I simply want to see how long it takes this code to execute. There is a similar question here:
timeit module in python does not recognize numpy module
and I understand what they are saying, but I don't get where these lines of code should be placed. Here is what I have. I know its a little long to scroll through, but you can see where I have placed the timeit commands at the beginning and end. This is not working and I am guessing it is because I have placed these lines of code for timeit incorrectly. The code works if I delete the timeit stuff.
Thanks
import timeit
u = timeit.Timer("np.arange(1000)", setup = 'import numpy as np')
#set up variables
m = 4.54
g = 9.81
GR = 8
r_pulley = .1
th1=np.pi/4 #based on motor 1 encoder counts. Number of degrees rotated from + x-axis of base frame 0
th2=np.pi/4 #based on motor 2 encoder counts. Number of degrees rotated from + x-axis of m1 frame 1
th3_motor = np.pi/4*12
th3_pulley = th3_motor/GR
#required forces in x,y,z at end effector
fx = 1
fy = 1
fz = m*g #need to figure this out
l1=6
l2=5
l3=th3_pulley*r_pulley
#Build Homogeneous Tranforms Matrices
H1_0 = np.array(([np.cos(th1),-np.sin(th1),0,0],[np.sin(th1),np.cos(th1),0,0],[0,0,1,l3],[0,0,0,1]))
H2_1 = np.array(([np.cos(th2),-np.sin(th2),0,l1],[np.sin(th2),np.cos(th2),0,0],[0,0,1,0],[0,0,0,1]))
H3_2 = np.array(([1,0,0,l2],[0,1,0,0],[0,0,1,0],[0,0,0,1]))
H2_0 = np.dot(H1_0,H2_1)
H3_0 = np.dot(H2_0,H3_2)
print(np.matrix(H3_0))
#These HTMs are using the way I derived them, not the "correct" way.
#The answers are the same, but I think the processing time will be the same.
#This is because either way the two matrices with all the sines and cosines...
#will be the same. Only difference is in one method the ones and zeroes...
#matrix is the first HTM, in the other method it is the last HTM. So its the...
#same number of matrices with the same information, just being dot-producted...
#in a different order.
#Build Jacobian
#np.cross(x, y)
d10 = H1_0[0:3, 3]
d20 = H2_0[0:3, 3]
d30 = H3_0[0:3, 3]
print(d30)
subt1 = d30-d10
subt2 = d30-d20
#tsubt1 = subt1.transpose()
#tsubt2 = subt2.transpose()
#print(tsubt1)
zeroes = np.array(([0,0,1]))
print(subt1)
print(subt2)
cross1 = np.cross(zeroes, subt1)
cross2 = np.cross(zeroes, subt2)
cross1
cross2
#These cross products are correct but need to be tranposed into columns, right now they are a single row.
#tcross1=cross1.reshape(-1,1)
#tcross2=cross2.reshape(-1,1)
#dont actually need these transposes but I didnt want to forget the command.
# build jacobian (J)
#J = np.zeros((6,2))
#J[0:3,0] = cross1
#J[0:3,1] = cross2
#J[3:6,0] = zeroes
#J[3:6,1] = zeroes
#J
#find torques
J_force = np.zeros((2,3))
J_force[0,:]=cross1
J_force[1,:]=cross2
J_force
#build force matrix
forces = np.array(([fx],[fy],[fz]))
forces
torques = np.dot(J_force,forces)
torques #top number is theta 1 (M1) and bottom number is theta 2 (M2)
#need to add z axis?
print(u.timeit())
# u is a timer eval np.arange(1000)
u = timeit.Timer("np.arange(1000)", setup = 'import numpy as np')
# print how many seconds needed to run np.arange(1000) 1000000 times
# 1000000 is the default value, you can set by passing a int here.
print(u.timeit())
So the following is what you want.
import timeit
def main():
#set up variables
m = 4.54
g = 9.81
GR = 8
r_pulley = .1
th1=np.pi/4 #based on motor 1 encoder counts. Number of degrees rotated from + x-axis of base frame 0
th2=np.pi/4 #based on motor 2 encoder counts. Number of degrees rotated from + x-axis of m1 frame 1
th3_motor = np.pi/4*12
th3_pulley = th3_motor/GR
#required forces in x,y,z at end effector
fx = 1
fy = 1
fz = m*g #need to figure this out
l1=6
l2=5
l3=th3_pulley*r_pulley
#Build Homogeneous Tranforms Matrices
H1_0 = np.array(([np.cos(th1),-np.sin(th1),0,0],[np.sin(th1),np.cos(th1),0,0],[0,0,1,l3],[0,0,0,1]))
H2_1 = np.array(([np.cos(th2),-np.sin(th2),0,l1],[np.sin(th2),np.cos(th2),0,0],[0,0,1,0],[0,0,0,1]))
H3_2 = np.array(([1,0,0,l2],[0,1,0,0],[0,0,1,0],[0,0,0,1]))
H2_0 = np.dot(H1_0,H2_1)
H3_0 = np.dot(H2_0,H3_2)
print(np.matrix(H3_0))
#These HTMs are using the way I derived them, not the "correct" way.
