Sklearm and Matplotlib, exporting a multi-subplot plot to HTML - python

I am using the silhouette_score metric in sklearn to evaluate my KMeans model. I am using matplotlib to produce and export the entire plot into HTML that is going to be viewed in a client-side code (a dashboard). I noticed that my code (modified from sklearn's docs) generates only the last subplot and not the entire plot.
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import base64
from io import BytesIO
print(__doc__)
# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and 3 clusters placed close
# together.
def silhouette(X, range_n_clusters=[2, 3, 4, 5, 6]):
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
print(cluster_labels, 36)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
tmpfile = BytesIO()
plt.savefig(tmpfile, format='png')
encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8')
html = '<img src=\'data:image/png;base64,{}\'>'.format(encoded)
return html
Any ideas on how to export the entire plot and what is missing on the upper snippet?

I only had to use fig instead of plot to solve the problem. Here is how:
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import base64
from io import BytesIO
print(__doc__)
# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and 3 clusters placed close
# together.
def silhouette(X, range_n_clusters=[2, 3, 4, 5, 6]):
plts = []
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
print(cluster_labels, 36)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plts.append(fig)
results = []
for fig in plts:
tmpfile = BytesIO()
fig.savefig(tmpfile, format='png')
tmpfile.seek(0)
encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8')
html = '<img src=\'data:image/png;base64,{}\'>'.format(encoded)
results.append(html)
return results

