I am trying to calculate AIC manually, but my function gives different scores compared to the LassoLarsIC score. Can someone tell me what is wrong with my calculation.
Here my function:
def aic(y_pred, y, k):
ll = (-1/(2*np.var(y)))*np.sum((y_pred-y)**2) - (len(y)/2)*np.log(np.var(y)) - (len(y)/2)*np.log(2*np.pi)
return -2*ll + 2*k
Thanks a lot
Edit:
My example is simple, here is the complete code:
X = np.array([0, 0.1111, 0.2222, 0.3333, 0.4444, 0.5556, 0.6667, 0.7778, 0.8889, 1]).reshape(-1, 1)
y = np.array([0.0528, 0.798 , 0.8486, 0.8719, 0.1732, -0.3629, -0.7528, -0.9985, -0.6727, -0.1197]).reshape(-1, 1)
poly = plf(9)
F = poly.fit_transform(X)[:, 1:]
scl = StandardScaler()
F = scl.fit_transform(F)
aic_lasso = LassoLarsIC(normalize=False)
aic_lasso.fit(F, y)
aic_lasso.criterion_
Output:
array([10. , 7.29642036, 8.9544056 , 7.06390981, 6.14233987,
7.96489293, 7.76894903, 7.61736515, 7.39575925, 7.25866825,
7.01418447, 6.90314784, 6.6465343 , 6.60361937, 8.12547536,
8.09620652, 8.09610375, 10.09599191, 12.0959849 , 12.09597075,
12.09596367, 12.09579736, 10.09579645, 10.09579616, 12.09579393,
12.09579199, 12.09579079, 14.09541338, 16.01988119])
y_pred = aic_lasso.predict(F)
aic(y_pred, y, 2)
Output:
146.42615433502792
K is 2 becuase, lasso sets the other coeff. to 0.
I guess this answer arrives way too late, but the mistake is that you use var(y) instead of std(residuals)
This will work
def aic(resid, nparams):
n = len (resid)
sig = np.std(resid)
ll = -n*np.log(sig*np.sqrt(np.pi*2))- np.sum((resid / sig)**2)/2
return float(2*nparams - 2*ll)
Related
I am trying to use scipy.optimize.minimize to fit parameters for a multivariate function, however, regardless of how many noise free data points I am providing to the optimizer, the optimizer could not converge to a correct (or close) answer.
I wonder if there is a mistake in the way I am using the optimizer but I have been scratching my head to find the mistake. I would appreciate any advice or guesses, thanks!
import numpy as np
from scipy.optimize import minimize
import math
def get_transform(ai,aj,ak,x,y,z):
i,j,k = 0, 1, 2
si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
cc, cs = ci*ck, ci*sk
sc, ss = si*ck, si*sk
M = np.identity(4)
M[i, i] = cj*ck
M[i, j] = sj*sc-cs
M[i, k] = sj*cc+ss
M[j, i] = cj*sk
M[j, j] = sj*ss+cc
M[j, k] = sj*cs-sc
M[k, i] = -sj
M[k, j] = cj*si
M[k, k] = cj*ci
M[0, 3] = x
M[1, 3] = y
M[2, 3] = z
return M
def camera_intrinsic(fx, ppx, fy, ppy):
K = np.zeros((3, 3), dtype='float64')
K[0, 0], K[0, 2] = fx, ppx
K[1, 1], K[1, 2] = fy, ppy
K[2, 2] = 1
return K
def apply_transform(p, matrix):
rotation = matrix[0:3,0:3]
T = np.array([matrix[0][3],matrix[1][3],matrix[2][3]])
transformed = (np.dot(rotation, p.T).T)+T
return transformed
def project(points_3D,internal_calibration):
points_3D = points_3D.T
projections_2d = np.zeros((2, points_3D.shape[1]), dtype='float32')
camera_projection = (internal_calibration).dot(points_3D)
projections_2d[0, :] = camera_projection[0, :]/camera_projection[2, :]
projections_2d[1, :] = camera_projection[1, :]/camera_projection[2, :]
return projections_2d.T
def error(x):
global points,pixels
