Elegant way to translate set of weighted sums to python - python

Given a set of terms ||(p_i' - sum{w_ji*(R_j*p_i+v_j)})||^2, where ||...||^2 denotes the squared norm, I want to efficiently set up an array (or a list) in Python filled with these terms. p_i', p_i, v_j are three-dimensional vectors, and R_j is a 3x3 matrix.
I've already tried this but I don't know how to incorporate the sum over j.
new_points = r_mesh.points() # p', return Nx3 array
old_points = avg_mesh.points() # p
n_joints = 3
rv = np.arange(n_joints * 15) # R_j and v_j are stored in rv
weights = np.random.rand(n_joints, len(new_points)) # w
func = [[np.linalg.norm(
new_points[i] - (weights[j, i] * ((np.array(rv[j * 15:j * 15 + 9]).reshape(3, 3) # old_points[i]) + np.array(
rv[j * 9 + 9: j * 9 + 12])))) for j in range(n_joints)] for i in range(len(new_points))]
To make things clearer here is the original equation that I transformed into a non-linear function as to feed it to the Levenberg-Marquardt method.
EDIT: I'm sorry, before, there was a wrong image.

The simplest ("auto pilot", no actual thinking required) method would be np.einsum:
# set up example:
n_i, n_j = 20, 30
p = np.random.random((n_i, 3))
pp = np.random.random((n_i, 3))
R = np.random.random((n_j, 3, 3))
w = np.random.random((n_j, n_i))
v = np.random.random((n_j, 3))
# now just tell einsum which index is where and let it
# do its magic
# R_j p_i
Rp = np.einsum('jkl,il', R,p)
# by Einstein convention this will sum over l,
# so Rp has indices ijk
# w_ji (Rp_ij + v_j)
wRpv = np.einsum('ji,ijk->ik', w,Rp+v)
# pure Einstein convention would sum over i and j,
# we override this by passing explicit output indices
# ik to keep i alive
# squared norm
d = pp - wRpv
result = np.einsum('ik,ik', d,d)