#The answers are the same, but I think the processing time will be the same.
#This is because either way the two matrices with all the sines and cosines...
#will be the same. Only difference is in one method the ones and zeroes...
#matrix is the first HTM, in the other method it is the last HTM. So its the...
#same number of matrices with the same information, just being dot-producted...
#in a different order.
#Build Jacobian
#np.cross(x, y)
d10 = H1_0[0:3, 3]
d20 = H2_0[0:3, 3]
d30 = H3_0[0:3, 3]
print(d30)
subt1 = d30-d10
subt2 = d30-d20
#tsubt1 = subt1.transpose()
#tsubt2 = subt2.transpose()
#print(tsubt1)
zeroes = np.array(([0,0,1]))
print(subt1)
print(subt2)
cross1 = np.cross(zeroes, subt1)
cross2 = np.cross(zeroes, subt2)
cross1
cross2
#These cross products are correct but need to be tranposed into columns, right now they are a single row.
#tcross1=cross1.reshape(-1,1)
#tcross2=cross2.reshape(-1,1)
#dont actually need these transposes but I didnt want to forget the command.
# build jacobian (J)
#J = np.zeros((6,2))
#J[0:3,0] = cross1
#J[0:3,1] = cross2
#J[3:6,0] = zeroes
#J[3:6,1] = zeroes
#J
#find torques
J_force = np.zeros((2,3))
J_force[0,:]=cross1
J_force[1,:]=cross2
J_force
#build force matrix
forces = np.array(([fx],[fy],[fz]))
forces
torques = np.dot(J_force,forces)
torques #top number is theta 1 (M1) and bottom number is theta 2 (M2)
#need to add z axis?
u = timeit.Timer(main)
print(u.timeit(5))
Related
I am trying to reconstruct the approximations and details at all levels using the inverse stationary wavelet transform from the by wavelets package in python. My code is the following:
def UDWT(Btotal, wname, Lps, Hps, edge_eff):
Br = Btotal[0]; Bt = Btotal[1]; Bn = Btotal[2]
## Set parameters needed for UDWT
samplelength=len(Br)
# If length of data is odd, turn into even numbered sample by getting rid
# of one point
if np.mod(samplelength,2)>0:
Br = Br[0:-1]
Bt = Bt[0:-1]
Bn = Bn[0:-1]
samplelength = len(Br)
# edge extension mode set to periodic extension by default with this
# routine in the rice toolbox.
pads = 2**(np.ceil(np.log2(abs(samplelength))))-samplelength # for edge extension, This function
# returns 2^{ the next power of 2 }for input: samplelength
## Do the UDWT decompositon and reconstruction
keep_all = {}
for m in range(3):
# Gets the data size up to the next power of 2 due to UDWT restrictions
# Although periodic extension is used for the wavelet edge handling we are
# getting the data up to the next power of 2 here by extending the data
# sample with a constant value
if (m==0):
y = np.pad(Br,pad_width = int(pads/2) ,constant_values=np.nan)
elif (m==1):
y = np.pad(Bt,pad_width = int(pads/2) ,constant_values=np.nan)
else:
y = np.pad(Bn,pad_width = int(pads/2) ,constant_values=np.nan)
# Decompose the signal using the UDWT
nlevel = min(pywt.swt_max_level(y.shape[-1]), 8) # Level of decomposition, impose upper limit 10
Coeff = pywt.swt(y, wname, nlevel) # List of approximation and details coefficients
# pairs in order similar to wavedec function:
# [(cAn, cDn), ..., (cA2, cD2), (cA1, cD1)]
# Assign approx: swa and details: swd to
swa = np.zeros((len(y),nlevel))
swd = np.zeros((len(y),nlevel))
for o in range(nlevel):
swa[:,o] = Coeff[o][0]
swd[:,o] = Coeff[o][1]
# Reconstruct all the approximations and details at all levels
mzero = np.zeros(np.shape(swd))
A = mzero
coeffs_inverse = list(zip(swa.T,mzero.T))
invers_res = pywt.iswt(coeffs_inverse, wname)
D = mzero
for pp in range(nlevel):
swcfs = mzero
swcfs[:,pp] = swd[:,pp]
coeffs_inverse2 = list(zip(np.zeros((len(swa),1)).T , swcfs.T))
D[:,pp] = pywt.iswt(coeffs_inverse2, wname)
for jjj in range(nlevel-1,-1,-1):
if (jjj==nlevel-1):
A[:,jjj] = invers_res
# print(jjj)
else:
A[:,jjj] = A[:,jjj+1] + D[:,jjj+1]