transform = get_transform(x[0],x[1],x[2],x[3],x[4],x[5])
points_transfered = apply_transform(points, transform)
internal_calibration = camera_intrinsic(x[6],x[7],x[8],x[9])
projected = project(points_transfered,internal_calibration)
# print(((projected-pixels)**2).mean())
return ((projected-pixels)**2).mean()
def generate(points, x):
transform = get_transform(x[0],x[1],x[2],x[3],x[4],x[5])
points_transfered = apply_transform(points, transform)
internal_calibration = camera_intrinsic(x[6],x[7],x[8],x[9])
projected = project(points_transfered,internal_calibration)
return projected
points = np.random.rand(100,3)
x_initial = np.random.rand(10)
pixels = generate(points,x_initial)
x_guess = np.random.rand(10)
results = minimize(error,x_guess, method='nelder-mead', tol = 1e-15)
x = results.x
print(x_initial)
print(x)
You are solving least squares problem, but trying to optimize it using a solver that minimizes a scalar function. While it can possibly solve the problem, it does so very inefficiently. It can require much more iterations or can fail to converge at all.
The better way is to use least_squares instead of minimize.
For it to work properly you should modify error function by returning 1D numpy array instead of a scalar:
def error(x):
...
return (projected-pixels).flatten()
Then call least_squares:
results = least_squares(error, x_guess)
x = results.x
print(x_initial)
print(x)
print('error:', np.linalg.norm(error(x)))
Also, error(x) currently returns array of float32, because an array of float32 is created in project. It should be replaced by float64, otherwise minimization fails to converge, because most of gradients become zeros when 32 bit precision is used.
def project(points_3D,internal_calibration):
...
projections_2d = np.zeros((2, points_3D.shape[1]), dtype='float64')
With these modifications the solver converges to the solution most of the times, but can sometimes fail to do so. It happens because you generate the problem randomly, so in some cases the problem may be degenerate or make no physical sense. Such cases should be investigated on their own.
It can also help to use a robust loss, such as 'arctan', instead of linear loss:
results = least_squares(error, x_guess, loss='arctan')
Result:
[0.68589904 0.68782115 0.83299068 0.02360941 0.19367124 0.54715374
0.37609235 0.62190714 0.98824796 0.88385802]
[0.68589904 0.68782115 0.83299068 0.02360941 0.19367124 0.54715374
0.37609235 0.62190714 0.98824796 0.88385802]
error: 1.2269443642313758e-12
When running the ODR algorithm on some experiment data, I've been asked to run it with the following model:
It is clear that this fitting function is containing a redundant degree of freedom.
When I run the fitting on my experiment data I get enormous relative errors of beta, starting from 8000% relative error.
When I try to run the fitting again but with a fitting function that doesn't have a redundant degree of freedom, such as:
I don't get this kind of problem.
Why is this happening? Why the ODR algorithm is so sensitive for redundant degrees of freedom? I wasn't able to answer these questions to my supervisors. An answer will be much appreciated.