Related

Multigrid Poisson Solver

I am trying to make my own CFD solver and one of the most computationally expensive parts is solving for the pressure term. One way to solve Poisson differential equations faster is by using a multigrid method. The basic recursive algorithm for this is:
function phi = V_Cycle(phi,f,h)
% Recursive V-Cycle Multigrid for solving the Poisson equation (\nabla^2 phi = f) on a uniform grid of spacing h
% Pre-Smoothing
phi = smoothing(phi,f,h);
% Compute Residual Errors
r = residual(phi,f,h);
% Restriction
rhs = restriction(r);
eps = zeros(size(rhs));
% stop recursion at smallest grid size, otherwise continue recursion
if smallest_grid_size_is_achieved
eps = smoothing(eps,rhs,2*h);
else
eps = V_Cycle(eps,rhs,2*h);
end
% Prolongation and Correction
phi = phi + prolongation(eps);
% Post-Smoothing
phi = smoothing(phi,f,h);
end
I've attempted to implement this algorithm myself (also at the end of this question) however it is very slow and doesn't give good results so evidently it is doing something wrong. I've been trying to find why for too long and I think it's just worthwhile seeing if anyone can help me.
If I use a grid size of 2^5 by 2^5 points, then it can solve it and give reasonable results. However, as soon as I go above this it takes exponentially longer to solve and basically get stuck at some level of inaccuracy, no matter how many V-Loops are performed. at 2^7 by 2^7 points, the code takes way too long to be useful.
I think my main issue is that my implementation of a jacobian iteration is using linear algebra to calculate the update at each step. This should, in general, be fast however, the update matrix A is an n*m sized matrix, and calculating the dot product of a 2^7 * 2^7 sized matrix is expensive. As most of the cells are just zeros, should I calculate the result using a different method?
if anyone has any experience in multigrid methods, I would appreciate any advice!
Thanks
my code:
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 29 16:24:16 2020
#author: mclea
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import convolve2d
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import griddata
from matplotlib import cm
def restrict(A):
"""
Creates a new grid of points which is half the size of the original
grid in each dimension.
"""
n = A.shape[0]
m = A.shape[1]
new_n = int((n-2)/2+2)
new_m = int((m-2)/2+2)
new_array = np.zeros((new_n, new_m))
for i in range(1, new_n-1):
for j in range(1, new_m-1):
ii = int((i-1)*2)+1
jj = int((j-1)*2)+1
# print(i, j, ii, jj)
new_array[i,j] = np.average(A[ii:ii+2, jj:jj+2])
new_array = set_BC(new_array)
return new_array
def interpolate_array(A):
"""
Creates a grid of points which is double the size of the original
grid in each dimension. Uses linear interpolation between grid points.
"""
n = A.shape[0]
m = A.shape[1]
new_n = int((n-2)*2 + 2)
new_m = int((m-2)*2 + 2)
new_array = np.zeros((new_n, new_m))
i = (np.indices(A.shape)[0]/(A.shape[0]-1)).flatten()
j = (np.indices(A.shape)[1]/(A.shape[1]-1)).flatten()
A = A.flatten()
new_i = np.linspace(0, 1, new_n)
new_j = np.linspace(0, 1, new_m)
new_ii, new_jj = np.meshgrid(new_i, new_j)
new_array = griddata((i, j), A, (new_jj, new_ii), method="linear")
return new_array
def adjacency_matrix(rows, cols):
"""
Creates the adjacency matrix for an n by m shaped grid
"""
n = rows*cols
M = np.zeros((n,n))
for r in range(rows):
for c in range(cols):
i = r*cols + c
# Two inner diagonals
if c > 0: M[i-1,i] = M[i,i-1] = 1
# Two outer diagonals
if r > 0: M[i-cols,i] = M[i,i-cols] = 1
return M
def create_differences_matrix(rows, cols):
"""
Creates the central differences matrix A for an n by m shaped grid
"""
n = rows*cols
M = np.zeros((n,n))
for r in range(rows):
for c in range(cols):
i = r*cols + c
# Two inner diagonals
if c > 0: M[i-1,i] = M[i,i-1] = -1
# Two outer diagonals
if r > 0: M[i-cols,i] = M[i,i-cols] = -1
np.fill_diagonal(M, 4)
return M
def set_BC(A):
"""
Sets the boundary conditions of the field
"""
A[:, 0] = A[:, 1]
A[:, -1] = A[:, -2]
A[0, :] = A[1, :]
A[-1, :] = A[-2, :]
return A
def create_A(n,m):
"""
Creates all the components required for the jacobian update function
for an n by m shaped grid
"""
LaddU = adjacency_matrix(n,m)
A = create_differences_matrix(n,m)
invD = np.zeros((n*m, n*m))
np.fill_diagonal(invD, 1/4)
return A, LaddU, invD
def calc_RJ(rows, cols):
"""
Calculates the jacobian update matrix Rj for an n by m shaped grid
"""
n = int(rows*cols)
M = np.zeros((n,n))
for r in range(rows):
for c in range(cols):
i = r*cols + c
# Two inner diagonals
if c > 0: M[i-1,i] = M[i,i-1] = 0.25
# Two outer diagonals
if r > 0: M[i-cols,i] = M[i,i-cols] = 0.25
return M
def jacobi_update(v, f, nsteps=1, max_err=1e-3):
"""
Uses a jacobian update matrix to solve nabla(v) = f
"""
f_inner = f[1:-1, 1:-1].flatten()
n = v.shape[0]
m = v.shape[1]
A, LaddU, invD = create_A(n-2, m-2)
Rj = calc_RJ(n-2,m-2)
update=True
step = 0
while update:
v_old = v.copy()
step += 1
vt = v_old[1:-1, 1:-1].flatten()
vt = np.dot(Rj, vt) + np.dot(invD, f_inner)
v[1:-1, 1:-1] = vt.reshape((n-2),(m-2))
err = v - v_old
if step == nsteps or np.abs(err).max()<max_err:
update=False
return v, (step, np.abs(err).max())
def MGV(f, v):
"""
Solves for nabla(v) = f using a multigrid method
"""
# global A, r
n = v.shape[0]
m = v.shape[1]
# If on the smallest grid size, compute the exact solution
if n <= 6 or m <=6:
v, info = jacobi_update(v, f, nsteps=1000)
return v
else:
# smoothing
v, info = jacobi_update(v, f, nsteps=10, max_err=1e-1)
A = create_A(n, m)[0]
# calculate residual
r = np.dot(A, v.flatten()) - f.flatten()
r = r.reshape(n,m)
# downsample resitdual error
r = restrict(r)
zero_array = np.zeros(r.shape)
# interploate the correction computed on a corser grid
d = interpolate_array(MGV(r, zero_array))
# Add prolongated corser grid solution onto the finer grid
v = v - d
v, info = jacobi_update(v, f, nsteps=10, max_err=1e-6)
return v
sigma = 0
# Setting up the grid
k = 6
n = 2**k+2
m = 2**(k)+2
hx = 1/n
hy = 1/m
L = 1
H = 1
x = np.linspace(0, L, n)
y = np.linspace(0, H, m)
XX, YY = np.meshgrid(x, y)
# Setting up the initial conditions
f = np.ones((n,m))
v = np.zeros((n,m))
# How many V cyles to perform
err = 1
n_cycles = 10
loop = True
cycle = 0
# Perform V cycles until converged or reached the maximum
# number of cycles
while loop:
cycle += 1
v_new = MGV(f, v)
if np.abs(v - v_new).max() < err:
loop = False
if cycle == n_cycles:
loop = False
v = v_new
print("Number of cycles " + str(cycle))
plt.contourf(v)
I realize that I'm not answering your question directly, but I do note that you have quite a few loops that will contribute some overhead cost. When optimizing code, I have found the following thread useful - particularly the line profiler thread. This way you can focus in on "high time cost" lines and then start to ask more specific questions regarding opportunities to optimize.
How do I get time of a Python program's execution?

