ValueError: could not convert string to float: 'lisans' in Python - python

I am trying to calculate the silhouette index of the output of k-prototypes algorithm to cluster mixed featured dataset. I am getting ValueError: could not convert string to float: 'lisans' as an error, even if my code works fine when I only execute k-prototypes algorithm. My input is an excel file, there is no space or indent in my cells. The error is below:
File "C:\Users\...\Continuum\anaconda3\lib\site-packages\sklearn\utils\validation.py", line 433, in check_array
array = np.array(array, dtype=dtype, order=order, copy=copy)
ValueError: could not convert string to float: 'lisans'
And here where the validation.py gives error :
Also, whenever I change the place of the columns in the excel file, the new column that is replaced with the old column's position that previously gave error also gives an error at the same place no matter what is the text written in the cells.
I also tried to create a new excel file and used that but I was unsuccessful again. Here is the code below:
#silhouette score index calculation
import matplotlib.cm as cm
from sklearn.metrics import silhouette_samples, silhouette_score
range_n_clusters = [2, 3, 4, 5, 6, 7]
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KPrototypes(n_clusters=n_clusters, init = 'Cao', verbose = 2)
cluster_labels = clusterer.fit_predict(X, categorical=[0, 8, 9])
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plt.show()
This silhouette score code also works fine with other datasets without giving an error. Is there anyone who can fix it? (I had some problems while copying the code so normally indents are correct in sourcecode)

In your silhouette_score call, you compute all pairwise Euclidean distances.
That is not possible if you have a cell that contains the string value "lisans".
You likely need to first compute a pairwise distance matrix, then use metric="precomputed".

Related

Sklearm and Matplotlib, exporting a multi-subplot plot to HTML

I am using the silhouette_score metric in sklearn to evaluate my KMeans model. I am using matplotlib to produce and export the entire plot into HTML that is going to be viewed in a client-side code (a dashboard). I noticed that my code (modified from sklearn's docs) generates only the last subplot and not the entire plot.
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import base64
from io import BytesIO
print(__doc__)
# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and 3 clusters placed close
# together.
def silhouette(X, range_n_clusters=[2, 3, 4, 5, 6]):
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
print(cluster_labels, 36)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
tmpfile = BytesIO()
plt.savefig(tmpfile, format='png')
encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8')
html = '<img src=\'data:image/png;base64,{}\'>'.format(encoded)
return html
Any ideas on how to export the entire plot and what is missing on the upper snippet?
I only had to use fig instead of plot to solve the problem. Here is how:
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import base64
from io import BytesIO
print(__doc__)
# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and 3 clusters placed close
# together.
def silhouette(X, range_n_clusters=[2, 3, 4, 5, 6]):
plts = []
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
print(cluster_labels, 36)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plts.append(fig)
results = []
for fig in plts:
tmpfile = BytesIO()
fig.savefig(tmpfile, format='png')
tmpfile.seek(0)
encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8')
html = '<img src=\'data:image/png;base64,{}\'>'.format(encoded)
results.append(html)
return results

SciPy Bernoulli random number generation, different behavior within a for loop for different sample sizes