Reproducing code example:
from scipy.odr import RealData, Model, ODR
def func1(a, x):
return a[0] * (x + a[1]) / (a[3] * (x + a[1]) + a[1] * x) + a[2]
def func2(a, x):
return a[0] / (x + a[1]) + a[2]
# fmt: off
zx = [
1911.125, 2216.95, 2707.71, 3010.225, 3410.612, 3906.015, 4575.105, 5517.548,
6918.481,
]
dx = [
0.291112577, 0.321695254, 0.370771197, 0.401026507, 0.441068641, 0.490601621,
0.557573268, 0.651755155, 0.79184836,
]
zy = [
0.000998056, 0.000905647, 0.000800098, 0.000751041, 0.000699982, 0.000650532,
0.000600444, 0.000550005, 0.000500201,
]
dy = [
5.49029e-07, 5.02824e-07, 4.5005e-07, 4.25532e-07, 3.99991e-07, 3.75266e-07,
3.50222e-07, 3.25003e-07, 3.00101e-07,
]
# fmt: on
data = RealData(x=zx, y=zy, sx=dx, sy=dy)
print("Func 1")
print("======")
beta01 = [
1.46,
4775.4,
0.01,
1000,
]
model1 = Model(func1)
odr1 = ODR(data, model1, beta0=beta01)
result1 = odr1.run()
print("beta", result1.beta)
print("sd beta", result1.sd_beta)
print("relative", result1.sd_beta / result1.beta * 100)
print()
print()
print("Func 2")
print("======")
beta02 = [
1,
1,
1,
]
model2 = Model(func2)
odr2 = ODR(data, model2, beta0=beta02)
result2 = odr2.run()
print("beta", result2.beta)
print("sd beta", result2.sd_beta)
print("relative", result2.sd_beta / result2.beta * 100)
This prints out:
Func 1
======
beta [ 1.30884537e+00 -2.82585952e+03 7.79755196e-04 9.47943376e+01]
sd beta [1.16144608e+02 3.73765816e+06 6.12613738e-01 4.20775596e+03]
relative [ 8873.82193523 -132266.24068473 78564.88054498 4438.82627453]
Func 2
======
beta [1.40128121e+00 9.80844274e+01 3.00511669e-04]
sd beta [2.73990552e-03 3.22344713e+00 3.74538794e-07]
relative [0.1955286 3.28640051 0.12463369]
Scipy/Numpy/Python version information:
Versions are:
Scipy - 1.4.1
Numpy - 1.18.2
Python - 3.7.2
The problem is not with the degrees of freedom.
The degrees of freedom is the difference between the number of data points and the number of fitting parameters.
The problem has the same number of degrees of freedom for the two formulae, as they have the same number of parameters.
It also looks like that you do not have free degrees of freedom, which is good news, it means that it can potentially be fitted.
However, you are right that first expression has some problem: the parameters you are trying to fit are not independent.
This is probably better understood with some simpler example.
Consider the following expression:
y = x + b + c
which you try to fit, given n data for x and y with n >> 2.
The question is: what are the optimal value for b and c? This cannot be answered. All you can say from x and y data is about the combination. Therefore, if b + c is 0, the fit cannot tell us if b = 1000, c = -1000 or b = 1, c= -1, but at least we can say that given b we can determine c.
What is the error on a given b? Potentially infinite. That is the reason for the fitting to give you that large relative error.
I want to save time on expensive linear solves for my optimization by using the previous linear solutions as initial guesses for the subsequent iteration in an optimization. I'm looking through OpenMDAO's example for the cache_linear_solution feature which seems to have been developed for this purpose (here) and code shown below:
from distutils.version import LooseVersion
import numpy as np
import scipy
from scipy.sparse.linalg import gmres
import openmdao.api as om
class QuadraticComp(om.ImplicitComponent):
"""
A Simple Implicit Component representing a Quadratic Equation.
R(a, b, c, x) = ax^2 + bx + c
Solution via Quadratic Formula:
x = (-b + sqrt(b^2 - 4ac)) / 2a
"""
def setup(self):
self.add_input('a', val=1.)
self.add_input('b', val=1.)
self.add_input('c', val=1.)