Related

Calculating PDF given a histogram

I have a heavily right-skewed histogram and would like to calculate the probabilities for a range of Lifetimevalues (Area under the curve, the PDF). For instance, the probability that the Lifetime value is in (0-0.01)
Dataframe consisting of LTV calculated by cumulative revenue/ cumulative installs:
df['LTV'] is
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.208125,0.0558879,0.608348,0.212553,0.0865896,
0.728542,0,0.609512,0,0,0,0,0,0,0,0.0801339,0.140657,0.0194118,0,0,0.0634682,
0.339545,0.875902,0.8325,0.0260526,0.0711905,0.169894,0.202969,0.0761538,0,0.342055,
0.42781,0,0,0.192115,0,0,0,0,0,0,0,0,0,0,0,1.6473,0,0.232329,0,2.21329,0.748,0.0424286,
0.455439,0.210282,5.56453,0.427959,0,0.352059,0,0,0.567059,0,0,0,0.384462,1.29476,
0.0103125,0,0.0126923,1.03356,0,0,0.289785,0,0)
I have tried utilizing SKlearn's KernelDensity, however, after fitting it to the histogram it does not capture the over-represented 0s.
import gc
from sklearn.neighbors import KernelDensity
def plot_prob_density(df_lunch, field, x_start, x_end):
plt.figure(figsize = (10, 7))
unit = 0
x = np.linspace(df_lunch.min() - unit, df_lunch.max() + unit, 1000)[:, np.newaxis]
# Plot the data using a normalized histogram
plt.hist(df_lunch, bins=200, density=True, label='LTV', color='blue', alpha=0.2)
# Do kernel density estimation
kd_lunch = KernelDensity(kernel='gaussian', bandwidth=0.00187).fit(df_lunch) #0.00187
# Plot the estimated densty
kd_vals_lunch = np.exp(kd_lunch.score_samples(x))
plt.plot(x, kd_vals_lunch, color='orange')
plt.axvline(x=x_start,color='red',linestyle='dashed')
plt.axvline(x=x_end,color='red',linestyle='dashed')
# Show the plots
plt.xlabel(field, fontsize=15)
plt.ylabel('Probability Density', fontsize=15)
plt.legend(fontsize=15)
plt.show()
gc.collect()
return kd_lunch
kd_lunch = plot_prob_density(final_df['LTV'].values.reshape(-1,1), 'LTV', x_start=0, x_end=0.01)
Then finding the probabilities like this:
def get_probability(start_value, end_value, eval_points, kd):
# Number of evaluation points
N = eval_points
step = (end_value - start_value) / (N - 1) # Step size
x = np.linspace(start_value, end_value, N)[:, np.newaxis] # Generate values in the range
kd_vals = np.exp(kd.score_samples(x)) # Get PDF values for each x
probability = np.sum(kd_vals * step) # Approximate the integral of the PDF
return probability.round(4)
print('Probability of LTV 0-3 tips during LUNCH time: {}\n'
.format(get_probability(start_value = 0,
end_value = 0.01,
eval_points = 100,
kd = kd_lunch)))
However, this method does not yield the appropriate PDF values we were aiming for.
Any suggestions for alternative methods would be appreciated.
PLot:
I have used more or less similar script for my work, here is my script may be it will be helpful for you.
import gc
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.neighbors import KernelDensity
from scipy import stats
data1 = beta_95[0]
def plot_prob_density(data1, x_start, x_end):
plt.figure(figsize = (4, 3.5))
unit = 1.5
x = np.linspace(-20, 20, 1000)[:, np.newaxis]
# Plot the data using a normalized histogram
plt.hist(data1, bins=np.linspace(-20,20,40), density=True, color='r', alpha=0.4)
#plt.show
# Do kernel density estimation
kd_data1 = KernelDensity(kernel='gaussian', bandwidth=1.8).fit(data1)
# Plot the estimated densty
kd_vals_data1 = np.exp(kd_data1.score_samples(x))
plt.plot(x, kd_vals_data1, color='r', label='$N_a$', linewidth = 2)
plt.axvline(x=9.95,color='green',linestyle='dashed', linewidth = 2.0, label='$β_o$')
plt.axvline(x=1.9,color='black',linestyle='dashed', linewidth = 2.0, label='$β_b$')
plt.axvline(x=x_end,color='red',linestyle='dashed', linewidth = 2, label='$β_{95\%}$')
# Show the plots
plt.xlabel('Beta', fontsize=10)
plt.ylabel('Probability Density', fontsize=10)
plt.title('02 hours window', fontsize=12)
plt.xlim(-20, 20)
plt.ylim(0, 0.3)
plt.yticks([0, 0.1, 0.2, 0.3])
plt.legend(fontsize=12, loc='upper left', frameon=False)
plt.show()
gc.collect()
return kd_data1
def get_probability(start_value, end_value, eval_points, kd):
# Number of evaluation points
N = eval_points
step = (end_value - start_value) / (N - 1) # Step size
x = np.linspace(start_value, end_value, N)[:, np.newaxis] # Generate values in the range
kd_vals = np.exp(kd.score_samples(x)) # Get PDF values for each x
probability = np.sum(kd_vals * step) # Approximate the integral of the PDF
return probability.round(4)
data1 = np.array(data1).reshape(-1, 1)
kd_data1 = plot_prob_density(data1, x_start=3.0, x_end=13)
print('Beta-95%: {}\n'
.format(get_probability(start_value = -10,
end_value = 13,
eval_points = 1000,
kd = kd_data1)))

