Populate a csv file with scraped data - python

I'm having trouble with this and I know it is basic as I was blocked for 2 days for asking a similar question on Friday, but I'm really struggling so would appreciate help.
How do I edit the code below to populate the csv I have created with the table I have pulled from the airport site i.e. the flight arrival data?
import requests
import csv, sys
from bs4 import BeautifulSoup
cookies = {
'ApplicationGatewayAffinity': '1d2ad8ab214d1293a4e31bcd161589fa82a54a39bb7b3be80b503996092d4296',
'ApplicationGatewayAffinityCORS': '1d2ad8ab214d1293a4e31bcd161589fa82a54a39bb7b3be80b503996092d4296',
}
headers = {
'Connection': 'keep-alive',
'Cache-Control': 'max-age=0',
'Upgrade-Insecure-Requests': '1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9',
'Sec-Fetch-Site': 'cross-site',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-User': '?1',
'Sec-Fetch-Dest': 'document',
'Referer': 'https://www.google.com/',
'Accept-Language': 'en-GB,en;q=0.9,en-US;q=0.8,fr;q=0.7,nl;q=0.6',
}
response = requests.get('https://www.corkairport.com/arrivals-departures', headers=headers, cookies=cookies)
#print(response.content)
soup = BeautifulSoup(response.content, 'html.parser')
writer = csv.writer(sys.stdout)
writer.writerow([
'Arriving From'
'Airline',
'Scheduled to arrive', 'Latest Update', 'Status'
])
with open('flight.csv','w') as f:
[table] = soup.find_all("table")
for row in table.find_all("tr"):
writer.writerow(
[td.string.strip() for td in row.find_all("td")]
)
writer = csv.writer(f)

One minor error, you need to have the writer = csv.writer(f) in the with block
with open('flight.csv','w') as f:
[table] = soup.find_all("table")
writer = csv.writer(f)
for row in table.find_all("tr"):
writer.writerow(
[td.string.strip() for td in row.find_all("td")]
)

Related

Why does soup.findAll return []?

I am having trouble reading data from a url with BeautifulSoup
This is my code:
url1 = "https://www.barstoolsportsbook.com/events/1018282280"
from bs4 import BeautifulSoup
import requests
headers = {
'User-agent':
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"
}
html = requests.get(url1, headers=headers)
soup = BeautifulSoup(html.text, 'lxml')
data = soup.findAll('div',attrs={"class":"section"})
print(data)
#for x in data:
# print(x.find('p').text)
When I print(data) I am returned []. What could be the reason for this? I would like to avoid using selenium for this task if possible.
This is the HTML for what I'm trying to grab
<div data-v-50e01018="" data-v-2a52296d="" class="section"><p data-v-5f665d29="" data-v-50e01018="" class="header strongbody2">HOT TIPS</p><p data-v-5f665d29="" data-v-50e01018="" class="tip body2"> The Mets have led after 3 innings in seven of their last nine night games against NL East Division opponents that held a losing record. </p><p data-v-5f665d29="" data-v-50e01018="" class="tip body2"> The 'Inning 1 UNDER 0.5 runs' market has hit in each of the Marlins' last nine games against NL East opponents. </p></div>
You can likely get what you want with this request:
import requests
headers = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:103.0) Gecko/20100101 Firefox/103.0',
'Accept': 'application/json, text/plain, */*',
'Accept-Language': 'en-US,en;q=0.5',
'Authorization': 'Basic MTI2OWJlMjItNDI2My01MTI1LWJlNzMtMDZmMjlmMmZjNWM3Omk5Zm9jajRJQkZwMUJjVUc0NGt2S2ZpWEpremVKZVpZ',
'Origin': 'https://www.barstoolsportsbook.com',
'DNT': '1',
'Connection': 'keep-alive',
'Referer': 'https://www.barstoolsportsbook.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'cross-site',
}
response = requests.get('https://api.isportgenius.com.au/preview/1018282280', headers=headers)
response.json()
You should browse the network tab to see where the rest of the data is coming from, or use a webdriver.