Elements of a matrix inverse for ill-conditioned matrix

I am trying to find the elements of a matrix inverse for an ill-conditioned matrix
Consider the complex non-Hermitian matrix M, I know this matrix has one zero eigenvalue, and is therefor singular. However, I need to find the sum of the matrix elements: v#f(M)#u, where u and v are both vectors and f(x)=1/x (effectively the matrix inverse). I know that the zeroth eigenvalue does not contribute to this sum, so there is no explicit issue with the singularity. However, my code is very numerically unstable, I presume this is a consequence of an error in finding the eigenvalues of the system.
Starting by building the preliminary matrices:
import numpy as np
import scipy as sc
g0 = np.array([0,0,1])
g1 = np.array([0,1,0])
e0 = np.array([1,0,0])
sm = np.outer(g0, e0)
sp = np.outer(e0, g0)
def spre(op):
return np.kron(np.eye(op.shape[0]),op)
def spost(op):
return np.kron(op.T,np.eye(op.shape[0]))
def sprepost(op1,op2):
return np.kron(op1.T,op2)
sm_reg = spre(sm)
sp_reg = spre(sp)
spsm_reg=spre(sp#sm)
hil_dim = int(g0.shape[0])
cav_proj= np.eye(hil_dim).reshape(hil_dim**2,)
rho0 =(np.outer(e0,e0)).reshape(hil_dim**2,)
def ham(g):
return g * (np.outer(g1,e0) + np.outer(e0, g1))
def lind_op(A):
L = 2 * sprepost(A,A.conj().T) - spre(A.conj().T # A)
L += - spost(A.conj().T # A)
return L
def JC_lio(g, kappa, gamma):
unit = -1j * (spre(ham(g)) - spost(ham(g)))
lind = gamma * lind_op(np.outer(g0 , e0)) + kappa * lind_op(np.outer(g0 , g1))
return unit + lind
Now define a function that first finds the left and right eigenvalues, and then finds the sum of the matrix elements:
def power_int(g, kappa, gamma):
# Construct the non-Hermitian matrix of interest
lio = JC_lio(g,kappa,gamma)
#Find its left and right eigenvectors:
ev, left, right = scipy.linalg.eig(lio, left=True,right=True)
# Find the appropriate normalisation factors
norm = np.array([(left.conj().T[ii]).dot(right.conj().T[ii]) for ii in range(len(ev))])
#Find the similarity transformation for the problem
P = right
Pinv = (left/norm).conj().T
#find the projectors for the Eigenbasis
Proj = [np.outer(P.conj().T[ii],Pinv[ii]) for ii in range(len(ev))]
#Find the relevant matrix elements between the Eigenbasis and the projectors --- this is where the zero eigenvector gets removed
PowList = [(spsm_reg# Proj[ii] # rho0).dot(cav_proj) for ii in range(len(ev))]
#apply the function
Pow = 0
for ii in range(len(ev)):
if PowList[ii]==0:
Pow = Pow
else:
Pow += PowList[ii]/ev[ii]
return -np.pi * np.real(Pow)
#example run:
grange = np.linspace(0.001,10,40)
dat = np.array([power_int(g, 1, 1) for g in grange])
Running this code leads to extremely oscillatory results where I expect a smooth curve. I suspect this error is due to poor accuracy in determining the eigenvectors, but I can't seem to find any documentation on this. Any insights would be welcome.

