Get subset of rows where any column contains a particular value - python

I have a very large data file (foo.sas7bdat) that I would like to filter rows from without loading the whole data file into memory. For example, I can print the first 20 rows of the dataset without loading the entire file into memory by doing the following:
import pandas
import itertools
with pandas.read_sas('foo.sas7bdat') as f:
for row in itertools.islice(f,20):
print(row)
However, I am unclear on how to only print (or preferably place in a new file) only rows that have any column that contain the number 123.1. How can I do this?

Pandas has the ability to pull dataframes one chunk at a time. Following the trail of read_sas() documentation to "chunksize" I came across this:
http://pandas.pydata.org/pandas-docs/stable/io.html#iterating-through-files-chunk-by-chunk
for chunk in pd.read_sas('foo.sas7bdat', interator=True, chunksize=100000):
print(chunk)
This would get chunks of 100,000 lines.
As for the other problem you would need a query. However I don't know the constraints of the problem. If you make a Dataframe with all the columns then you still might overflow your memory space so an efficient way would be to collect the indexes and put those in a set, then sort those and use .iloc to get those entries if you wanted to put those into a Dataframe.
You may need to use tools that take this into account. Dask is a good alternative for use on clusters.

Related

How to get rid of rows with pandas in a CSV where the value of cells in a specific column is under 100 Billion?

I'm trying to filter through a CSV and make a new CSV which is the exact same except for it gets rid of any rows that have a value of greater than 100 billion in the 'marketcap' column.
The code I've written so just spits out the same CSV as the original out over again and doesn't cut out any lines from the old CSV to the new CSV.
Code:
db = pd.read_csv('SF1_original.csv')
db = db[db['marketcap']<= 100000000000]
db.to_csv('new_SF1_original.csv')
Example of old CSV (It's long don't look through whole thing, just to give you an idea):
ticker,dimension,calendardate,datekey,reportperiod,lastupdated,accoci,assets,assetsavg,assetsc,assetsnc,assetturnover,bvps,capex,cashneq,cashnequsd,cor,consolinc,currentratio,de,debt,debtc,debtnc,debtusd,deferredrev,depamor,deposits,divyield,dps,ebit,ebitda,ebitdamargin,ebitdausd,ebitusd,ebt,eps,epsdil,epsusd,equity,equityavg,equityusd,ev,evebit,evebitda,fcf,fcfps,fxusd,gp,grossmargin,intangibles,intexp,invcap,invcapavg,inventory,investments,investmentsc,investmentsnc,liabilities,liabilitiesc,liabilitiesnc,marketcap,ncf,ncfbus,ncfcommon,ncfdebt,ncfdiv,ncff,ncfi,ncfinv,ncfo,ncfx,netinc,netinccmn,netinccmnusd,netincdis,netincnci,netmargin,opex,opinc,payables,payoutratio,pb,pe,pe1,ppnenet,prefdivis,price,ps,ps1,receivables,retearn,revenue,revenueusd,rnd,roa,roe,roic,ros,sbcomp,sgna,sharefactor,sharesbas,shareswa,shareswadil,sps,tangibles,taxassets,taxexp,taxliabilities,tbvps,workingcapital