Problem to find the optimal number of clusters with scaled and non-scaled data

I'm trying to do clustering in my data and I'm having some problems to identify the optimal number of clusters.
My data (https://www.dropbox.com/s/6i6wyy0eohtlrrt/wellA.xlsx?dl=0) is an oil exploration well with information of depth, rock_types (label) and rock properties (features). I have the labels information, but I'd like to see how KMeans would work on this.
The problem is that the elbow method and silhouette score show a clear trend when the data isn't scaled, but a bad clustering. On the other hand, scaled data shows better clusters, but its graphs have "weird" shapes... the first one doesn't has an "elbow" and the other has silhouette scores way smaller than the non-scaled data. Why do I see worse graphs for scaled data?
I would like to know if I'm doing something wrong. The features are highly variables and I think they should be scaled for KMeans purposes. Maybe I should scale the data just after find the optimal number of clusters?
P.S.: I'm sorry for the long question and code (most of it are plots). I tried to edit all of this in a simpler example, but I wasn't able to represent this heterogeneity.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score
data = pd.read_excel(r'C:\...\wellA.xlsx')
data = data.replace(-999.25, np.nan)
data.dropna(axis=0, inplace=True)
# FEATURES SELECTION FOR TRAINING
well = data.drop(['DEPTH','ROCK_TYPE'], axis=1)
# NORMALIZATION
scaled_well = pd.DataFrame(MinMaxScaler().fit_transform(well))
# ELBOW METHOD AND SILHOUETTE SCORE
def optimal_k(data, title):
inertia =[]
sil =[]
for k in range(2,14):
kmeans_rand = KMeans(n_clusters=k, init='k-means++', random_state=0)
kmeans_rand.fit(data.values)
y_pred = kmeans_rand.predict(data.values)
inertia.append(kmeans_rand.inertia_)
sil.append((k, silhouette_score(data.values, y_pred)))
fig, ax = plt.subplots(1, 2, figsize=(12,4))
ax[0].plot(range(2,14), inertia)
ax[0].set_title('Elbow Method')
ax[0].set_xlabel('Number of clusters')
ax[0].set_ylabel('Inertia')
x_sil = [x[0] for x in sil]
y_sil = [x[1] for x in sil]
ax[1].plot(x_sil, y_sil)
ax[1].set_xlabel('Number of Clusters')
ax[1].set_ylabel('Silhouetter Score')
ax[1].set_title('Silhouetter Score Curve')
fig.suptitle(title)
optimal_k(well, 'Not scaled')
optimal_k(scaled_well, 'Scaled')
# MODEL
def kmeans(data, k):
model = KMeans(n_clusters=k, random_state=0, init='k-means++')
model.fit(data.values)
labels = model.labels_
data['KMEANS'] = labels+1
kmeans(well,3)
kmeans(scaled_well,3)
# CONVERT NAME TO VALUE
facies = {'Claystone':1, 'Coal':2, 'Limestone':3, 'Marl':4, 'Sandstone':5}
data['LABEL'] = data['ROCK_TYPE'].map(facies)
# PLOT
cluster_real = np.repeat(np.expand_dims(data['LABEL'], 1), 1, 1)
cluster_kmeans = np.repeat(np.expand_dims(well['KMEANS'], 1), 1, 1)
cluster_kmeans_scaled = np.repeat(np.expand_dims(scaled_well['KMEANS'], 1), 1, 1)
f, ax = plt.subplots(nrows=1, ncols=3, figsize=(2,12))
ax[0].imshow(cluster_real,
interpolation='none',
aspect='auto',
vmin=1, vmax=5,
extent=[0, 1, data['DEPTH'].max(), data['DEPTH'].min()])
ax[1].imshow(cluster_kmeans,
interpolation='none',
aspect='auto',
vmin=1, vmax=3,
extent=[0, 1, data['DEPTH'].max(), data['DEPTH'].min()])
ax[2].imshow(cluster_kmeans_scaled,
interpolation='none',
aspect='auto',
vmin=1, vmax=3,
extent=[0, 1, data['DEPTH'].max(), data['DEPTH'].min()])
ax[0].set_ylabel('Depth (m)')
ax[0].set_xticks([],[])
ax[0].set_xlabel('REAL ROCKS')
ax[1].set_xticks([],[])
ax[1].set_xlabel('KMEANS')
ax[2].set_xticks([],[])
ax[2].set_xlabel('KMEANS SCALED')
Some clustering methodologies will automatically find the optimal number of clusters for you. Affinity Propagation and Mean Shift are two that come to mind. There are probably a couple others out there that will do the same.
from sklearn.cluster import AffinityPropagation
from sklearn import metrics
from sklearn.datasets import make_blobs
# #############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5,
random_state=0)
# #############################################################################
# Compute Affinity Propagation
af = AffinityPropagation(preference=-50).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
n_clusters_ = len(cluster_centers_indices)
print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels, metric='sqeuclidean'))
# #############################################################################
# Plot result
import matplotlib.pyplot as plt
from itertools import cycle
plt.close('all')
plt.figure(1)
plt.clf()
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
class_members = labels == k
cluster_center = X[cluster_centers_indices[k]]
plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,
markeredgecolor='k', markersize=14)
for x in X[class_members]:
plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

