I've just started working with the multiprocessing Python library. I would like to make many API calls (get) using requests. I have a Pandas dataframe in which each row has the arguments I will be using to process the requests.get.
Here is an example of the dataframe I want to starmap to.
import pandas as pd
d = {
"companyId": ['1000','1005'],
"headers": [{'Authorization': 'Bearer token1'},{'Authorization': 'Bearer token1'}],
"employeeId": ['1500','1500'],
"date": ['2022-01-01','2022-01-02']
}
df = pd.DataFrame(d)
df.head()
Code to make request:
import multiprocessing as mp
def get_data(df: pd.DataFrame):
query: dict = {
'companyId': df['companyId'].astype(str),
'driverId': df['employeeId'].astype(str),
'day': df['date'].astype(str)
}
resp = requests.get(url=df['url'], headers=df['headers'], params=query)
return resp
if __name__ == "__main__":
with mp.Pool(mp.cpu_count()) as p:
res = list(p.starmap(get_data, zip(df.itertuples())))
print(res)
p.close()
p.join()
However, I receive some errors I am trying to understand. Ultimately, I want to map the api function to each row of my pandas dataframe in a parallel fashion. I would prefer to just use the multiprocessing library but do not necessarily need to use Pandas here if there is a simpler and more native solution.
I just started with Great Expectations library and I want to know if it is possible to use it to remove invalidated data from Pandas DataFrame. And how I can do that if is possible ?
Also I want to insert invalid data to PostgreSQL database.
I didn't find anything about this in the documentation and on searching the Web.
Later Edit :
To clarify: I need that in the case great expectation for example find 5 rows in a DataFrame that are invalid (for example df.expect_column_values_to_not_be_null('age') has 5 rows with null) to remove them from original DataFrame and insert them in a PostgreSQL errors table
Great Expectations is a powerful tool to validate data.
Like all powerful tools, it's not that straightforward.
You can start from here:
import great_expectations as ge
import numpy as np
import pandas as pd
# get some random numbers and create a pandas df
df_raw = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
# initialize a "great_expectations" df
df = ge.from_pandas(df_raw)
# search for invalidate data on column 'A'.
# In this case, i'm looking for any null value from column 'A'.
df.expect_column_values_to_not_be_null('A')
Results:
{
"exception_info": null,
"expectation_config": {
"expectation_type": "expect_column_values_to_not_be_null",
"kwargs": {
"column": "A",
"result_format": "BASIC"
},
"meta": {}
},
"meta": {},
"success": true,
"result": {
"element_count": 100,
"unexpected_count": 0,
"unexpected_percent": 0.0,
"partial_unexpected_list": []
}
}
Look at the response : good news !!!
There aren't null values in my df.
"unexpected_count" is equal to 0
API Reference :
https://legacy.docs.greatexpectations.io/en/latest/autoapi/great_expectations/index.html
EDIT:
If you need simply to find some invalid values and split your df into:
Clean Dataframe
Dirty Dataframe
maybe you dont need "great_expectations". you can use a function like this:
import pandas as pd
my_df = pd.DataFrame({'A': [1,2,1,2,3,0,1,1,5,2]})
def check_data_quality(dataframe):
df = dataframe
clean_df = df[df['A'].isin([1, 2])]
dirty_df = df[df["A"].isin([1, 2]) == False]
return {'clean': clean_df,
'dirty': dirty_df}
my_df_clean = check_data_quality(my_df)['clean']
my_df_dirty = check_data_quality(my_df)['dirty']
I need to do a python script to
Read a csv file with the columns (person_id, name, flag). The file has 3000 rows.
Based on the person_id from the csv file, I need to call a URL passing the person_id to do a GET
http://api.myendpoint.intranet/get-data/1234
The URL will return some information of the person_id, like example below. I need to get all rents objects and save on my csv. My output needs to be like this
import pandas as pd
import requests
ids = pd.read_csv(f"{path}/data.csv", delimiter=';')
person_rents = df = pd.DataFrame([], columns=list('person_id','carId','price','rentStatus'))
for id in ids:
response = request.get(f'endpoint/{id["person_id"]}')
json = response.json()
person_rents.append( [person_id, rent['carId'], rent['price'], rent['rentStatus'] ] )
pd.read_csv(f"{path}/data.csv", delimiter=';' )
person_id;name;flag;cardId;price;rentStatus
1000;Joseph;1;6638;1000;active
1000;Joseph;1;5566;2000;active
Response example
{
"active": false,
"ctodx": false,
"rents": [{
"carId": 6638,
"price": 1000,
"rentStatus": "active"
}, {
"carId": 5566,
"price": 2000,
"rentStatus": "active"
}
],
"responseCode": "OK",
"status": [{
"request": 345,
"requestStatus": "F"
}, {
"requestId": 678,
"requestStatus": "P"
}
],
"transaction": false
}
After save the additional data from response on csv, i need to get data from another endpoint using the carId on the URL. The mileage result must be save in the same csv.