A,ARQ,1999-12-31,2000-03-15,2000-01-31,2020-09-01,53000000,7107000000,,4982000000,2125000000,,10.219,-30000000,1368000000,1368000000,1160000000,131000000,2.41,0.584,665000000,111000000,554000000,665000000,281000000,96000000,0,0.0,0.0,202000000,298000000,0.133,298000000,202000000,202000000,0.3,0.3,0.3,4486000000,,4486000000,50960600000,,,354000000,0.806,1.0,1086000000,0.484,0,0,4337000000,,1567000000,42000000,42000000,0,2621000000,2067000000,554000000,51663600000,1368000000,-160000000,2068000000,111000000,0,1192000000,-208000000,-42000000,384000000,0,131000000,131000000,131000000,0,0,0.058,915000000,171000000,635000000,0.0,11.517,,,1408000000,0,114.3,,,1445000000,131000000,2246000000,2246000000,290000000,,,,,0,625000000,1.0,452000000,439000000,440000000,5.116,7107000000,0,71000000,113000000,16.189,2915000000
Example New CSV (Exact same when this line should have been cut):
,ticker,dimension,calendardate,datekey,reportperiod,lastupdated,accoci,assets,assetsavg,assetsc,assetsnc,assetturnover,bvps,capex,cashneq,cashnequsd,cor,consolinc,currentratio,de,debt,debtc,debtnc,debtusd,deferredrev,depamor,deposits,divyield,dps,ebit,ebitda,ebitdamargin,ebitdausd,ebitusd,ebt,eps,epsdil,epsusd,equity,equityavg,equityusd,ev,evebit,evebitda,fcf,fcfps,fxusd,gp,grossmargin,intangibles,intexp,invcap,invcapavg,inventory,investments,investmentsc,investmentsnc,liabilities,liabilitiesc,liabilitiesnc,marketcap,ncf,ncfbus,ncfcommon,ncfdebt,ncfdiv,ncff,ncfi,ncfinv,ncfo,ncfx,netinc,netinccmn,netinccmnusd,netincdis,netincnci,netmargin,opex,opinc,payables,payoutratio,pb,pe,pe1,ppnenet,prefdivis,price,ps,ps1,receivables,retearn,revenue,revenueusd,rnd,roa,roe,roic,ros,sbcomp,sgna,sharefactor,sharesbas,shareswa,shareswadil,sps,tangibles,taxassets,taxexp,taxliabilities,tbvps,workingcapital
0,A,ARQ,1999-12-31,2000-03-15,2000-01-31,2020-09-01,53000000.0,7107000000.0,,4982000000.0,2125000000.0,,10.219,-30000000.0,1368000000.0,1368000000.0,1160000000.0,131000000.0,2.41,0.584,665000000.0,111000000.0,554000000.0,665000000.0,281000000.0,96000000.0,0.0,0.0,0.0,202000000.0,298000000.0,0.133,298000000.0,202000000.0,202000000.0,0.3,0.3,0.3,4486000000.0,,4486000000.0,50960600000.0,,,354000000.0,0.8059999999999999,1.0,1086000000.0,0.484,0.0,0.0,4337000000.0,,1567000000.0,42000000.0,42000000.0,0.0,2621000000.0,2067000000.0,554000000.0,51663600000.0,1368000000.0,-160000000.0,2068000000.0,111000000.0,0.0,1192000000.0,-208000000.0,-42000000.0,384000000.0,0.0,131000000.0,131000000.0,131000000.0,0.0,0.0,0.057999999999999996,915000000.0,171000000.0,635000000.0,0.0,11.517000000000001,,,1408000000.0,0.0,114.3,,,1445000000.0,131000000.0,2246000000.0,2246000000.0,290000000.0,,,,,0.0,625000000.0,1.0,452000000.0,439000000.0,440000000.0,5.1160000000000005,7107000000.0,0.0,71000000.0,113000000.0,16.189,2915000000.0
I've seen two questions somewhat related to this on StackOverflow, but they haven't helped me much. This one uses CSV library instead of pandas (which is an option for me). This one is more helpful since it uses pandas but still hasn't been interacted with and isn't exactly the same as my use case.
You can get the indexes of the rows with "marketcap" over 100 billion rows like so:
df.loc[df["marketcap"] > 100000000000]["marketcap"].index
All that's left to do is drop them from the DataFrame:
df.drop(df.loc[df["marketcap"] > 100000000000]["marketcap"].index, inplace=True)
Reading from CSV and writing to the CSV is already correctly taken care of in your code.

