = weight_variable([10,2])
b_fc5 = bias_variable([2])
# softmax regression
with tf.name_scope('softmax') as scope:
y_out=tf.nn.softmax(tf.matmul(h_fc4, W_fc5) + b_fc5)
# return
return y_out
def loss(logits, labels):
""" loss function
引数:
logits: logit tensor, float - [batch_size, NUM_CLASSES]
labels: labrl tensor, int32 - [batch_size, NUM_CLASSES]
返り値:
cross_entropy:tensor, float
"""
# cross entropy
cross_entropy = -tf.reduce_sum(labels*tf.log(tf.clip_by_value(logits,1e-10,1.0)))
# TensorBoard
tf.summary.scalar("cross_entropy", cross_entropy)
return cross_entropy
def training(loss, learning_rate):
#Adam
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
return train_step
def accuracy(logits, labels):
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
tf.summary.scalar("accuracy", accuracy)
return accuracy
if __name__ == '__main__':
f = open(FLAGS.train, 'r')
# array data
train_image = []
train_label = []
for line in f:
# Separate space and remove newlines
line = line.rstrip()
l = line.split()
# Load data and resize
img = cv2.imread(FLAGS.image_dir + '/' + l[0])
img = cv2.resize(img, (IMAGE_SIZE_x, IMAGE_SIZE_y))
#transrate grayscale
img_gry = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# transrate one row and 0-1 float
train_image.append(img_gry.flatten().astype(np.float32)/255.0)
# Prepare with label 1-of-k method
tmp = np.zeros(NUM_CLASSES)
tmp[int(l[1])] = 1
train_label.append(tmp)
# transrate numpy
train_image = np.asarray(train_image)
train_label = np.asarray(train_label)
f.close()
f = open(FLAGS.test, 'r')
test_image = []
test_label = []
for line in f:
line = line.rstrip()
l = line.split()
img = cv2.imread(FLAGS.image_dir + '/' + l[0])
img = cv2.resize(img, (IMAGE_SIZE_x, IMAGE_SIZE_y))
#transrate grayscale
img_gry = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# transrate one row and 0-1 float
test_image.append(img_gry.flatten().astype(np.float32)/255.0)
tmp = np.zeros(NUM_CLASSES)
tmp[int(l[1])] = 1
test_label.append(tmp)
test_image = np.asarray(test_image)
test_label = np.asarray(test_label)
f.close()
with tf.Graph().as_default():
# Put the image Tensor
images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS))
# Put the label Tensor
labels_placeholder = tf.placeholder("float", shape=(None, NUM_CLASSES))
# Put dropout rate Tensor
keep_prob = tf.placeholder("float")
# Load inference() and make model
logits = inference(images_placeholder, keep_prob)
# Load loss() and calculate loss
loss_value = loss(logits, labels_placeholder)
# Load training() and train
train_op = training(loss_value, FLAGS.learning_rate)
# calculate accuracy
acc = accuracy(logits, labels_placeholder)
# save
saver = tf.train.Saver()
# Make Session
sess = tf.Session()
# Initialize variable
sess.run(tf.global_variables_initializer())
# TensorBoard
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)
# Start training
for step in range(FLAGS.max_steps):
for i in range(int(len(train_image)/FLAGS.batch_size)):
batch = FLAGS.batch_size*i
sess.run(train_op, feed_dict={
images_placeholder: train_image[batch:batch+FLAGS.batch_size],
labels_placeholder: train_label[batch:batch+FLAGS.batch_size],
keep_prob: 0.5})
# Accuracy calculation for every steps
train_accuracy = sess.run(acc, feed_dict={
images_placeholder: train_image,
labels_placeholder: train_label,
keep_prob: 1.0})
print("step %d, training accuracy %g" %(step, train_accuracy))
# Added value to be displayed in Tensorflow every 1step
summary_str = sess.run(summary_op, feed_dict={
images_placeholder: train_image,
labels_placeholder: train_label,
keep_prob: 1.0})
summary_writer.add_summary(summary_str, step)
# Display accuracy on test data after training
print(" test accuracy %g"%sess.run(acc, feed_dict={
images_placeholder: test_image,
labels_placeholder: test_label,
keep_prob: 1.0}))
duration = time.time() - start_time
print('%.3f sec' %duration)
# Save model
save_path = saver.save(sess, os.getcwd() + "\\model.ckpt")
The error is this:
images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS))
...
x_image = images_placeholder
list = random.sample(x_image(IMAGE_PIXELS),SAMPLE_PIXELS)
x_image, just like images_placeholder is a variable node, so x_image(...) doesn't make sense and obviously leads to an error "TypeError: 'Tensor' object is not callable".
I assume you're trying to sample SAMPLE_PIXELS from each image in a batch. Note that random.sample won't work here, because x_image is a symbolic variable, its value is only known during the session. You have to use tf.boolean_mask with a random mask in order to select random pixels from the image.

