Convert recursive peak finding to iterative - python

A peak in an array is any value that is no smaller than its two adjacent neighbors. If its the first or last element of the array we only need to compare with one neighbor. I wrote some recursive code to find peaks in python which is fast in principle as it runs in O(log n) time:
def peak_recursive(A):
n = len(A)
if n == 1:
print("n == 1")
return 0
if n == 2:
return 0 if A[0] >= A[1] else 1
if A[n//2] >= A[n//2+1] and A[n//2] >= A[n//2 - 1]:
return n//2
elif A[n//2 - 1] >= A[n//2]:
return peak_recursive(A[0:n//2])
else:
return n//2 + 1 + peak_recursive(A[n//2+1:])
However, python isn't very good at recursion so I think it would be better iteratively. How can I convert this to iterative code?
Update
It turns out this code is very slow as A[n//2+1:] and A[0:n//2] make copies of the lists.

One simple solution is to iterate over the list and compare the previous and next values. You also need to consider the first element and last element situation:
# Import numpy to create random vector
import numpy as np
l = np.random.randint(0, 10, 20).tolist()
print(l)
# [6, 7, 2, 7, 1, 4, 2, 8, 9, 1, 3, 7, 0, 5, 4, 6, 9, 0, 5, 7]
def peak_iter(A):
out = [] # Output
n = len(A) # Number element A
for i, curr in enumerate(A): # Iterate over A
condi = True # Peak condition
if i > 0: condi = A[i-1] < curr # Update peak condition from previous value
if i < n - 1: condi = curr > A[i + 1] # Update peak condition from next value
if condi: out.append(curr) # If condition satisfied: add value to output
return out
print(peak_iter(l))
# [7, 7, 4, 9, 7, 5, 9, 7]
As well, you can easily get the index instead of the value (or the both) by replacing out.append(curr) with out.append(i) or out.append([curr, i]).
Update:
If you just want to get the one peak, you can exit the function after finding one element meeting condition. The following returns the first values:
def peak_iter_first(A):
out = None # Output
n = len(A) # Number element A
for i, curr in enumerate(A): # Iterate over A
condi = True # Peak condition
if i > 0: condi = A[i-1] < curr # Update peak condition from previous value
if i < n - 1: condi = curr > A[i + 1] # Update peak condition from next value
if condi: return curr # If condition satisfied: return value
return out
print(peak_iter_first(l))
# 7
Update 2:
The translation of the recursive function to an iterative one might looks something like this:
def peak_iterative(A):
n = len(A)
out = 0
while True:
if n == 1:
out += 0
break
if n == 2:
out += 0 if A[0] >= A[1] else 1
break
if A[n//2] >= A[n//2+1] and A[n//2] >= A[n//2 - 1]:
out += n//2
break
elif A[n//2 - 1] >= A[n//2]:
A = A[0:n//2]
else:
out += n//2 + 1
A = A[n//2+1:]
n = len(A)
return out
Who's the faster ?
The recursive one is a bit faster than the iterative method:
import timeit
import functools
# Bigger array (2000 elements)
l = np.random.randint(0, 10, 2000).tolist()
t = timeit.Timer(functools.partial(peak_recursive, l))
print (t.timeit(50))
# 3.950000000019216e-05
t = timeit.Timer(functools.partial(peak_iterative, l))
print (t.timeit(50))
# 7.049999999986234e-05
Hope that helps !