# print(jjj)
# *************************************************************************
# VERY IMPORTANT: LINEAR PHASE SHIFT CORRECTION
# *************************************************************************
# Correct for linear phase shift in wavelet coefficients at each level. No
# need to do this for the low-pass filters approximations as they will be
# reconstructed and the shift will automatically be reversed. The formula
# for the shift has been taken from Walden's paper, or has been made up by
# me (can't exactly remember) -- but it is verified and correct.
# *************************************************************************
for j in range(1,nlevel+1):
shiftfac = Hps*(2**(j-1));
for l in range(1,j):
shiftfac = int(shiftfac + Lps*(2**(l-2))*((l-2)>=0)) ;
swd[:,j-1] = np.roll(swd[:,j-1],shiftfac)
flds = {"A": A.T,
"D": D.T,
"swd" : swd.T,
}
Btot = ['Br', 'Bt', 'Bn'] # Used Just to name files
keep_all[str(Btot[m])] = flds
# 1) Put all the files together into a cell structure
Apr = {}
Swd = {}
pads = int(pads)
names = ['Br', 'Bt', 'Bn']
for kk in range(3):
A = keep_all[names[kk]]['A']
Apr[names[kk]] = A[:,int(pads/2):len(A)-int(pads/2)]
swd = keep_all[names[kk]]['swd']
Swd[names[kk]] = swd[:,int(pads/2):len(A)-int(pads/2)]
# Returns filters list for the current wavelet in the following order
wavelet = pywt.Wavelet(wname)
[h_0,h_1,_,_] = wavelet.inverse_filter_bank
filterlength = len(h_0)
if edge_eff:
# 2) Getting rid of the edge effects; to keep edges skip this section
for j in range(1,nlevel+1):
extra = int((2**(j-2))*filterlength) # give some reasoning for this eq
for m in range(3):
# for approximations
Apr[names[m]][j-1][0:extra] = np.nan
Apr[names[m]][j-1][-extra:-1] = np.nan
# for details
Swd[names[m]][j-1][0:extra] = np.nan
Swd[names[m]][j-1][-extra:-1] = np.nan
return Apr, Swd, pads, nlevel
aa = np.sin(np.linspace(0,2*np.pi,100000))+0.05*np.random.rand(100000)
bb = np.cos(np.linspace(0,2*np.pi,100000))+0.05*np.random.rand(100000)
cc = np.cos(np.linspace(0,4*np.pi,100000))+0.05*np.random.rand(100000)
Btotal = [aa,bb,cc]
wname ='coif2'
Lps = 7; # Low pass filter phase shift for level 1 Coiflet2
Hps = 4; # High pass filter phase shift for level 1 Coiflet2
Apr, Swd, pads, nlevel = UDWT(Btotal, wname, Lps, Hps, edge_eff)
### Add the details at all levels with the highest level approximations
## to compare with the original timeseries. (The equation shown in website)
new = Swd['Br'][0]
for i in range(1,nlevel):
new = Swd['Br'][i]+new
sig = Apr['Br'][-1]+new
### Now plot to comapre ##
## Reconstructed signal 1
plt.plot(sig)
### Second way to get reconstructed signal
### aa first level details with approximations
plt.plot(Apr['Br'][-1] +Swd['Br'][-1] )
### Original signal
plt.plot(aa)
I am trying to follow the procedure described on this website:
http://matlab.izmiran.ru/help/toolbox/wavelet/ch01_i24.html
However, the reconstructed time-series does not seem to match the original exactly. As you can see here:
Any help?
I have created a code that returns the output that I am after - 2 graphs with multiple lines on each graph. However, the code is slow and quite big (in terms of how many lines of code it takes). I am interested in any improvements I can make that will help me to get such graphs faster, and make my code more presentable.