tensorflow multi-gpu mnist example, loss does not decrease

I'm trying to write my own mnist example which could use all the two gpu of one machine.
It is a simple multi-layer perceptron.
Here is my code. You can run it directly.
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import tensorflow as tf
learning_rate = 0.001
training_steps = 100000
batch_size = 100
display_step = 100
n_hidden_1 = 256
n_hidden_2 = 256
n_input = 784
n_classes = 10
def _variable_on_cpu(name, shape, initializer):
with tf.device('/cpu:0'):
dtype = tf.float32
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
return var
def build_model():
def multilayer_perceptron(x, weights, biases):
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
with tf.variable_scope('aaa'):
weights = {
'h1': _variable_on_cpu('h1',[n_input, n_hidden_1],tf.constant_initializer(0.0)),
'h2': _variable_on_cpu('h2',[n_hidden_1, n_hidden_2],tf.constant_initializer(0.0)),
'out': _variable_on_cpu('out_w',[n_hidden_2, n_classes],tf.constant_initializer(0.0))
}
biases = {
'b1': _variable_on_cpu('b1',[n_hidden_1],tf.constant_initializer(0.0)),
'b2': _variable_on_cpu('b2',[n_hidden_2],tf.constant_initializer(0.0)),
'out': _variable_on_cpu('out_b',[n_classes],tf.constant_initializer(0.0))
}
pred = multilayer_perceptron(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
return cost
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g,_ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
with tf.Graph().as_default(), tf.device('/cpu:0'):
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
tower_grads = []
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(2):
with tf.device('/gpu:%d' % i):
cost = build_model()
tf.get_variable_scope().reuse_variables()
grads = optimizer.compute_gradients(cost)
tower_grads.append(grads)
grads = average_gradients(tower_grads)
apply_gradient_op = optimizer.apply_gradients(grads)
train_op = apply_gradient_op
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for step in range(training_steps):
image_batch, label_batch = mnist.train.next_batch(batch_size)
_, cost_print = sess.run([train_op, cost],
{x:image_batch,
y:label_batch})
if step % display_step == 0:
print("step=%04d" % (step+1)+ " cost=" + str(cost_print))
print("Optimization Finished!")
sess.close()
The print info looks like:
step=0001 cost=2.30258
step=0101 cost=2.30246
step=0201 cost=2.30128
step=0301 cost=2.30376
step=0401 cost=2.29817
step=0501 cost=2.2992
step=0601 cost=2.3104
step=0701 cost=2.29995
step=0801 cost=2.29802
step=0901 cost=2.30524
step=1001 cost=2.29673
step=1101 cost=2.30016
step=1201 cost=2.31057
step=1301 cost=2.29815
step=1401 cost=2.29669
step=1501 cost=2.30345
step=1601 cost=2.29811
step=1701 cost=2.30867
step=1801 cost=2.30757
step=1901 cost=2.29716
step=2001 cost=2.30394
The loss doesn't decrease. I don't know how to fix it.
By the way, GPU-Util is about 26% and 26%. How to increase the GPU-Util?
The problem is that,
I should use tf.constant_initializer(0.1) for the weights instead of tf.constant_initializer(0)

Why does Tensorflow network predict different results each run?