http://api.myendpoint.intranet/get-mileage/6638
http://api.myendpoint.intranet/get-mileage/5566
The return for each call will be like this
{"mileage":1000.0000}
{"mileage":550.0000}
The final output must be
person_id;name;flag;cardId;price;rentStatus;mileage
1000;Joseph;1;6638;1000;active;1000.0000
1000;Joseph;1;5566;2000;active;550.0000
SOmeone can help me with this script?
Could be with pandas or any python 3 lib.
Code Explanation
Create dataframe, df, with pd.read_csv.
It is expected that all of the values in 'person_id', are unique.
Use .apply on 'person_id', to call prepare_data.
prepare_data expects 'person_id' to be a str or int, as indicated by the type annotation, Union[int, str]
Call the API, which will return a dict, to the prepare_data function.
Convert the 'rents' key, of the dict, into a dataframe, with pd.json_normalize.
Use .apply on 'carId', to call the API, and extract the 'mileage', which is added to dataframe data, as a column.
Add 'person_id' to data, which can be used to merge df with s.
Convert pd.Series, s to a dataframe, with pd.concat, and then merge df and s, on person_id.
Save to a csv with pd.to_csv in the desired form.
Potential Issues
If there's an issue, it's most likely to occur in the call_api function.
As long as call_api returns a dict, like the response shown in the question, the remainder of the code will work correctly to produce the desired output.
import pandas as pd
import requests
import json
from typing import Union
def call_api(url: str) -> dict:
r = requests.get(url)
return r.json()
def prepare_data(uid: Union[int, str]) -> pd.DataFrame:
d_url = f'http://api.myendpoint.intranet/get-data/{uid}'
m_url = 'http://api.myendpoint.intranet/get-mileage/'
# get the rent data from the api call
rents = call_api(d_url)['rents']
# normalize rents into a dataframe
data = pd.json_normalize(rents)
# get the mileage data from the api call and add it to data as a column
data['mileage'] = data.carId.apply(lambda cid: call_api(f'{m_url}{cid}')['mileage'])
# add person_id as a column to data, which will be used to merge data to df
data['person_id'] = uid
return data
# read data from file
df = pd.read_csv('file.csv', sep=';')
# call prepare_data
s = df.person_id.apply(prepare_data)
# s is a Series of DataFrames, which can be combined with pd.concat
s = pd.concat([v for v in s])
# join df with s, on person_id
df = df.merge(s, on='person_id')
# save to csv
df.to_csv('output.csv', sep=';', index=False)
If there are any errors when running this code:
Leave a comment, to let me know.
edit your question, and paste the entire TraceBack, as text, into a code block.
Example
# given the following start dataframe
person_id name flag
0 1000 Joseph 1
1 400 Sam 1
# resulting dataframe using the same data for both id 1000 and 400
person_id name flag carId price rentStatus mileage
0 1000 Joseph 1 6638 1000 active 1000.0
1 1000 Joseph 1 5566 2000 active 1000.0
2 400 Sam 1 6638 1000 active 1000.0
3 400 Sam 1 5566 2000 active 1000.0
There are many different ways to implement this. One of them would be, like you started in your comment:
read the CSV file with pandas
for each line take the person_id and build a call
the delivered JSON response can then be taken from the rents
the carId is then extracted for each individual rental
finally this is collected in a row_list
the row_list is then converted back to csv via pandas
A very simple solution without any error handling could look something like this:
from types import SimpleNamespace
import pandas as pd
import requests
import json
path = '/some/path/'
df = pd.read_csv(f'{path}/data.csv', delimiter=';')
rows_list = []
for _, row in df.iterrows():
rentCall = f'http://api.myendpoint.intranet/get-data/{row.person_id}'
print(rentCall)
response = requests.get(rentCall)
r = json.loads(response.text, object_hook=lambda d: SimpleNamespace(**d))
for rent in r.rents:
mileageCall = f'http://api.myendpoint.intranet/get-mileage/{rent.carId}'
print(mileageCall)
response2 = requests.get(mileageCall)
m = json.loads(response2.text, object_hook=lambda d: SimpleNamespace(**d))
state = "active" if r.active else "inactive"
rows_list.append((row['person_id'], row['name'], row['flag'], rent.carId, rent.price, state, m.mileage))
df = pd.DataFrame(rows_list, columns=('person_id', 'name', 'flag', 'carId', 'price', 'rentStatus', 'mileage'))
print(df.to_csv(index=False, sep=';'))
Speeding up with multiprocessing
You mention that you have 3000 rows, which means that you'll have to make a lot of API calls. Depending on the connection, every one of these calls might take a while. As a result, performing this in a sequential way might be too slow. The majority of the time, your program will just be waiting on a response from the server without doing anything else.