Use scipy.optimize.root on a numpy array with additional arguments

Given the optimization problem (1) as depicted below where p_i, p'_i and w_ji are given for i=0,...,6889, I want to use the Levenberg-Marquardt method to find an optimal solution for R_j and v_j using scipy.optimize.root (I'm open to any other suggestions).
However, I don't know how to set up the callable function that needs to be passed to root. So far, all I have is this which is obviously wrong.
def fun(x, (old_points, new_points, weights, n_joints)):
"""
:param x: variable to optimize. It is supposed to encapsulate R and v from (1)
:param old_points: original vertex positions, (6890,3) numpy array
:param new_points: transformed vertex positions, (6890,3) numpy array
:param weights: weight matrix obtained from spectral clustering, (n_joints, 6890) numpy array
:param n_joints: number of joints
:return: non-linear cost function to find the root of
"""
# Extract rotations and offsets
R = np.array([(np.array(x[j * 15:j * 15 + 9]).reshape(3, 3)) for j in range(n_joints)])
v = np.array([(np.array(x[j * 15 + 9:j * 15 + 12])) for j in range(n_joints)])
# Use equation (1) for the non-linear pass.
# R_j p_i
Rp = np.einsum('jkl,il', x, old_points) # x shall replace R
# w_ji (Rp_ij + v_j)
wRpv = np.einsum('ji,ijk->ik', weights, Rp + x) # x shall replace v
# Set up a non-linear cost function, then compute the squared norm.
d = new_points - wRpv
result = np.einsum('ik,ik', d, d)
return result
EDIT: This is now the correct result.
Use your original fun (but give it a better name)
def fun(x, (old_points, new_points, weights, n_joints)):
"""
:param x: variable to optimize. It is supposed to encapsulate R and v from (1)
:param old_points: original vertex positions, (6890,3) numpy array
:param new_points: transformed vertex positions, (6890,3) numpy array
:param weights: weight matrix obtained from spectral clustering, (n_joints, 6890) numpy array
:param n_joints: number of joints
:return: non-linear cost function to find the root of
"""
# Extract rotations and offsets
R = np.array([(np.array(x[j * 15:j * 15 + 9]).reshape(3, 3)) for j in range(n_joints)])
v = np.array([(np.array(x[j * 15 + 9:j * 15 + 12])) for j in range(n_joints)])
# Use equation (1) for the non-linear pass.
# R_j p_i
Rp = np.einsum('jkl,il', x, old_points) # x shall replace R
# w_ji (Rp_ij + v_j)
wRpv = np.einsum('ji,ijk->ik', weights, Rp + x) # x shall replace v
# Set up a non-linear cost function, then compute the squared norm.
d = new_points - wRpv
result = np.einsum('ik,ik', d, d)
return result
make a closure on it so that it takes a single input (the variable you are solving):
old_points = ...
new_points = ...
weights = ...
rv = ...
n_joints = ...
def cont_function(x):
return fun(x, old_points, new_points, weights, rv, n_joints)
now try use cost_function in roots

