I wish to integrate a n-variate (bi-variate for simplicity) function using the scipy.integrate.nquad method. However, I would also like to use a fixed-order quadrature rule, as in scipy.integrate.fixed_quad, however I have not been able to find a way to do this.
Is this a known problem, and are there any clever ways of doing this?
Thanks in advance!
Related
This question may be half computational math, half programming.
I'm trying to estimate log[\int_0^\infty\int_0^\infty f(x,y)dxdy] [actually thousands of such integrals] in Python. The function f(x,y) involves some very large/very small numbers that are bound to cause overflow/underflow errors; so I'd really prefer to work with log[f(x,y)] instead of f(x,y).
Thus my question is two parts:
1) Is there a way to estimate log[\int_0^\infty\int_0^\infty f(x,y)dxdy] using the log of the function instead of the function itself?
2) Is there an implementation of this in Python?
Thanks
I would be surprised if the math and/or numpy libraries or perhaps some more specific third party libraries would not be able to solve a problem like this. Here are some of their log functions:
math.log(x[, base]), math.log1p(x), math.log2(x), math.log10(x) (https://docs.python.org/3.3/library/math.html)
numpy.log, numpy.log10, numpy.log2, numpy.log1p, numpy.logaddexp, numpy.logaddexp2 (https://numpy.org/doc/stable/reference/routines.math.html#exponents-and-logarithms)
Generally, Just google: "logarithm python library" and try to identify similar stackoverflow problems, which will allow you to find the right libraries and functions to try out. Once you do that, then you can follow this guide, so that someone can try to help you get from input to expected output: How to make good reproducible pandas examples
is there a filter function of kalman in Python that works in the same way as the Kalman function of matlab?
[kest] = kalman(sys,Qn,Rn)
The idea is that the function receives as parameters a space of states and the respective weight matrices (it is to implement an LQR controller)
You can use the pyKalman library. See the sin example followed by the filter example.
It is not exactly like Matlab but it is easy enough to use.
I finally found the ovtave source code for the kalman filter and implemented it in python. Anyway, thank you very much
I'm working with scipy.integrate.odeint and want to understand it better. For this I have two slightly related questions:
Which mathematical method is it using? Runge-Kutta? Adams-Bashforth? I found this site, but it seems to be for C++, but as far as I know the python function uses the C++ version as well... It states that it switches automatically between implicit and explicit solver, does anybody know how it does this?
To understand/reuse the information I would like to know at which timepoints it evaluates the function and how exactly it computes the solution of the ODE, but fulloutput does not seem to help/I wasn't able to find out how. So to be more precise, an example with Runge-Kutta-Fehlberg: I want the different timepoints at which it evaluated f and the weights it used to multiply it.
Additional information (what for this Info is needed):
I want to reuse this information to use automatic differentiation. So I would call odeint as a black box, find out all the relevant steps it made and reuse this info to calculate the differential dx(T_end)/dx0.
If you know of any other method to solve my problem, please go ahead. Also if another ode solver might be more appropriate to d this.
PS: I'm new, so would it be better to split this question into to questions? I.e. seperate 1. and 2.?
Usually I use Mathematica, but now trying to shift to python, so this question might be a trivial one, so I am sorry about that.
Anyways, is there any built-in function in python which is similar to the function named Interval[{min,max}] in Mathematica ? link is : http://reference.wolfram.com/language/ref/Interval.html
What I am trying to do is, I have a function and I am trying to minimize it, but it is a constrained minimization, by that I mean, the parameters of the function are only allowed within some particular interval.
For a very simple example, lets say f(x) is a function with parameter x and I am looking for the value of x which minimizes the function but x is constrained within an interval (min,max) . [ Obviously the actual problem is just not one-dimensional rather multi-dimensional optimization, so different paramters may have different intervals. ]
Since it is an optimization problem, so ofcourse I do not want to pick the paramter randomly from an interval.
Any help will be highly appreciated , thanks!
If it's a highly non-linear problem, you'll need to use an algorithm such as the Generalized Reduced Gradient (GRG) Method.
The idea of the generalized reduced gradient algorithm (GRG) is to solve a sequence of subproblems, each of which uses a linear approximation of the constraints. (Ref)
You'll need to ensure that certain conditions known as the KKT conditions are met, etc. but for most continuous problems with reasonable constraints, you'll be able to apply this algorithm.
This is a good reference for such problems with a few examples provided. Ref. pg. 104.
Regarding implementation:
While I am not familiar with Python, I have built solver libraries in C++ using templates as well as using function pointers so you can pass on functions (for the objective as well as constraints) as arguments to the solver and you'll get your result - hopefully in polynomial time for convex problems or in cases where the initial values are reasonable.
If an ability to do that exists in Python, it shouldn't be difficult to build a generalized GRG solver.
The Python Solution:
Edit: Here is the python solution to your problem: Python constrained non-linear optimization
Are there functions in python that will fill out missing values in a matrix for you, by using collaborative filtering (ex. alternating minimization algorithm, etc). Or does one need to implement such functions from scratch?
[EDIT]: Although this isn't a matrix-completion example, but just to illustrate a similar situation, I know there is an svd() function in Matlab that takes a matrix as input and automatically outputs the singular value decomposition (svd) of it. I'm looking for something like that in Python, hopefully a built-in function, but even a good library out there would be great.
Check out numpy's linalg library to find a python SVD implementation
There is a library fancyimpute. Also, sklearn NMF