Related

FibFrog Codility Problem - Optimising for Performance

I'm trying to solve the FibFrog Codility problem and I came up with the following approach:
If len(A) is 0 we know we can reach the other side in one jump.
If len(A) + 1 is a fibonacci number, we can also reach it in one jump.
Else, we loop through A, and for the positions we can reach, we check if we can either reach them directly from -1 using a fibonacci number (idx + 1 in fibonaccis) or if we can reach them by first jumping to another position (reachables) and then jumping to the current position. In either case, we also check if we can go from the current position to the end of the river - if we can, then we can return because we found the minimum number of steps required.
Finally, if unreachable is True once this loop completes, this means we can't reach any position using a Fibonacci number, so we return -1.
I'm getting 83% correctness and 0% performance with this approach.
I understand the solution is O(n^2), assuming the array consists of only 1, the nested loop for v in reachables: would run n times - however I'm not sure how else I can compute this, since for each of the positions I need to check whether we can reach it from the start of the array, or from any previous positions using a fibonacci number.
def solution(A):
if len(A) == 0: return 1
fibonaccis = fibonacci(len(A) + 3)
if len(A) + 1 in fibonaccis: return 1
leaves = [0] * len(A)
unreachable = True
reachables = []
for idx, val in enumerate(A):
if val == 1:
if idx + 1 in fibonaccis:
unreachable = False
leaves[idx] = 1
if len(A) - idx in fibonaccis:
return 2
reachables.append(idx)
elif len(reachables) > 0:
for v in reachables:
if idx - v in fibonaccis:
leaves[idx] = leaves[v] + 1
if len(A) - idx in fibonaccis:
return leaves[v] + 2
reachables.append(idx)
break
if unreachable: return -1
if len(A) - reachables[-1] in fibonaccis:
return leaves[reachables[-1]] + 1
def fibonacci(N):
arr = [0] * N
arr[1] = 1
for i in range(2, N):
arr[i] = arr[i-1] + arr[i-2]
return arr
Some suggestions for improving performance of your algorithm -
If len(A) = 100000, you are calculating 100003 fibonacci numbers, while we only need fibonacci numbers which are less than 100k, which would be <30 of them.
Your solution is O(n^4), since each X in reachables or Y in fibonaccis operation is O(N) where N is len(A). (and length of fibonaccis being N because of above issue)
Since you are doing a lot of item in list operations on fibonaccis and reachables, consider making it a set or a dictionary for faster(O(1) instead of O(n)) lookup.
Even with the above changes, the algorithm would be O(N^2) because of nested looping across A and reachables, so you need to come up with a better approach.
With your existing implementation, you need to traverse through all the paths and then in the end you will get the smallest number of jumps.
Instead of this approach, if you start at 0, and then keep a count of the number of jumps you have taken so far, and maintain how far(and to which numbers) you can reach after each jump then you can easily find the minimum jumps required to reach the end. (this will also save on redundant work you would have to do in case you have all 1s in A.
e.g. for
A = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
fibonacci = set(1, 2, 3, 5)
At first jump, we can reach following 1-based indexes -
reachable = [1, 2, 3, 5]
jumps = 1
After second jump
reachables = [2, 3, 4, 5, 6, 7, 8]
jumps = 2
After third jump
reachables = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
jumps = 3
so you have reached the end(10) after 3 jumps.
Please check out #nialloc's answer here - https://stackoverflow.com/a/64558623/8677071 which seems to be doing something similar.
Check out also my solution, which scores 100% on Codility tests and is easy to comprehend.
The idea is to track all possible positions of the frog after k jumps. If possible position == n, return k.
def fib_up_to(n):
numbers = [1]
i = 1
while True:
new_num = (numbers[-2] + numbers[-1]) if i > 1 else 2
if new_num > n:
break
numbers.append(new_num)
i += 1
return numbers
def solution(A):
n = len(A)
if n == 0:
return 1
numbers = fib_up_to(n+1)
possible_positions = set([-1])
for k in range(1, n+1):
positions_after_k = set()
for pos in possible_positions:
for jump in numbers:
if pos + jump == n:
return k
if pos + jump < n and A[pos + jump]:
positions_after_k.add(pos + jump)
possible_positions = positions_after_k
return -1

How do I get the index of the largest element adjacent to the greatest element in a list