self.add_output('states', val=[0,0])
self.declare_partials(of='*', wrt='*')
def apply_nonlinear(self, inputs, outputs, residuals):
a = inputs['a']
b = inputs['b']
c = inputs['c']
x = outputs['states'][0]
y = outputs['states'][1]
residuals['states'][0] = a * x ** 2 + b * x + c
residuals['states'][1] = a * y + b
def solve_nonlinear(self, inputs, outputs):
a = inputs['a']
b = inputs['b']
c = inputs['c']
outputs['states'][0] = (-b + (b ** 2 - 4 * a * c) ** 0.5) / (2 * a)
outputs['states'][1] = -b/a
def linearize(self, inputs, outputs, partials):
a = inputs['a'][0]
b = inputs['b'][0]
c = inputs['c'][0]
x = outputs['states'][0]
y = outputs['states'][1]
partials['states', 'a'] = [[x**2],[y]]
partials['states', 'b'] = [[x],[1]]
partials['states', 'c'] = [[1.0],[0]]
partials['states', 'states'] = [[2*a*x+b, 0],[0, a]]
self.state_jac = np.array([[2*a*x+b, 0],[0, a]])
def solve_linear(self, d_outputs, d_residuals, mode):
if mode == 'fwd':
print("incoming initial guess", d_outputs['states'])
if LooseVersion(scipy.__version__) < LooseVersion("1.1"):
d_outputs['states'] = gmres(self.state_jac, d_residuals['states'], x0=d_outputs['states'])[0]
else:
d_outputs['states'] = gmres(self.state_jac, d_residuals['states'], x0=d_outputs['states'], atol='legacy')[0]
elif mode == 'rev':
if LooseVersion(scipy.__version__) < LooseVersion("1.1"):
d_residuals['states'] = gmres(self.state_jac, d_outputs['states'], x0=d_residuals['states'])[0]
else:
d_residuals['states'] = gmres(self.state_jac, d_outputs['states'], x0=d_residuals['states'], atol='legacy')[0]
p = om.Problem()
indeps = p.model.add_subsystem('indeps', om.IndepVarComp(), promotes_outputs=['a', 'b', 'c'])
indeps.add_output('a', 1.)
indeps.add_output('b', 4.)
indeps.add_output('c', 1.)
p.model.add_subsystem('quad', QuadraticComp(), promotes_inputs=['a', 'b', 'c'], promotes_outputs=['states'])
p.model.add_design_var('a', cache_linear_solution=True)
p.model.add_constraint('states', upper=10)
p.setup(mode='fwd')
p.run_model()
print(p['states'])
derivs = p.compute_totals(of=['states'], wrt=['a'])
print(derivs['states', 'a'])
p['a'] = 4
derivs = p.compute_totals(of=['states'], wrt=['a'])
print(derivs['states', 'a'])
The above code gives the following print out:
[-0.26794919 -4. ]
incoming initial guess [0. 0.]
[[-0.02072594]
[ 4. ]]
incoming initial guess [0. 0.]
[[-0.02072594]
[ 4. ]]
From the print out of this example it doesn't look like the initial guess for the linear guess is actually being updated. Am I missing something? I've also tried running the code with the cache_linear_solution set to False and the result seems to be the same.
Currently, the caching of linear solutions only happens when the total derivatives are computed during the run of a driver, so if you want to check to make sure it's happening during your optimization (in the run_driver call), change
derivs = p.compute_totals(of=['states'], wrt=['a'])
to
derivs = p.driver._compute_totals(of=['states'], wrt=['a'], global_names=False)
When I do that with your code, I get the following output:
[-0.26794919 -4. ]
incoming initial guess [0. 0.]
[[-0.02072594]
[ 4. ]]
incoming initial guess [-0.02072594 4. ]
[[-0.02072594]
[ 4. ]]
Note that the global_names=False arg is only needed if you use promoted names for your of and wrt variables.
I will update our example code to reflect the correct way to do this.
I'm trying to create a network, that would help predict stock prices the following day. My input data are: open, high, low and close stock values, volume, index values, a few technical indicators and exchange rate; the output is closing price from the next day. I'm using data uploaded from Excel file.
I wrote a program, that I will paste below, but it doesn't seem to be working correctly. Network always returns 1, 0 or other constant value (between 0 - 1).