Additionally, I would like to add more to my graphs (axis names and titles is what I am after). Normally, I would use plt.xlabel,plt.ylabel and plt.title to do so, however I couldn't quite understand how to use them here. The aim here is to add a line to each graph after each loop ( I have adapted this piece of code to do so).
I should note that I need to use Python for this task (so I cannot change to anything else) and I do need Sympy library to find values that are plotted in my graphs.
My code so far is as follows:
import matplotlib.pyplot as plt
import sympy as sym
import numpy as np
sym.init_printing()
x, y = sym.symbols('x, y') # defining our unknown probabilities
al = np.arange(20,1000,5).reshape((196,1)) # values of alpha/beta
prob_of_strA = []
prob_of_strB = []
colours=['r','g','b','k','y']
pen_values = [[0,-5,-10,-25,-50],[0,-25,-50,-125,-250]]
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
for j in range(0,len(pen_values[1])):
for i in range(0,len(al)): # choosing the value of beta
A = sym.Matrix([[10, 50], [int(al[i]), pen_values[0][j]]]) # defining matrix A
B = sym.Matrix([[pen_values[1][j], 50], [int(al[i]), 10]]) # defining matrix B
sigma_r = sym.Matrix([[x, 1-x]]) # defining the vector of probabilities
sigma_c = sym.Matrix([y, 1-y]) # defining the vector of probabilities
ts1 = A * sigma_c ; ts2 = sigma_r * B # defining our utilities
y_sol = sym.solvers.solve(ts1[0] - ts1[1],y,dict = True) # solving for y
x_sol = sym.solvers.solve(ts2[0] - ts2[1],x,dict = True) # solving for x
prob_of_strA.append(y_sol[0][y]) # adding the value of y to the vector
prob_of_strB.append(x_sol[0][x]) # adding the value of x to the vector
ax1.plot(al,prob_of_strA,colours[j],label = ["penalty = " + str(pen_values[0][j])]) # plotting value of y for a given penalty value
ax2.plot(al,prob_of_strB,colours[j],label = ["penalty = " + str(pen_values[1][j])]) # plotting value of x for a given penalty value
ax1.legend() # showing the legend
ax2.legend() # showing the legend
prob_of_strA = [] # emptying the vector for the next round
prob_of_strB = [] # emptying the vector for the next round
You can save a couple of lines by initializing your empty vectors inside the loop. You don't have to bother re-defining them at the end.
for j in range(0,len(pen_values[1])):
prob_of_strA = []
prob_of_strB = []
for i in range(0,len(al)): # choosing the value of beta
A = sym.Matrix([[10, 50], [int(al[i]), pen_values[0][j]]]) # defining matrix A
B = sym.Matrix([[pen_values[1][j], 50], [int(al[i]), 10]]) # defining matrix B
sigma_r = sym.Matrix([[x, 1-x]]) # defining the vector of probabilities
sigma_c = sym.Matrix([y, 1-y]) # defining the vector of probabilities
ts1 = A * sigma_c ; ts2 = sigma_r * B # defining our utilities
y_sol = sym.solvers.solve(ts1[0] - ts1[1],y,dict = True) # solving for y
x_sol = sym.solvers.solve(ts2[0] - ts2[1],x,dict = True) # solving for x
prob_of_strA.append(y_sol[0][y]) # adding the value of y to the vector
prob_of_strB.append(x_sol[0][x]) # adding the value of x to the vector
ax1.plot(al,prob_of_strA,colours[j],label = ["penalty = " + str(pen_values[0][j])]) # plotting value of y for a given penalty value
ax2.plot(al,prob_of_strB,colours[j],label = ["penalty = " + str(pen_values[1][j])]) # plotting value of x for a given penalty value
ax1.legend() # showing the legend
ax2.legend() # showing the legend
I want to efficiently calculate the average of a variable (say temperature) over multiple areas of the plane.