I have a tensorflow network that is currently predicting a value 1-5 from an input of 14 numbers. Right now it is set up with the input test_X = np.array([1,1,1,1,1,1,1,1,1,1,1,1,1,1]) and dispite seeding it, the network returns different classifications every time. I am also unsure of how to predict the confidence of the prediction (I'm assuming this should be a float value in between 0 and 1). My code can be found below:
import tensorflow as tf
import pandas as pd
import numpy as np
df = pd.read_csv('/Users/zach/desktop/export.csv')
data_ = df.drop(['ID','Species'], axis=1)
n_classes = data_["Phylum"].nunique()
dim = 14
learning_rate = 0.0001
display_step = 10
n_hidden_1 = 2000
n_hidden_2 = 1500
n_hidden_3 = 1000
n_hidden_4 = 500
X = tf.placeholder(tf.float32, [None, dim])
train_set = data_.sample(frac=0.7)
test_set = data_.loc[~data_.index.isin(train_set.index)]
train_size = train_set.size
inputY_test = pd.get_dummies(test_set['Phylum'])
inputY_train = pd.get_dummies(train_set['Phylum'])
train_X = train_set.iloc[:train_size, 5:].as_matrix()
train_X = pd.DataFrame(data=train_X)
train_X = train_X.fillna(value=0).as_matrix()
train_Y = inputY_train.as_matrix()
train_Y = pd.DataFrame(data=train_Y)
train_Y = train_Y.fillna(value=0).as_matrix()
#test_X = test_set.iloc[:, 5:].as_matrix()
#test_X = pd.DataFrame(data=test_X)
#test_X = test_X.fillna(value=0).as_matrix()
test_X = np.array([1,1,1,1,1,1,1,1,1,1,1,1,1,1])
test_X = pd.DataFrame(data=test_X)
test_X = test_X.fillna(value=0).as_matrix()
test_X.resize(1,14)
test_Y = inputY_test.as_matrix()
test_Y = pd.DataFrame(data=test_Y)
test_Y = test_Y.fillna(value=0).as_matrix()
n_samples = train_Y.size
total_len = train_X.shape[0]
n_input = train_X.shape[1]
batch_size = 5
W = tf.Variable(tf.zeros([dim, n_classes]))
b = tf.Variable(tf.zeros([n_classes]))
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Hidden layer with RELU activation
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
layer_3 = tf.nn.relu(layer_3)
# Hidden layer with RELU activation
layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
layer_4 = tf.nn.relu(layer_4)
# Output layer with linear activation
out_layer = tf.matmul(layer_4, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0, 0.1)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0, 0.1)),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], 0, 0.1)),
'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4], 0, 0.1)),
'out': tf.Variable(tf.random_normal([n_hidden_4, n_classes], 0, 0.1))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1], 0, 0.1)),
'b2': tf.Variable(tf.random_normal([n_hidden_2], 0, 0.1)),
'b3': tf.Variable(tf.random_normal([n_hidden_3], 0, 0.1)),
'b4': tf.Variable(tf.random_normal([n_hidden_4], 0, 0.1)),
'out': tf.Variable(tf.random_normal([n_classes], 0, 0.1))
}
# Construct model
pred = multilayer_perceptron(X, weights, biases)
pred1 = tf.argmax(pred,1)
y = tf.placeholder(tf.float32, [None, n_classes])
#cost = -tf.reduce_sum(y*tf.log(tf.clip_by_value(pred,1e-10,1.0)))
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
hm_epochs = 20
tf.set_random_seed(1234)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for epoch in range(hm_epochs):
avg_cost = 0
total_batch = int(total_len/batch_size)
for i in range(total_batch-1):
batch_x = train_X[i*batch_size:(i+1)*batch_size]
batch_y = train_Y[i*batch_size:(i+1)*batch_size]
_, c, p = sess.run([optimizer, cost, pred], feed_dict={X: batch_x,
y: batch_y})
avg_cost += c / total_batch
label_value = batch_y
estimate = p
err = label_value-estimate
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost)
print "[*]----------------------------------------------------"
for i in xrange(3):
print "label value:", label_value[i], \
"estimated value:", estimate[i]
print "======================================================="
print "Optimization Finished!"
#Test model
#correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
#Calculate accuracy
#accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#print ("Accuracy:", accuracy.eval({X: test_X, y: test_Y}))
feed_dict = {X: test_X}
classification = pred.eval(feed_dict)
print "Network Prediction:", classification
print "Classification: ", np.argmax(classification) + 1
The network returns something like this (with the "Network Prediction" and "classification" values differing significantly with each run)
Epoch: 0001 cost= 18.784451194
[*]----------------------------------------------------
label value: [1 0 0 0 0] estimated value: [ 7.22390413 14.61596966 -0.08044712 41.44412231 -2.90992975]
label value: [1 0 0 0 0] estimated value: [-18.6686306 51.33540726 65.4961853 67.72460938 -3.51442194]
label value: [0 0 0 1 0] estimated value: [-32.95540619 22.96526909 -18.13385201 70.66561127 -28.7767086 ]
=======================================================
Epoch: 0011 cost= 0.798838628
[*]----------------------------------------------------
label value: [1 0 0 0 0] estimated value: [ 11.22842598 -3.67433786 -14.22806835 1.45541549 -7.12817001]
label value: [1 0 0 0 0] estimated value: [ 24.90147591 16.51822853 23.89280701 24.66276169 21.37914276]
label value: [0 0 0 1 0] estimated value: [ 0.13968639 7.37386036 -21.62825203 21.48152542 -23.18427277]
=======================================================
Optimization Finished!
Network Prediction: [[ 3.85959864 0.32653514 0.26948914 -0.70163095 -2.03481865]]
Classification: 1
How can I stabilized the predictions of the network so it predicts the same outcome each time when the input remains constant? Also, how would I display the confidence of this prediction?

Categories

Resources