ValueError: x and y must have the same first dimension

I am trying to implement a finite difference approximation to solve the Heat Equation, u_t = k * u_{xx}, in Python using NumPy.
Here is a copy of the code I am running:
## This program is to implement a Finite Difference method approximation
## to solve the Heat Equation, u_t = k * u_xx,
## in 1D w/out sources & on a finite interval 0 < x < L. The PDE
## is subject to B.C: u(0,t) = u(L,t) = 0,
## and the I.C: u(x,0) = f(x).
import numpy as np
import matplotlib.pyplot as plt
# parameters
L = 1 # legnth of the rod
T = 10 # terminal time
N = 10
M = 100
s = 0.25
# uniform mesh
x_init = 0
x_end = L
dx = float(x_end - x_init) / N
x = np.arange(x_init, x_end, dx)
x[0] = x_init
# time discretization
t_init = 0
t_end = T
dt = float(t_end - t_init) / M
t = np.arange(t_init, t_end, dt)
t[0] = t_init
# Boundary Conditions
for m in xrange(0, M):
t[m] = m * dt
# Initial Conditions
for j in xrange(0, N):
x[j] = j * dx
# definition of solution u(x,t) to u_t = k * u_xx
u = np.zeros((N, M+1)) # array to store values of the solution
# Finite Difference Scheme:
u[:,0] = x**2 #initial condition
for m in xrange(0, M):
for j in xrange(1, N-1):
if j == 1:
u[j-1,m] = 0 # Boundary condition
elif j == N-1:
u[j+1,m] = 0
else:
u[j,m+1] = u[j,m] + s * ( u[j+1,m] -
2 * u[j,m] + u[j-1,m] )
print u, #t, x
plt.plot(u, t)
#plt.show()
I think my code is working properly and it is producing an output. I want to plot the output of the solution u versus t (my time vector). If I can plot the graph then I am able to check if my numerical approximation agrees with the expected phenomena for the Heat Equation. However, I am getting the error that "x and y must have same first dimension". How can I correct this issue?
An additional question: Am I better off attempting to make an animation with matplotlib.animation instead of using matplotlib.plyplot ???
Thanks so much for any and all help! It is very greatly appreciated!
Okay so I had a "brain dump" and tried plotting u vs. t sort of forgetting that u, being the solution to the Heat Equation (u_t = k * u_{xx}), is defined as u(x,t) so it has values for time. I made the following correction to my code:
print u #t, x
plt.plot(u)
plt.show()
And now my programming is finally displaying an image. And here it is:
It is absolutely beautiful, isn't it?