We can improve this performance by using multiprocessing.
I use all the code from Trenton his answer, but I replace the following sequential call:
# call prepare_data
s = df.person_id.apply(prepare_data)
With a parallel alternative:
from multiprocessing import Pool
n_processes=20 # Experiment with this to see what works well
with Pool(n_processes) as p:
s=p.map(prepare_data, df.person_id)
Alternatively, a threadpool might be faster, but you'll have to test that by replacing the import with
from multiprocessing.pool import ThreadPool as Pool.
I have output from a REST call that I've converted to JSON.
It's a highly nested collection of dicts and lists, but I'm eventually able to convert it to dataframe as follows:
import panads as pd
from requests import get
url = 'http://stats.oecd.org/SDMX-JSON/data/MEI_FIN/IR3TIB.GBR+USA.M/all'
params = {
'startTime' : '2008-06',
'dimensionAtObservation' : 'TimeDimension'
}
r = get(url, params = params)
x = r.json()
d = x['dataSets'][0]['series']
a = pd.DataFrame(d['0:0:0']['observations'])
b = pd.DataFrame(d['0:1:0']['observations'])
This works absent some manipulation to make it easier to work with, and as there are multiple time series, I can do a version of the same for each, but it goes without saying it's kind of clunky.
Is there a better/cleaner way to do this.
The pandasdmx library makes this super-simple:
import pandasdmx as sdmx
df = sdmx.Request('OECD').data(
resource_id='MEI_FIN',
key='IR3TIB.GBR+USA.M',
params={'startTime': '2008-06', 'dimensionAtObservation': 'TimeDimension'},
).write()
Absent any responses, here's the solution I came up with. I added a list comprehension to deal with getting each series into a dataframe, and then a transpose as this source resulted in the series being aligned across rows instead of down columns.
import panads as pd
from requests import get
url = 'http://stats.oecd.org/SDMX-JSON/data/MEI_FIN/IR3TIB.GBR+USA.M/all'
params = {
'startTime' : '2008-06',
'dimensionAtObservation' : 'TimeDimension'
}
r = get(url, params = params)
x = r.json()
d = x['dataSets'][0]['series']
df = [pd.DataFrame(d[i]['observations']).loc[0] for i in d]
df = pd.DataFrame(df).T
I'm having trouble getting this nested JSON object into a pandas dataframe using python:
{
"count":275,
"calls":[
{
"connectedTo":"18885068980",
"serviceName":"",
"callGuid":"01541af0-d87c-4911-a868-f5ac573d1e31",
"origin":"+19178558701",
"stateChangedAt":"2016-04-15T18:21:23Z",
"sequence":9,
"appletName":"ACD Sales General"
}
]
}
I've tried using json_normalize and am going in circles. Any help would be very much appreciated!
I know that it includes json_normalize, but I think this is what you are trying to do.
import json
import pandas as pd
from pandas.io.json import json_normalize
from pprint import pprint
j = json.dumps( //to create the json
{'count': 275,
"calls":
[{'connectedTo': "18885068980",
"serviceName":"",
"callGuid":"01541af0-d87c-4911-a868-f5ac573d1e31",
"stateChangedAt":"2016-04-15T18:21:23Z",
"sequence":9,
"appletName":"ACD Sales General"}]})
data = json.loads(j)
pprint(json_normalize(data['calls']))
which returns
appletName callGuid connectedTo \
0 ACD Sales General 01541af0-d87c-4911-a868-f5ac573d1e31 18885068980
sequence serviceName stateChangedAt
0 9 2016-04-15T18:21:23Z