So I have stock = [5,6,8,4,8,3,6,4]. I want to get the index of the greatest element adjacent to the 1st occurrence of the greatest element, 8. So what I want to get will be 6 with index 1. I have tried using this code.
closest = min(range(len(stock)), key=lambda i: abs(stock[i]-max(stock)))
but it just returns the max element.
If I understood your problem correctly, the most interesting input would look like [1,5,8,4,8,7,6,4]. I.e. we need to return the index of the 5 since it's a second maximum closest to the first occurrence of the maximum. If so, then the algorithm would look as follows:
find two leftmost and absolute maximums m1 and m2
if m1 == m2 then the target is in either of two subarrays:
[0, pos(m1))
[pos(m1) + 1, pos(m2))
otherwise, the target is in either of the following subarrays:
[0, pos(m1))
[pos(m1) + 1, len(arr))
We can find k max elements in an array in a close to linear time using the binary heap. So, I think I got a linear solution for you:
import heapq
def nlargest_with_pos(n, arr):
assert len(arr) >= n
largest = heapq.nlargest(n, ((it[1], -it[0]) for it in enumerate(arr)))
return [(it[0], -it[1]) for it in largest]
def find_x(arr):
assert len(arr) > 1
first_max, second_max = nlargest_with_pos(2, arr)
if len(arr) == 2:
return second_max[1]
left_range = (0, first_max[1])
if second_max[0] == first_max[0]:
right_range = (first_max[1] + 1, second_max[1])
else:
right_range = (first_max[1] + 1, len(arr))
left_hand = arr[left_range[0]:left_range[1]]
right_hand = arr[right_range[0]:right_range[1]]
if not left_hand:
return nlargest_with_pos(1, right_hand)[0][1]
if not right_hand:
return nlargest_with_pos(1, left_hand)[0][1]
left_second_max = nlargest_with_pos(1, left_hand)[0]
right_second_max = nlargest_with_pos(1, right_hand)[0]
if left_second_max[0] >= right_second_max[0]:
return left_second_max[1]
else:
return right_second_max[1]
print(find_x([1,5,8,4,8,7,6,4]))
Like this:
stock = [5,6,8,7,8,3,6,4]
if stock.index(max(stock)) == len(stock)-1:
print(len(stock)-2)
elif not stock.index(max(stock)):
print(1)
elif stock[stock.index(max(stock))-1] > stock[stock.index(max(stock))+1]:
print(stock.index(max(stock))-1)
else:
print(stock.index(max(stock))+1)
Output:
1
Not very elegant but this should work nonetheless:
stock.index(max(stock[stock.index(max(stock)) - 1], stock[(stock.index(max(stock)) + 1) % len(stock)]))
You'll have to add handling if there's a chance you see a list with less than three values
This prints index of highest element that's next to the first occurrence of maximum value in list stock:
stock = [1,5,8,4,8,7,6,4]
idx_max = stock.index(max(stock))
print(max([i for i in [idx_max-1, idx_max+1] if -1 < i < len(stock)], key=lambda k: stock[k]))
Prints:
1
Test cases:
stock = [8,3,8,4,8,3,6,4] # 1
stock = [1,3,1,3,8,5,6,4] # 5
stock = [1,3,1,4,1,3,6,8] # 6
stock = [1,5,8,4,8,7,6,4] # 1
Here's one way:
def get_max_neighbour(l):
_max = max(l)
excl = (-1, len(l))
neighbour = max(
(
(l[j], j)
for i in range(excl[-1])
for j in (i-1, i+1)
if l[i] == _max and j not in excl
),
key=lambda x: x[0]
)
return neighbour[1]
Result:
1
The nice thing about this is you can return both the value and index if you want.
Here's my solution to this puzzle. I'd say it is most similar to the solution of #DavidBuck, in that [8] -> -1 and [] -> None, but has four fewer exit points:
from math import inf
def index_of_max_neighbor_of_max(array):
if not array:
return None
index = array.index(max(array))
a = array[index - 1] if index - 1 >= 0 else -inf
b = array[index + 1] if index + 1 < len(array) else -inf
return index + (b > a) * 2 - 1
And my test code:
if __name__ == "__main__":
iomnom = index_of_max_neighbor_of_max
print(iomnom([5, 6, 8, 4, 8, 3, 6, 4])) # 1
print(iomnom([5, 6, 8, 4, 8, 3, 6, 9])) # 6
print(iomnom([5, 3])) # 1
print(iomnom([3, 5])) # 0
print(iomnom([8])) # -1
print(iomnom([])) # None
print(iomnom([5, 6, 8, 7, 8, 3, 6, 4])) # 3
print(iomnom([5, 6, 8, 4, 8, 3, 6, 9])) # 6
print(iomnom([5, 4, 8, 6, 8, 3, 6, 4])) # 3
def max_neighbor_index(l: list):
max_number = max(l)
max_number_indexes = [x for x in range(0, len(l)) if l[x] == max_number]
result = []
for number_index in max_number_indexes:
if number_index == 0:
result.append(1)
elif number_index == len(l) - 1:
result.append(len(l) - 2)
else:
result.append(l.index(max([l[number_index - 1], l[number_index + 1]])))
max_neighbor = max([l[x] for x in result])
return [x for x in result if l[x] == max_neighbor][0]
stock = [5, 6, 8, 4, 8, 3, 6, 4]
print(max_neighbor_index(stock))
1
stock = [5,6,8,4,8,3,6,4]
idx = 1
tmp,nxt = stock[0:2]
for i in range(1, len(stock)):
buf = stock[i-1] if i == len(stock)-1 else max(stock[i-1], stock[i+1])
if tmp < stock[i] or (tmp == stock[i] and nxt < buf):
idx = stock.index(buf, i-1)
nxt = stock[idx]
tmp = stock[i]
print('greatest next to greatest', nxt, 'at', idx)
Not very pretty, but it will cater for all possible scenarios, i.e. your list, max value a the start or the end, two or one value list.
Code is:
def highest_neighbour(stock):
if stock:
x = stock.index(max(stock))
if x - 1 >= 0:
if x + 1 < len(stock):
if stock[x + 1] > stock[x - 1]:
return x + 1
return x - 1
elif x + 1 < len(stock):
return x + 1
else:
return -1
I've set it to return -1 if the list only has one entry.
Output is:
highest_neighbour([5,6,8,4,8,3,6,4]) # -> 1
highest_neighbour([5,6,8,4,8,3,6,9]) # -> 6
highest_neighbour([9,6,8,4,8,3,6,4]) # -> 1
highest_neighbour([3,5]) # -> 0
highest_neighbour([8]) # -> -1
highest_neighbour([]) # -> None