Summarize Pandas dataframe column

I have a large dataframe (~4.7M rows) where one of the columns contains document text. I am trying unsuccessfully to run Gensim summarize on a specific column for the entire dataframe.
df['summary'] = df['variable_content'].apply(lambda x: summarize(x, word_count=200))
Extracting each row of variable_content into a variable and running summarize works well, but is slow and ugly. I also get the error:
ValueError: input must have more than one sentence
but can't find a row with only one sentence (most are hundreds/thousands). Can anyone help?
You have 4.7 million rows, each of which has hundreds or thousands of sentences, and you expect this to work in finite time? That's what I call "optimism". I would suggest looping through your dataframe and running your thing in chunks of, say 1000 rows, saving the work as you go along, and printing out the number of the chunk as you go along. Once it fails, you will know roughly where the failure was, plus you will actually get some results.

HDFStore get column names

I have some problems with pandas' HDFStore being far to slow and unfortunately I'm unable to put together a satisfying solution from other questions here.
Situation
I have a big DataFrame, containing mostly floats and sometimes integer columns which goes through multiple processing steps (renaming, removing bad entries, aggregating by 30min). Each row has a timestamp associated to it. I would like to save some middle steps to a HDF file, so that the user can do a single step iteratively without starting from scratch each time.
Additionally the user should be able to plot certain column from these saves in order to select bad data. Therefore I would like to retrieve only the column names without reading the data in the HDFStore.
Concretely the user should get a list of all columns of all dataframes stored in the HDF then they should select which columns they would like to see whereafter I use matplotlib to present them the corresponding data.
Data
shape == (5730000, 339) does not seem large at all, that's why I'm confused... (Might get far more rows over time, columns should stay fixed)
In the first step I append iteratively rows and columns (that runs okay), but once that's done I always process the entire DataFrame at once, only grouping or removing data.
My approach
I do all manipulations in memory since pandas seems to be rather fast and I/O is slower (HDF is on different physical server, I think)
I use datetime index and automatically selected float or integer columns
I save the steps with hdf.put('/name', df, format='fixed') since hdf.put('/name'.format(grp), df, format='table', data_columns=True) seemed to be far too slow.
I use e.g. df.groupby(df.index).first() and df.groupby(pd.Grouper(freq='30Min')).agg(agg_dict) to process the data, where agg_dict is a dictonary with one function per column. This is incredibly slow as well.
For plotting, I have to read-in the entire dataframe and then get the columns: hdfstore.get('/name').columns
Question
How can I retrieve all columns without reading any data from the HDFStore?
What would be the most efficient way of storing my data? Is HDF the right option? Table or fixed?
Does it matter in term of efficiency if the index is a datetime index? Does there exists a more efficient format in general (e.g. all columns the same, fixed dtype?)
Is there a faster way to aggregate instead of groupby (df.groupby(pd.Grouper(freq='30Min')).agg(agg_dict))
similar questions
How to access single columns using .select
I see that I can use this to retrieve only certain columns but only after I know the column names, I think.
Thank you for any advice!
You may simply load 0 rows of the DataFrame by specifying same start and stop attributes. And leave all internal index/column processing for pandas itself:
idx = pd.MultiIndex.from_product([('A', 'B'), range(2)], names=('Alpha', 'Int'))
df = pd.DataFrame(np.random.randn(len(idx), 3), index=idx, columns=('I', 'II', 'III'))
df
>>> I II III
>>> Alpha Int
>>> A 0 -0.472412 0.436486 0.354592
>>> 1 -0.095776 -0.598585 -0.847514
>>> B 0 0.107897 1.236039 -0.196927
>>> 1 -0.154014 0.821511 0.092220
Following works both for fixed an table formats:
with pd.HDFStore('test.h5') as store:
store.put('df', df, format='f')
meta = store.select('df', start=1, stop=1)
meta
meta.index
meta.columns
>>> I II III
>>> Alpha Int
>>>
>>> MultiIndex(levels=[[], []],
>>> codes=[[], []],
>>> names=['Alpha', 'Int'])
>>>
>>> Index(['I', 'II', 'III'], dtype='object')
As for others question:
As long as your data is mostly homogeneous (almost float columns as you mentioned) and you are able to store it in single file without need to distribute data across machines - HDF is the first thing to try.
If you need to append/delete/query data - you must use table format. If you only need to write once and read many - fixed will improve performance.
As for datetime index, i think here we may use same idea as in 1 clause. If u are able to convert all data into single type it should increase your performance.
Nothing else that proposed in comment to your question comes to mind.
For a HDFStore hdf and a key (from hdf.keys()) you can get the column names with:
# Table stored with hdf.put(..., format='table')
columns = hdf.get_node('{}/table'.format(key)).description._v_names
# Table stored with hdf.put(..., format='fixed')
columns = list(hdf.get_node('{}/axis0'.format(key)).read().astype(str))
note that hdf.get(key).columns works as well, but it reads all the data into memory, while the approach above only reads the column names.
Full working example:
#!/usr/bin/env python
import pandas as pd
data = pd.DataFrame({'a': [1,1,1,2,3,4,5], 'b': [2,3,4,1,3,2,1]})
with pd.HDFStore(path='store.h5', mode='a') as hdf:
hdf.put('/DATA/fixed_store', data, format='fixed')
hdf.put('/DATA/table_store', data, format='table', data_columns=True)
for key in hdf.keys():
try:
# column names of table store
print(hdf.get_node('{}/table'.format(key)).description._v_names)
except AttributeError:
try:
# column names of fixed store
print(list(hdf.get_node('{}/axis0'.format(key)).read().astype(str)))
except AttributeError:
# e.g. a dataset created by h5py instead of pandas.
print('unknown node in HDF.')
Columns without reading any data:
store.get_storer('df').ncols # substitute 'df' with your key
# you can also access nrows and other useful fields
From the docs (fixed format, table format): (important points in bold)
[fixed] These types of stores are not appendable once written (though you can simply remove them and rewrite). Nor are they queryable; they must be retrieved in their entirety. They also do not support dataframes with non-unique column names. The fixed format stores offer very fast writing and slightly faster reading than table stores.
[table] Conceptually a table is shaped very much like a DataFrame, with rows and columns. A table may be appended to in the same or other sessions. In addition, delete and query type operations are supported.
You may try to use epochms (or epochns) (milliseconds or nanoseconds since epoch) in place of datetimes. This way, you are just dealing with integer indices.
You may have a look at this answer if what you need is grouping by on large data.
An advice: if you have 4 questions to ask, it may be better to ask 4 separate questions on SO. This way, you'll get a higher number of (higher quality) answers, since each one is easier to tackle. And each will deal with a specific topic, making it easier to search for people that are looking for specific answers.