Specify the shift for numpy.correlate

I wonder if there is a possibility to specify the shift expressed by k variable for the cross-correlation of two 1D arrays. Because with the numpy.correlate function and its mode parameter set to 'full' I will get cross-correlate coefficients for each k shift for whole length of the taken array (assuming that both arrays are the same size). Let me show you what I mean exactly on below example:
import numpy as np
# Define signal 1.
signal_1 = np.array([1, 2 ,3])
# Define signal 2.
signal_2 = np.array([1, 2, 3])
# Other definitions.
Xi = signal_1
Yi = signal_2
N = np.size(Xi)
k = 3
Xs = np.average(Xi)
Ys = np.average(Yi)
# Cross-covariance coefficient function.
def crossCovariance(Xi, Yi, N, k, Xs, Ys, forCorrelation = False):
autoCov = 0
for i in np.arange(0, N-k):
autoCov += ((Xi[i+k])-Xs)*(Yi[i]-Ys)
if forCorrelation == True:
return autoCov/N
else:
return (1/(N-1))*autoCov
# Expected value function.
def E(X, P):
expectedValue = 0
for i in np.arange(0, np.size(X)):
expectedValue += X[i] * (P[i] / np.size(X))
return expectedValue
# Cross-correlation coefficient function.
def crossCorrelation(Xi, Yi, k):
# Calculate the covariance coefficient.
cov = crossCovariance(Xi, Yi, N, k, Xs, Ys, forCorrelation = True)
# Calculate standard deviations.
EX = E(Xi, np.ones(np.size(Xi)))
SDX = (E((Xi - EX) ** 2, np.ones(np.size(Xi)))) ** (1/2)
EY = E(Yi, np.ones(np.size(Yi)))
SDY = (E((Yi - EY) ** 2, np.ones(np.size(Yi)))) ** (1/2)
# Calculate correlation coefficient.
return cov / (SDX * SDY)
# Express cross-covariance or cross-correlation function in a form of a 1D vector.
def array(k, norm = True):
# If norm = True, return array of autocorrelation coefficients.
# If norm = False, return array of autocovariance coefficients.
vector = np.array([])
shifts = np.abs(np.arange(-k, k+1, 1))
for i in shifts:
if norm == True:
vector = np.append(crossCorrelation(Xi, Yi, i), vector)
else:
vector = np.append(crossCovariance(Xi, Yi, N, i, Xs, Ys), vector)
return vector
In my example, calling the method array(k, norm = True) for different values of k will give resuslt as I shown below:
k = 3, [ 0. -0.5 0. 1. 0. -0.5 0. ]
k = 2, [-0.5 0. 1. 0. -0.5]
k = 1, [ 0. 1. 0.]
k = 0, [ 1.]
My approach is good for the learning purposes but I need to move to the native numpy functions in order to speed up my analysis. How one could specify the k shift value while using the native numpy.correlate function? PS k parameter specify the "time" shift between two arrays. Thank you in advance.
Whilst I'm not aware of any built-in function for computing the cross-correlation for a particular range of signal lags, you can speed your version up a lot by vectorization, i.e. performing operations on arrays rather than single elements in an array.
This version uses only a single Python loop over the lags:
import numpy as np
def xcorr(x, y, k, normalize=True):
n = x.shape[0]
# initialize the output array
out = np.empty((2 * k) + 1, dtype=np.double)
lags = np.arange(-k, k + 1)
# pre-compute E(x), E(y)
mu_x = x.mean()
mu_y = y.mean()
# loop over lags
for ii, lag in enumerate(lags):
# use slice indexing to get 'shifted' views of the two input signals
if lag < 0:
xi = x[:lag]
yi = y[-lag:]
elif lag > 0:
xi = x[:-lag]
yi = y[lag:]
else:
xi = x
yi = y
# x - mu_x; y - mu_y
xdiff = xi - mu_x
ydiff = yi - mu_y
# E[(x - mu_x) * (y - mu_y)]
out[ii] = xdiff.dot(ydiff) / n
# NB: xdiff.dot(ydiff) == (xdiff * ydiff).sum()
if normalize:
# E[(x - mu_x) * (y - mu_y)] / (sigma_x * sigma_y)
out /= np.std(x) * np.std(y)
return lags, out
Some more general points of advice:
As I mentioned in the comments, you should try to give your functions names that are informative, and that aren't likely to conflict with other things in your namespace (e.g. array vs np.array).
It's much better to make your functions self-contained. In your version, N, k, Xs and Ys are defined outside the main function. In this situation you might accidentally modify or overwrite one of these variables, and it can get tricky to debug errors caused by this sort of thing.
Appending to numpy arrays (e.g. using np.append or np.concatenate) is slow, so avoid it whenever you can. If, as in this case, you know the size of the output ahead of time, it's much faster to pre-allocate the output array (e.g. using np.empty or np.zeros), then fill in the elements. If you absolutely have to do concatenation, it's often faster to append to a normal Python list, then convert it to a numpy array at the end.
It's available by specifying maxlags:
import matplotlib.pyplot as plt
xcorr = plt.xcorr(signal_1, signal_2, maxlags=1)
Documentation can be found here. This implementation is based on np.correlate.

Categories

Resources