Max Heapify code.Starting index 1 instead of 0 in python?

def max_heapify(arr, n, i):
largest = i
left = 2*i
right = 2*i + 1
while left <= n and arr[left] > arr[largest]:
largest = left
while right <= n and arr[right] > arr[largest]:
largest = right
if largest != i:
arr[largest], arr[i] = arr[i], arr[largest]
print(arr)
max_heapify(arr, n, i)
arr=[9, 6, 5, 0, 8, 2, 7, 1,3]
n = len(arr)
i = int(n/2)
max_heapify(arr, n, i)
The above Max Heapify code is failing because it' starting from Array 0. How can we change it 1?
for an array starting from 0, you will need to compare left < n and right < n in addition, your initial left and right should be left = 2 * i + 1 and right = 2 * i + 2. To retrieve the max heap, you will also need to call the max_heapify from the first parent node all the way down to 0. Finally there is no need for a while loop when you are assured of it happening only once. Here is a working code that returns the results you require
def max_heapify(arr, n, i):
left = 2*i + 1
right = 2*i + 2
if left < n and arr[left] > arr[i]:
largest = left
else:
largest = i
if right < n and arr[right] > arr[largest]:
largest = right
if largest != i:
arr[largest], arr[i] = arr[i], arr[largest]
print(arr)
max_heapify(arr, n, largest)
if __name__ == "__main__":
arr=[9, 6, 5, 0, 8, 2, 7, 1,3]
n = len(arr)
i = int((n-1)/2)
for b in reversed(range(0,i)):
max_heapify(arr, n, b)