I essentially want to do the following.
import numpy as np
num = 10000
XYT = np.random.uniform(0, 1, (num, 3))
X = np.transpose(XYT)[0]
Y = np.transpose(XYT)[1]
T = np.transpose(XYT)[2]
size = 10
bins = np.empty((size, size))
for i in range(size):
for j in range(size):
if rescaled X,Y in bin[i][j]:
bins[i][j] = mean T
I would use pandas (although im sure you can achieve basically the same with vanilla numpy)
df = pandas.DataFrame({'x':npX,'y':npY,'z':npZ})
# solve quadrants
df['quadrant'] = (df['x']>=0)*2 + (df['y']>=0)*1
# group by and aggregate
mean_per_quadrant = df.groupby(['quadrant'])['temp'].aggregate(['mean'])
you may need to create multiple quadrant cutoffs to get unique groupings
for example (df['x']>=50)*4 + (df['x']>=0)*2 + (df['y']>=0)*1 would add an extra 2 quadrants to our group (one y>=0, and one y<0) (just make sure you use powers of 2)
I have some probability density function:
T = 10000
tmin = 0
tmax = 10**20
t = np.linspace(tmin, tmax, T)
time = np.asarray(t) #this line may be redundant
for j in range(T):
timedep_PD[j]= probdensity_func(x,time[j],initial_state)
I want to integrate it over two distinct regions of x. I tried the following to split the timedep_PD array into two spatial regions and then proceeded to integrate:
step = abs(xmin - xmax) / T
l1 = int(np.floor((abs(ab - xmin)* T ) / abs(xmin - xmax)))
l2 = int(np.floor((abs(bd - ab)* T ) / abs(xmin - xmax)))
#For spatial region 1
R1 = np.empty([l1])
R1 = x[:l1]
for i in range(T):
Pd1[i] = Pd[i][:l1]
#For spatial region 2
Pd2 = np.empty([T,l2])
R2 = np.empty([l2])
R2 = x[l1:l1+l2]
for i in range(T):
Pd2[i] = Pd[i][l1:l1+l2]
#Integrating over each spatial region
for i in range(T):
P[0][i] = np.trapz(Pd1[i],R1)
P[1][i] = np.trapz(Pd2[i],R2)
Is there an easier/more clear way to go about splitting up a probability density function into two spatial regions and then integrating within each spatial region at each time-step?
The loops can be eliminated by using vectorized operations instead. It's not clear whether Pd is a 2D NumPy array; it it's something else (e.g., a list of lists), it should be converted to a 2D NumPy array with np.array(...). After that you can do this:
Pd1 = Pd[:, :l1]
Pd2 = Pd[:, l1:l1+l2]
No need to loop over the time index; the slicing happens for all times at once (having : in place of an index means "all valid indices").
Similarly, np.trapz can integrate all time slices at once:
P1 = np.trapz(Pd1, R1, axis=1)
P2 = np.trapz(Pd2, R2, axis=1)
Each P1 and P2 is now a time series of integrals. The axis parameter determines along which axis Pd1 gets integrated - it's the second axis, i.e., space.
I have a code.
It takes in a value N and does a quantum walk for that many steps and gives an array that shows the probability at each position.
It's quite a complex calculation and N must be a single integer.
What I want to do is repeat this calculation for 100 values of N and build a large 2D array.
Any idea how I would do this?
Here's my code:
N = 100 # number of random steps
P = 2*N+1 # number of positions
#defining a quantum coin
coin0 = array([1, 0]) # |0>
coin1 = array([0, 1]) # |1>
#defining the coin operator
C00 = outer(coin0, coin0) # |0><0|
C01 = outer(coin0, coin1) # |0><1|
C10 = outer(coin1, coin0) # |1><0|
C11 = outer(coin1, coin1) # |1><1|
C_hat = (C00 + C01 + C10 - C11)/sqrt(2.)
#step operator
ShiftPlus = roll(eye(P), 1, axis=0)
ShiftMinus = roll(eye(P), -1, axis=0)
S_hat = kron(ShiftPlus, C00) + kron(ShiftMinus, C11)
#walk operator
U = S_hat.dot(kron(eye(P), C_hat))
#defining the initial state
posn0 = zeros(P)
posn0[N] = 1 # array indexing starts from 0, so index N is the central posn
psi0 = kron(posn0,(coin0+coin1*1j)/sqrt(2.))
#the state after N steps
psiN = linalg.matrix_power(U, N).dot(psi0)
#finidng the probabilty operator
prob = empty(P)
for k in range(P):
posn = zeros(P)
posn[k] = 1
M_hat_k = kron( outer(posn,posn), eye(2))
proj = M_hat_k.dot(psiN)
prob[k] = proj.dot(proj.conjugate()).real
prob[prob==0] = np.nan
nanmask = np.isfinite(prob)
prob_masked=prob[nanmask] #this is the final probability to be plotted
P_masked=arange(P)[nanmask] #these are the possible positions
Rather than writing out the array I get as it is 100 units, this is a graph of the position and probability at N = 100
I eventually want to make a 3D plot of position against N against probability.