The right data format for silhouette_score with pandas

I'd like to use silhouette_score to estimate the optimum number of clusters. I'm using an official example from sklearn but it gives me this error: TypeError: silhouette_score() takes 1 positional argument but 2 were given.
My data (X) is a pandas dataframe with 20 features (all non-null float64) and index as unique ID strings (can this be a problem?).
f1 f2 f3 … f20
ID
AA2 0.33 0 0.31 … 0.16
BS4 0 0 0 … 0.41
VK9 0 0 0 … 0.48
I'm using data.values to turn it into a matrix (see the code below). Will appreciate your help!
X = data.values
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plt.show()
The error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-129-1d93fb88b278> in <module>()
----> 1 sil_(var_th.values,[2, 3, 4, 5, 6])
<ipython-input-127-0e092cfcc4be> in sil_(X, range_n_clusters)
21 # This gives a perspective into the density and separation of the formed
22 # clusters
---> 23 silhouette_avg = silhouette_score(X, cluster_labels)
24 print("For n_clusters =", n_clusters,
25 "The average silhouette_score is :", silhouette_avg)
TypeError: silhouette_score() takes 1 positional argument but 2 were given
I figured it out... The problem was caused by the index having multiple levels. data.reset_index(inplace=True) and then slicing data X = data[data.columns[1:]].values to drop the ID column did the trick... But thank you for comments because they forced me to look at the data more closely.

ValueError: could not convert string to float: 'lisans' in Python

I am trying to calculate the silhouette index of the output of k-prototypes algorithm to cluster mixed featured dataset. I am getting ValueError: could not convert string to float: 'lisans' as an error, even if my code works fine when I only execute k-prototypes algorithm. My input is an excel file, there is no space or indent in my cells. The error is below:
File "C:\Users\...\Continuum\anaconda3\lib\site-packages\sklearn\utils\validation.py", line 433, in check_array
array = np.array(array, dtype=dtype, order=order, copy=copy)
ValueError: could not convert string to float: 'lisans'
And here where the validation.py gives error :
Also, whenever I change the place of the columns in the excel file, the new column that is replaced with the old column's position that previously gave error also gives an error at the same place no matter what is the text written in the cells.
I also tried to create a new excel file and used that but I was unsuccessful again. Here is the code below:
#silhouette score index calculation
import matplotlib.cm as cm
from sklearn.metrics import silhouette_samples, silhouette_score
range_n_clusters = [2, 3, 4, 5, 6, 7]
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KPrototypes(n_clusters=n_clusters, init = 'Cao', verbose = 2)
cluster_labels = clusterer.fit_predict(X, categorical=[0, 8, 9])
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plt.show()
This silhouette score code also works fine with other datasets without giving an error. Is there anyone who can fix it? (I had some problems while copying the code so normally indents are correct in sourcecode)
In your silhouette_score call, you compute all pairwise Euclidean distances.
That is not possible if you have a cell that contains the string value "lisans".
You likely need to first compute a pairwise distance matrix, then use metric="precomputed".

How to generate the output label of clusters from k means clustering algorithm?

My input feature set is in form of a csv file. I have used
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
to select number of clusters on my unlabeled data and am getting a highest score for cluster size =3
Therefore my cluster =3. Is there a way I can generate the output labels for each of the input rows for kmeans clustering algorithm?
Basically I want print out all input features and results (cluster labels) of the kmeans algorithm
Ie I want print out all input features and cluster labels assigned to each row of input csv file.
Code in python
import pandas
from pandas import read_csv
names = ["Variable1”, "Variable2”, "Variable3”, "Variable4”, "Variable5”, "Variable6”, "Variable7”, "Variable8”, "Variable9”, "Variable10”, "Variable11”, "Variable12”, "InputClass”]
filename = 'C:/Users/svx/d_features.csv'
dataframe = read_csv(filename, names=names)
array = dataframe.values
X = array[:,2:11]
range_n_clusters = [2, 3, 4, 5, 6]
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors)
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1],
marker='o', c="white", alpha=1, s=200)
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50)
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plt.show()

Categories

Resources