I took the following steps so far:
tried to normalise the data like so: X_norm = X/(10 ** d) where d is the smallest number for which this conditon is met: abs(X_norm) < 1. I did that for the whole set in Excel before dividing it into training and test.
shuffled the data before dividing it into training/test, so that learning examples are not from consecutive days
running the network on a smaller data set and on example data set (I generated random numbers and did a simple math using them for an output and tried running network with that)
changing amount of hidden neurons
chaninging number of iterations (up to a 1000, which was a lot for my computer considering the data set, so I didn't try any more because it would take too much time)
changing learning rate.
No matter what steps I took the outcome was always the same. I think my problem could be that I don't have a bias, but perhaps I also have other mistakes in my code that are contributing to this error.
My program:
import numpy as np
import pandas as pd
df = pd.read_excel(r"path", sheet_name="DATA", index_col=0, header=0)
df = df.to_numpy()
np.random.shuffle(df)
X_data = df[:, 0:15]
X_data = X_data.reshape(1000, 1, 15)
print(f"X_data: {X_data}")
Y_data = df[:, 15]
Y_data = Y_data.reshape(1000, 1, 1)
print(f"Y_data: {Y_data}")
X = X_data[0:801]
x_test = X_data[801:]
y = Y_data[0:801]
y_test = Y_data[801:]
print(f"X_train: {X}")
print(f"x_test: {x_test}")
print(f"Y_train: {y}")
print(f"y_test: {y_test}")
rate = 0.2
class NeuralNetwork:
def __init__(self):
self.input_neurons = 15
self.hidden1_neurons = 10
self.hidden2_neurons = 5
self.output_neuron = 1
self.input_to_hidden1_w = (np.random.random((self.input_neurons, self.hidden1_neurons))) # 14x30
self.hidden1_to_hidden2_w = (np.random.random((self.hidden1_neurons, self.hidden2_neurons))) # 30x20
self.hidden2_to_output_w = (np.random.random((self.hidden2_neurons, self.output_neuron))) # 20x1
def activation(self, x):
sigmoid = 1/(1+np.exp(-x))
return sigmoid
def activation_d(self, x):
derivative = x * (1 - x)
return derivative
def feed_forward(self, X):
self.z1 = np.dot(X, self.input_to_hidden1_w)
self.z1_a = self.activation(self.z1)
self.z2 = np.dot(self.z1_a, self.hidden1_to_hidden2_w)
self.z2_a = self.activation(self.z2)
self.z3 = np.dot(self.z2_a, self.hidden2_to_output_w)
output = self.activation(self.z3)
return output
def backward(self, X, y, rate, output):
error = y - output
z3_error_delta = error * self.activation_d(output)
z2_error = np.dot(z3_error_delta, np.transpose(self.hidden2_to_output_w))
z2_error_delta = z2_error * self.activation_d(self.z2)
z1_error = np.dot(z2_error_delta, np.transpose(self.hidden1_to_hidden2_w))
z1_error_delta = z1_error * self.activation_d(self.z1)
self.input_to_hidden1_w += rate * np.dot(np.transpose(X), z1_error_delta)
self.hidden1_to_hidden2_w += rate * np.dot(np.transpose(self.z1), z2_error_delta)
self.hidden2_to_output_w += rate * np.dot(np.transpose(self.z2), z3_error_delta)
def train(self, X, y):
output = self.feed_forward(X)
self.backward(X, y, rate, output)
def save_weights(self):
np.savetxt("w1.txt", self.input_to_hidden1_w, fmt="%s")
np.savetxt("w2.txt", self.hidden1_to_hidden2_w, fmt="%s")
np.savetxt("w3.txt", self.hidden2_to_output_w, fmt="%s")
def check(self, x_test, y_test):
self.feed_forward(x_test)
np.mean(np.square((y_test - self.feed_forward(x_test))))
Net = NeuralNetwork()
for l in range(100):
for i, pattern in enumerate(X):
for j, outcome in enumerate(y):
print(f"#: {l}")
print(f'''
# {str(l)}
# {str(X[i])}
# {str(y[j])}''')
print(f"Predicted output: {Net.feed_forward(X[i])}")
Net.train(X[i], y[j])
print(f"Error training: {(np.mean(np.square(y - Net.feed_forward(X))))}")
Net.save_weights()
for i, pattern in enumerate(x_test):
for j, outcome in enumerate(y_test):
Net.check(x_test[i], y_test[j])
print(f"Error test: {(np.mean(np.square(y_test - Net.feed_forward(x_test))))}")
I have installed Numpy and SciPy, but I'm not quite understand their documentation about polyfit.