The purpose of this code is to demonstrate CLT.
If I do the following:
num_samples = 10000
sample_means = np.empty(num_samples)
for i in range(num_samples):
mean = np.mean(st.bernoulli.rvs(p=0.5, size=100))
sample_means[i] = mean
sample_demeaned = np.subtract(sample_means, 0.5)
denominator = np.divide(0.5, np.sqrt(100))
z_ed = np.divide(sample_demeaned, denominator)
plt.hist(z_ed, bins=40, edgecolor='k', density=True)
x = np.linspace(st.norm.ppf(0.001), st.norm.ppf(0.999), 10000)
y = st.norm.pdf(x)
plt.plot(x, y, color='red')
I get:
However, if I try to do it with a for loop for different sample sizes:
num_samples = 10000
sample_sizes = np.array([5, 20, 75, 100])
sample_std_means = np.empty(shape=(num_samples, len(sample_sizes)))
for col, size in enumerate(sample_sizes):
sample_means = np.empty(num_samples)
for i in range(num_samples):
mean = np.mean(st.bernoulli.rvs(p=0.5, size=size))
sample_means[i] = mean
sample_demeaned = np.subtract(sample_means, 0.5)
denominator = np.divide(0.5, np.sqrt(size))
z_ed = np.divide(sample_demeaned, denominator)
sample_std_means[:, col] = sample_means
And then plot each of them in a 2x2 grid:
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 7))
x = np.linspace(st.norm.ppf(0.001), st.norm.ppf(0.999), 10000)
y = st.norm.pdf(x)
for i, ax in enumerate(axes.flatten()):
ax.hist(sample_std_means[i], bins=40, edgecolor='k', color='midnightblue')
ax.set_ylabel('Density')
ax.set_xlabel(f'n = {sample_sizes[i]}')
ax.plot(x, y, color='red')
ax.set_xlim((-3, 3))
plt.show()
I get the following image:
I cannot debug the discrepancy here. Any help is highly appreciated.
Please note that scipy.stats and numpy have been imported as st and np respectively in both code blocks.
First, note that one numpy's strong points is that it allows operations which mix arrays and single numbers. This is called broadcasting. So, for example sample_demeaned = np.subtract(sample_means, 0.5) can be written more concise as sample_demeaned = sample_means - 0.5.
Several issues are going wrong:
sample_std_means[:, col] = sample_means should use the just calculated z_ed instead of sample_means.
ax.hist(sample_std_means[i], ...) uses the i'th row of the array. That row only contains 4 elements. You'd want sample_std_means[;,i] to take the i'th column.
The pdf is drawn in its normalized form (with an area below the curve equal to one). However, the histogram's height is proportional to the number of samples. Its total area is num_samples * bin_width, where the histogram's default bin width is the length from the first to the last element divided by the number of bins. To get both the pdf and histogram with similar sizes, either the histogram should be normalized (using density=True) or the pdf should be multiplied by the expected area of the histogram.
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
num_samples = 10000
sample_sizes = np.array([5, 20, 75, 100])
sample_std_means = np.empty(shape=(num_samples, len(sample_sizes)))
for col, size in enumerate(sample_sizes):
sample_means = np.empty(num_samples)
for i in range(num_samples):
sample_means[i] = np.mean(st.bernoulli.rvs(p=0.5, size=size))
sample_demeaned = sample_means - 0.5
z_ed = sample_demeaned / (0.5 / np.sqrt(size))
sample_std_means[:, col] = z_ed
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 7))
x = np.linspace(st.norm.ppf(0.001), st.norm.ppf(0.999), 1000)
y = st.norm.pdf(x)
for i, ax in enumerate(axes.flatten()):
ax.hist(sample_std_means[:, i], bins=40, edgecolor='k', color='midnightblue', density=True)
ax.set_ylabel('Density')
ax.set_xlabel(f'n = {sample_sizes[i]}')
# bin_width = (sample_std_means[:, i].max() - sample_std_means[:, i].min()) / 40
# ax.plot(x, y * num_samples * bin_width, color='red')
ax.plot(x, y, color='red')
ax.set_xlim((-3, 3))
plt.show()
Now note the weird empty bars in the histograms. A histogram works best for continuous distributions. But the mean of n Bernoulli trials can have at most n+1 different outcomes. When all trials would be True, the mean would be n/n = 1. When all would be False, the mean would be 0. Combined, the possible means are 0, 1/n, 2/n, ..., 1. The histogram of such a discrete distribution should take these values into account for the boundaries between the bins.
The following code creates a scatter plot, using the position of the means and a random y-value to visualize how many there are per x. Also, the position of the bin boundaries is calculated and visualized by dotted vertical lines.
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 7))
for i, ax in enumerate(axes.flatten()):
ax.scatter(sample_std_means[:, i], np.random.uniform(0, 1, num_samples), color='r', alpha=0.5, lw=0, s=1)
# there are n+1 possible mean values for n bernoulli trials
# n+2 boundaries will be needed to separate the bins
bins = np.arange(-1, sample_sizes[i]+1) / sample_sizes[i]
bins += (bins[1] - bins[0]) / 2 # shift half a bin
bins -= 0.5 # subtract the mean
bins /= (0.5 / np.sqrt(sample_sizes[i])) # correction factor
for b in bins:
ax.axvline(b, color='g', ls=':')
ax.set_xlabel(f'n = {sample_sizes[i]}')
ax.set_xlim((-3, 3))
And here are the histograms using these bins:
ax.hist(sample_std_means[:, i], bins=bins, edgecolor='k', color='midnightblue', density=True)