Finding Maximum non-negative Subarray in python

I've tried to find the sub-array(s) from a given which contain elements of maximum sum than any other sub array.
Below function has parameter as input a and the output needs to be returned. There can be more than one subarray as their maximum sum can be equal. The code did not seem to be working as expected.
def max_sum_subarray(a):
N, sub_sum, max_sum, subArrays = len(a), 0, 0, {}
p,q=0,0 #starting and ending indices of a max sub arr
for i in range(N):
q=i
sub_sum+=a[i]
if(a[i]<0):
q-=1
if(sub_sum>=max_sum):
if(sub_sum>max_sum):
subArrays.clear()
subArrays[sub_sum]=[(p,q)]
else:
subArrays[sub_sum].append((p,q))
sub_sum=0
p=i+1
if(sub_sum>=max_sum):
if(sub_sum>max_sum):
subArrays.clear()
subArrays[sub_sum]=[(p,q)]
else:
subArrays[sub_sum].append((p,q))
return(subArrays[p:q+1])
When I tried to run for input
a=[ 1, 2, 5, -7, 2, 5 ]
Expected output is [1, 2, 5] but it gave [2, 5] instead. Can anyone please post the solution in python?
It seems like you making this harder than necessary. You can just keep track of max array seen to far and the current one you're pushing into -- you don't really need to care about anything else. When you hit a negative (or the end of the array) decide if the current should be the new max:
def maxSub(a):
max_so_far = []
max_sum = 0
cur = []
for n in a:
if n >= 0:
cur.append(n)
else:
cur_sum = sum(cur)
if cur_sum > max_sum:
max_sum = cur_sum
max_so_far = cur
cur = []
return max([max_so_far, cur], key = sum)
a=[ 1, 2, 5, -7, 2, 5 ]
maxSub(a)
# [1, 2, 5]
Of course itertools.groupby makes this a one-liner:
from itertools import groupby
a=[ 1, 2, 5, -7, 2, 5 ]
max([list(g) for k,g in groupby(a, key=lambda x: x>0) if k == True], key=sum)
For the following conditions:
NOTE 1: If there is a tie, then compare with segment’s length and
return segment which has maximum length
NOTE 2: If there is still a tie, then return the segment with minimum
starting index
Here is my working code in python:
def check(max_arr,curr):
if sum(curr) > sum(max_arr):
max_arr = curr
elif sum(curr) == sum(max_arr):
if len(curr) > len(max_arr):
max_arr = curr
elif len(curr) == len(max_arr):
if max_arr and (curr[0] > max_arr[0]):
max_arr = curr
return max_arr
def maxset(A):
curr = []
max_arr = []
for i in A:
if i >= 0:
curr.append(i)
else:
max_arr = check(max_arr,curr)
curr = []
max_arr = check(max_arr,curr)
return max_arr

Python Quicksort implementation

I tried to implement the recursive quicksort in Python, but it doesn't work. I know that there is the problem that the array doesn't get sorted because the pivot is always higher than i, which results in the problem that i is always equals to m.
def partition(array):
pivot = array[-1]
m = 0
for i in range(len(array) - 1):
if array[i] < pivot:
array[i], array[m] = array[m], array[i]
m += 1
else:
continue
array[m], array[len(array)-1] = array[len(array)-1], array[m]
return m
def quicksort(array):
if len(array) > 1:
m = partition(array)
quicksort(array[:m])
quicksort(array[m+1:])
return array
def main():
testarray = [3,6,2,4,5,1,9,8,7,10,14]
print(quicksort(testarray))
if __name__ == '__main__':
main()
Two things. Firstly, you forgot to return array when it's of length 1, and secondly you aren't actually modifying array before returning. This will work.
def quicksort(array):
if len(array) > 1:
m = partition(array)
# return the concatenation of the two sorted arrays
return quicksort(array[:m]) + quicksort(array[m:])
else:
return array
For those looking for an iterative/non-recursive version of Quicksort, here's an implementation I came up with in Python:
from random import randint
def default_comparator_fn(a, b):
return -1 if a < b else (1 if a > b else 0)
def reverse_comparator_fn(a, b):
return default_comparator_fn(b, a)
def quick_sort(A, comparator_fn=default_comparator_fn):
n = len(A)
if n < 2:
# The list has only 1 element or does not have any.
return A
# There are at least 2 elements.
partitions = [[0, n - 1]] # [[start, end]]
while len(partitions):
partition = partitions.pop()
start = partition[0]
end = partition[1]
pivot_index = randint(start, end)
pivot = A[pivot_index]
A[pivot_index], A[start] = A[start], A[pivot_index]
breakpoint_index = start
k = start + 1
m = end
while k <= m:
res = comparator_fn(A[k], pivot)
if res < 0:
breakpoint_index = k
else:
while m > k:
res = comparator_fn(A[m], pivot)
if res < 0:
breakpoint_index = k
A[m], A[k] = A[k], A[m]
m -= 1
break
m -= 1
k += 1
A[start], A[breakpoint_index] = A[breakpoint_index], A[start]
if start < breakpoint_index - 1:
partitions.append([start, breakpoint_index - 1])
if breakpoint_index + 1 < end:
partitions.append([breakpoint_index + 1, end])
return A
# Example:
A = [4, 2, 5, 1, 3]
quick_sort(A) # Sort in ascending order ([1, 2, 3, 4, 5]).
quick_sort(A, reverse_comparator_fn) # Sort in descending order ([5, 4, 3, 2, 1]).
This implementation of Quicksort accepts an optional custom comparator function which defaults to a comparator which compares the elements of the list in ascending order.

Categories

Resources