For exmpale, Here's my three data samples:
[-0.042780748663101636, -0.0040771571786609945, -0.00506567946276074]
[0.042780748663101636, -0.0044771571786609945, -0.10506567946276074]
[0.542780748663101636, -0.005771571786609945, 0.30506567946276074]
[-0.342780748663101636, -0.0304077157178660995, 0.90506567946276074]
The first two columns are sample features, the third column is output, My target is to get a function that could take two parameters(first two columns) and return its prediction(the output).
Any simple example ?
====================== EDIT ======================
Note that, I need to fit something like a curve, not only straight lines. The polynomial should be something like this ( n = 3):
a*x1^3 + b*x2^2 + c*x3 + d = y
Not:
a*x1 + b*x2 + c*x3 + d = y
x1, x2, x3 are features of one sample, y is the output
Try something like
edit: added an example function that used results of linear regression to estimate output.
import numpy as np
data =np.array(
[[-0.042780748663101636, -0.0040771571786609945, -0.00506567946276074],
[0.042780748663101636, -0.0044771571786609945, -0.10506567946276074],
[0.542780748663101636, -0.005771571786609945, 0.30506567946276074],
[-0.342780748663101636, -0.0304077157178660995, 0.90506567946276074]])
coefficient = data[:,0:2]
dependent = data[:,-1]
x,residuals,rank,s = np.linalg.lstsq(coefficient,dependent)
def f(x,u,v):
return u*x[0] + v*x[1]
for datum in data:
print f(x,*datum[0:2])
Which gives
>>> x
array([ 0.16991146, -30.18923739])
>>> residuals
array([ 0.07941146])
>>> rank
2
>>> s
array([ 0.64490113, 0.02944663])
and the function created with your coefficients gave
0.115817326583
0.142430900298
0.266464019171
0.859743371665
More info can be found at the documentation I posted as a comment.
edit 2: fitting your data to an arbitrary model.
edit 3: made my model a function for ease of understanding.
edit 4: made code more easily read/ changed model to a quadratic fit, but you should be able to read this code and know how to make it minimize any residual you want now.
contrived example:
import numpy as np
from scipy.optimize import leastsq
data =np.array(
[[-0.042780748663101636, -0.0040771571786609945, -0.00506567946276074],
[0.042780748663101636, -0.0044771571786609945, -0.10506567946276074],
[0.542780748663101636, -0.005771571786609945, 0.30506567946276074],
[-0.342780748663101636, -0.0304077157178660995, 0.90506567946276074]])
coefficient = data[:,0:2]
dependent = data[:,-1]
def model(p,x):
a,b,c = p
u = x[:,0]
v = x[:,1]
return (a*u**2 + b*v + c)
def residuals(p, y, x):
a,b,c = p
err = y - model(p,x)
return err
p0 = np.array([2,3,4]) #some initial guess
p = leastsq(residuals, p0, args=(dependent, coefficient))[0]
def f(p,x):
return p[0]*x[0] + p[1]*x[1] + p[2]
for x in coefficient:
print f(p,x)
gives
-0.108798280153
-0.00470479385807
0.570237823475
0.413016072653