The right data format for silhouette_score with pandas

I'd like to use silhouette_score to estimate the optimum number of clusters. I'm using an official example from sklearn but it gives me this error: TypeError: silhouette_score() takes 1 positional argument but 2 were given.
My data (X) is a pandas dataframe with 20 features (all non-null float64) and index as unique ID strings (can this be a problem?).
f1 f2 f3 … f20
ID
AA2 0.33 0 0.31 … 0.16
BS4 0 0 0 … 0.41
VK9 0 0 0 … 0.48
I'm using data.values to turn it into a matrix (see the code below). Will appreciate your help!
X = data.values
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plt.show()
The error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-129-1d93fb88b278> in <module>()
----> 1 sil_(var_th.values,[2, 3, 4, 5, 6])
<ipython-input-127-0e092cfcc4be> in sil_(X, range_n_clusters)
21 # This gives a perspective into the density and separation of the formed
22 # clusters
---> 23 silhouette_avg = silhouette_score(X, cluster_labels)
24 print("For n_clusters =", n_clusters,
25 "The average silhouette_score is :", silhouette_avg)
TypeError: silhouette_score() takes 1 positional argument but 2 were given
I figured it out... The problem was caused by the index having multiple levels. data.reset_index(inplace=True) and then slicing data X = data[data.columns[1:]].values to drop the ID column did the trick... But thank you for comments because they forced me to look at the data more closely.

How to generate the output label of clusters from k means clustering algorithm?

My input feature set is in form of a csv file. I have used
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
to select number of clusters on my unlabeled data and am getting a highest score for cluster size =3
Therefore my cluster =3. Is there a way I can generate the output labels for each of the input rows for kmeans clustering algorithm?
Basically I want print out all input features and results (cluster labels) of the kmeans algorithm
Ie I want print out all input features and cluster labels assigned to each row of input csv file.
Code in python
import pandas
from pandas import read_csv
names = ["Variable1”, "Variable2”, "Variable3”, "Variable4”, "Variable5”, "Variable6”, "Variable7”, "Variable8”, "Variable9”, "Variable10”, "Variable11”, "Variable12”, "InputClass”]
filename = 'C:/Users/svx/d_features.csv'
dataframe = read_csv(filename, names=names)
array = dataframe.values
X = array[:,2:11]
range_n_clusters = [2, 3, 4, 5, 6]
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors)
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1],
marker='o', c="white", alpha=1, s=200)
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50)
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plt.show()