How do I do this data transformation most efficiently

I have one really big CSV file with the following structure:
user_id,mail_id,action
1,100,sent
1,100,opened
1,100,clicked
2,100,sent
2,101,sent
I want to reformat it to create a new CSV file that has one row for each user_id and 1 column for each mail_id. The value in each cell should be blank if there is not a corresponding row in the original table. Otherwise it will have the latest action that corresponds with that user and mail_id (clicked comes after opened, which comes after sent).
The final product (given the small data table above) should look like this:
user_id,100,101
1,clicked,NULL
2,sent,sent
This data manipulation is fairly straightforward, but the original CSV is quite long, and I am looking for tips on how to do this most efficiently.
Time complexity to read data into some structure is O(m*n) for m rows, n columns, regardless of the method used to read the data. Easiest to read data into a dictionary-of-dictionaries, {user_id: {100: most_recent_action,101: None}...}, using csv.read and then iterate over the dictionary-of-dictionaries outputting to some csv with csv.write.

Is .loc the best way to build a pandas DataFrame?

I have a fairly large csv file (700mb) which is assembled as follows:
qCode Date Value
A_EVENTS 11/17/2014 202901
A_EVENTS 11/4/2014 801
A_EVENTS 11/3/2014 2.02E+14
A_EVENTS 10/17/2014 203901
etc.
I am parsing this file to get specific values, and then using DF.loc to populate a pre-existing DataFrame, i.e. the code:
for line in fileParse:
code=line[0]
for point in fields:
if(point==code[code.find('_')+1:len(code)]):
date=line[1]
year,quarter=quarter_map(date)
value=float(line[2])
pos=line[0].find('_')
ticker=line[0][0:pos]
i=ticker+str(int(float(year)))+str(int(float(quarter)))
df.loc[i,point]=value
else:
pass
the question I have is .loc the most efficient way to add values to a existing DataFrame? As this operation seems to take over 10 hours...
fyi fields are the col that are in the DF (values i'm interested in) and the index (i) is a string...
thanks
No, you should never build a dataframe row-by-row. Each time you do this the entire dataframe has to be copied (it's not extended inplace) so you are using n + (n - 1) + (n - 2) + ... + 1, O(n^2), memory (which has to be garbage collected)... which is terrible, hence it's taking hours!
You want to use read_csv, and you have a few options:
read in the entire file in one go (this should be fine with 700mb even with just a few gig of ram).
pd.read_csv('your_file.csv')
read in the csv in chunks and then glue them together (in memory)... tbh I don't think this will actually use less memory than the above, but is often useful if you are doing some munging at this step.
pd.concat(pd.read_csv('foo.csv', chunksize=100000))  # not sure what optimum value is for chunksize
read the csv in chunks and save them into pytables (rather than in memory), if you have more data than memory (and you've already bought more memory) then use pytables/hdf5!
store = pd.HDFStore('store.h5')
for df in pd.read_csv('foo.csv', chunksize=100000):
store.append('df', df)
If I understand correctly, I think it would be much faster to:
Import the whole csv into a dataframe using pandas.read_csv.
Select the rows of interest from the dataframe.
Append the rows to your other dataframe using df.append(other_df).
If you provide more information about what criteria you are using in step 2 I can provide code there as well.
A couple of options that come to mind
1) Parse the file as you are currently doing, but build a dict intend of appending to your dataframe. After you're done with that convert that dict to a Dataframe and then use concat() to combine it with the existing Dataframe
2) Bring that csv into pandas using read_csv() and then filter/parse on what you want then do a concat() with the existing dataframe

Categories

Resources