SVM decision function: visualizing class separation

in order to visualize the separation of the two classes by a linearSVC, I'm using a plot (defined in the function below)
def show_linearSVC_class_separation(linearSVC: 'LinearSVC', X_test, y_test):
y_decision_score = linearSVC.decision_function(X_test)
# getting the score of the truly positive individuals
y_positive_decision_score = y_decision_score[y_test == 1]
# getting the score of the truly negative individuals
y_negative_decision_score = y_decision_score[y_test == 0]
# counting the distribution of each score value in each class
positive_count = Counter(y_positive_decision_score)
negative_count = Counter(y_negative_decision_score)
# sorting the decision scores to draw a good curve
y_positive_decision_score = np.sort(list(positive_count.keys()))
y_positive_distribution = [positive_count[key] for key in y_positive_decision_score]
y_negative_decision_score = np.sort(list(negative_count.keys()))
y_negative_distribution = [negative_count[key] for key in y_negative_decision_score]
# the alpaha is useful to see the overlaping area between the two classes
plt.fill_between(y_positive_decision_score, 0, y_positive_distribution, color='blue', alpha=0.5, hatch='')
plt.plot(y_positive_decision_score, y_positive_distribution, color='blue', marker='.')
plt.fill_between(y_negative_decision_score, 0, y_negative_distribution, color='red', alpha=0.5, hatch='')
plt.plot(y_negative_decision_score, y_negative_distribution, color='red', marker='.')
plt.legend(['True_positives', 'True_negatives']).draggable()
plt.xlabel('SVM decision_function values')
plt.ylabel('Number of data points')
plt.show()
but, the result is ... pretty ugly, juge by yourself:
I think it's because there is a lot of decision_values that have a counting of one. Maybe an histogramme is the way to go. how can I bucket the decision_values in intervals and count the data points that belong to each interval ?
I need the intervals to have the same length, exemple (length = 1) :
interval || counting
[-7 ; -6] -> 20
]-6 ; -5] -> 30
....
] 5 ; 6] -> 10
Or maybe, there is another way to visualize binary class separation.
to do the visualization, I took inspiration form this blog article Roc curve demonstration.
After some looking around (matplolib and numpy documentation), I finally decided to try to use an histogramme to visualize the class séparation (knowing that I'm working on a multidimensional vector space, ~200k dimensions).
here is the function
''' Plots the seperation plane
Args:
LinearSVC: An LinearSVC instance that was previously fitted (.fit())
'''
def show_linearSVC_class_separation(linearSVC: 'LinearSVC', X_test, y_test):
y_decision_score = linearSVC.decision_function(X_test)
# getting the score of the truly positive individuals
y_positive_decision_score = y_decision_score[y_test == 1]
# getting the score of the truly negative individuals
y_negative_decision_score = y_decision_score[y_test == 0]
# get the (min-1) and the (max +1) scores to be sure to include all the scores in the intervals of the histogramme
_, min_positive = np.modf(y_positive_decision_score.min() - 1)
_, max_positive = np.modf(y_positive_decision_score.max() + 1)
positive_bins = np.arange(min_positive, max_positive + 1)
# get the (min-1) and the (max +1) scores to be sure to include all the scores in the intervals of the histogramme
_, min_negative = np.modf(y_negative_decision_score.min() - 1)
_, max_negative = np.modf(y_negative_decision_score.max() + 1)
negative_bins = np.arange(min_negative, max_negative + 1)
# plot the two histograms, alpha (the transparency) is for the overlapping areas
plt.hist(y_positive_decision_score, bins=positive_bins, alpha=0.5, label='True positives', color='b')
plt.hist(y_negative_decision_score, bins=negative_bins, alpha=0.5, label='True negatives', color='r')
plt.xlabel('SVM decision_function values')
plt.ylabel('Number of data points')
plt.show()
Here is the result for the same example in the question:
Try the following
''' Plots the seperation plane
Args:
LinearSVC: An LinearSVC instance that was previously fitted (.fit())
'''
def show_linearSVC_class_separation(linearSVC: 'LinearSVC', X_test, y_test):
# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = X_test
yy = y_test
# plot the parallels to the separating hyperplane that pass through the
# support vectors
b = clf.support_vectors_[0]
yy_down = a * xx + (b[1] - a * b[0])
b = clf.support_vectors_[-1]
yy_up = a * xx + (b[1] - a * b[0])
# plot the line, the points, and the nearest vectors to the plane
plt.plot(xx, yy, 'k-')
plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
s=80, facecolors='none')
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)
plt.axis('tight')
plt.show()
This should generate a similar plot to this:

Categories

Resources