Looping through a Payload to get all pages

I know you can loop through page numbers in a URL but is it possible loop through pages in a Payload? I would guess you need beautiful soup? At the end of the Payload, there is this code.
page=1&start=0&limit=250
Currently, I am just getting page 1 with 250 lines. I need to loop through the code and retrieve page=2&start=251&limit=250 and the subsequent 11 pages. Could anyone show me how to do this?
Working Code for first 250 Lines
import requests
import pandas as pd
def stock_data(stock_info):
data = pd.DataFrame(stock_info)
data = data.iloc[:, 4:]
data.to_csv("data.csv", index=False)
url = "https://www.stockrover.com/stock_infos/grid?_dc=1644876887410"
payload = "state=%7B%22sortInfo%22%3A%7B%7D%2C%22columns%22%3A%5B76%2C77%2C50%2C80%2C547%2C13%2C21%2C771%5D%2C%22view%22%3A313%2C%22priorPrimaryColumn%22%3A170%2C%22filterData%22%3A%5B%5D%2C%22name%22%3A%22New%201%22%2C%22cType%22%3A%22Screener%22%2C%22cNode%22%3A%22s_42%22%2C%22cIsFolder%22%3Afalse%2C%22gridSelection%22%3A%22ANDE%22%2C%22lastActive%22%3A1396898415%2C%22primaryColumn%22%3A76%2C%22folderDisabledParams%22%3A%7B%22filterData%22%3A%5B%5D%7D%2C%22mainGridDateRange%22%3A%22ytd%22%2C%22groupState%22%3Anull%2C%22moversGridDateRange%22%3A%221_day%22%2C%22peersGridDateRange%22%3A%221_day%22%2C%22lastGridSelections%22%3A%5B%22ANDE%22%5D%2C%22lastQuantNode%22%3A%5B%22s_42%22%2C%22s_42%22%5D%2C%22includeQuotesInTable%22%3Afalse%2C%22includeAllQuotesLastValue%22%3Afalse%2C%22markets%22%3A%7B%22panel%22%3A%22summary%22%7D%2C%22researchPanel%22%3A%22comparisonPanel%22%2C%22recentSearchTickers%22%3A%5B%22SPY%22%2C%22AMZN%22%2C%22AAPL%22%2C%22s_32%22%2C%22%5ENDX%22%2C%22AXP%22%2C%22XOM%22%2C%22AFL%22%2C%22%5EDJX%22%2C%22AIT%22%2C%22ADVC%22%5D%2C%22quotesBoxTickers%22%3A%5B%22AMZN%22%2C%22AAPL%22%2C%22SPY%22%5D%2C%22checkedQuotesBoxTickers%22%3A%5B%22AMZN%22%2C%22AAPL%22%2C%22SPY%22%5D%2C%22dashboard%22%3A%7B%22buttonRef%22%3A%22272%22%7D%2C%22tickerSelectedFeeds%22%3A%5B%22Benzinga%20News%22%2C%22Yahoo%20News%22%5D%2C%22marketSelectedFeeds%22%3A%5B%22Google%20News%22%2C%22Stock%20Market%20News%20-%20Investing.com%22%5D%2C%22bondsSelectedFeeds%22%3A%5B%22Bonds%20Strategy%20-%20Investing.com%22%5D%2C%22commoditiesSelectedFeeds%22%3A%5B%22Commodities%20%26%20Futures%20News%20-%20Investing.com%22%2C%22Commodities%20Fundamental%20Analysis%20-%20Investing.com%22%2C%22Commodities%20Strategy%20Analysis%20-%20Investing.com%22%5D%2C%22stocksSelectedFeeds%22%3A%5B%22CNNMoney%20News%22%2C%22Google%20News%22%2C%22Seeking%20Alpha%20Top%20Stories%22%5D%2C%22etfsSelectedFeeds%22%3A%5B%22Economy%20News%20-%20Investing.com%22%2C%22ETF%20Analysis%20-%20Investing.com%22%2C%22Investing%20Ideas%20-%20Investing.com%22%5D%2C%22topPanel%22%3A%22researchPanel%22%2C%22maxRecordsNode%22%3Afalse%2C%22version%22%3A7%2C%22lastGridSelectionsRaw%22%3A%5B%22ANDE%22%5D%2C%22lastSelectionScreeners%22%3A%22s_42%22%2C%22quotesDisabled%22%3Atrue%2C%22lastSelectionPortfolios%22%3A%22p_2%22%2C%22comparisonPanels%22%3A%7B%22Portfolio%22%3A%22p_2%22%2C%22Index%22%3A%22%5EDJX%22%2C%22Watchlist%22%3A%22Watchlists%22%2C%22Screener%22%3A%22s_42%22%7D%2C%22lastSelectionWatchlists%22%3A%22w_26%22%2C%22indicesSelectedFeeds%22%3A%5B%22Google%20News%22%2C%22Yahoo%20News%22%5D%2C%22newsActive%22%3A%22tickerNews%22%2C%22recentSearchMetrics%22%3A%5B%22Price%22%2C%22EPS%22%2C%22Sales%22%5D%2C%22editPanel%22%3A%22positionsPanel%22%2C%22newsType%22%3A%22marketNews%22%2C%22tableColumns%22%3A%5B%22ticker%22%2C%22rank%22%2C%22score_rank%22%2C%22filter_score%22%2C%22company%22%2C%22cash%22%2C%22currentassets%22%2C%22netppe%22%2C%22intangibles%22%2C%22totalassets%22%2C%22currentliabilities%22%2C%22longtermdebt%22%2C%22totaldebt%22%2C%22totalliabilities%22%2C%22equity%22%2C%22tangiblebookvalue%22%2C%22cash_short_term_p%22%2C%22net_ppe_p%22%2C%22intangibles_p%22%5D%2C%22last_save%22%3A1644837064%2C%22panels%22%3A%7B%22collapsed%22%3A%7B%22chp%22%3Atrue%2C%22ip%22%3Atrue%2C%22mp%22%3Afalse%2C%22qp%22%3Afalse%2C%22conp%22%3Atrue%2C%22fsp%22%3Afalse%7D%2C%22viewportWidth%22%3A%221920%22%2C%22viewportHeight%22%3A%221069%22%2C%22chartPanelHeight%22%3A483%2C%22controlPanelWidth%22%3A296%2C%22insightPanelWidth%22%3A%22485%22%2C%22quoteBoxHeight%22%3A200%2C%22navigationPanelWidth%22%3A277%7D%7D&updateMarket=true&page=1&start=0&limit=250"
headers = {
'authority': 'www.stockrover.com',
'sec-ch-ua': '" Not A;Brand";v="99", "Chromium";v="98", "Google Chrome";v="98"',
'x-csrf-token': 'fAeVScD26lby5MQf5YFI5p3snudo3E+rw0TL0h1W3j/vcjsIMvgxAF5Z9DkMjjCU4trT/b4EV0VCCPvmms5VIw==',
'sec-ch-ua-mobile': '?0',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82 Safari/537.36',
'content-type': 'application/x-www-form-urlencoded; charset=UTF-8',
'accept': 'application/json',
'x-requested-with': 'XMLHttpRequest',
'sec-ch-ua-platform': '"Windows"',
'origin': 'https://www.stockrover.com',
'sec-fetch-site': 'same-origin',
'sec-fetch-mode': 'cors',
'sec-fetch-dest': 'empty',
'referer': 'https://www.stockrover.com/research/all/313/s_42/ANDE',
'accept-language': 'en-US,en;q=0.9',
'cookie': 'remember_me_pref=0; user_name=test11964; plan=3; premiumBraintreeKey=MIIBCgKCAQEAzM4LJfrNnBOgRFB1dDJkmqTFCWT2Y%2BksOydD8xDH4R033WUzxbffMZb%2B3dqEyQvOVjLcwFIHByDc4Xwej7enas2E%2FVRyh7Cvyadn7M5zQeRyLcI9Ys5KCozMwxJPc0x76FlXPwiAo1Qlz3RcLb9wGHBag2R51FuTie%2BhVDCgzWajqDCREzRhi%2Fqlt3D%2FxXNo%2FiwJlpOUr%2Fx1QnkkILxgKlq1dD7KJ767O5ojYKXsO%2BV2Bfu7sSD3djsOxQJ1%2FRbaDm2E96EDkWhhOeOpPndQ6IuSl4NmnJg%2Fcq6f8csW8M3Ys%2BMZPFkdxPC4%2FfRM1XC9o76PjpVNBIO%2ByJEELKZedwIDAQAB; lr=1644876886; _Ruby2_session=OEs3djBGVmtrSXhSWjFibnp2ck9vem8vd1VmQ00wUkZCVWlaWmYzOFBQQUJyemc0MFNjMlVmTGRUeFpNSTFIRGliVitnb2M1L2JNcCt5SnQxN2xtZDV5M20waEd0elh3aUU3R0k3YnJiVy9BcUhObGpBUU54c2tQRE9RZHBZWk8wa0NBQXJub2tHU3pHZmUvM3dRNGZvVStsT0ZEbUNEa3ZyVDkxdDA5S1B5d3VZWlZNUERxL01VNlYzdHhBci9uSnduOGxodk8rSDJLaUJIWTVyM25GL3o4RHYva3pGeDdIY1NJODV4WkV4MnRiR2RoNHZDUktPWSsxaElPdXNEU0tSaCtKL1o0K2FsSE1rcVI2TkgxOFo0MktSL1JRWjgzRllBZGFhMjg4bitpTUJzQjR6Nk5OZzhzUFMzVGRpVFNZOUxrTnhWNTB2K0dYNXdDcFFXZnpZdlZleFR2cWY5cmJqaDNiY0JhWVJJT0s1TDEvOHU0UTV6NW5uTjcwZjFzdHpxeFg0cVQ3NTRob2xTMlA2ZDhCQT09LS1LOEljN3laVTlBVUpsVVo3c093Y2NnPT0%3D--b963330daa985315420ea5893f1cfa3e3a54c9d5; _Ruby2_session=UmE1NVo0cjJ1YmR3RGlQUis0V3JVWUprR0xtbzVaV0k2NTNhUmFUU2VsNVB4WFN6M0Y5M0xIVmpMdGdBTEgzMDZwb3JZNGpJRmFkdjRyWG9iY3NGT1pENTRaaXdZZit3b3FCZzdvMTVxZ3p2RGpUUUtyTGpOcjhZcXVxS0FIcElBTnhtZDlJQ3g3d1o2bUF3Tzl4NnIyZ2ZHYmMyb09vVnMwaGU5SEsvTWRwaHdFeUNGUDJZUDY4eXEwRlcyYzFqVVh2VzVjcEhDSU9jOUw4NmVJcmd6aHEwVUUya25Yb0Y5d21hY3g5VTdxbi81dkdiZ2Qrc0YrdEZtNWU5c3ZlcHFRSXVqcXdBVEM1RnV5bFo3N3hQNzg4Q1lJWTRtakp2MHJyN3gvUEtvN0h2R3lTZEFqZkwrVFlDRlk2czZoaDBQcXltUjdQbUNiTXJWMW42WnlPdUc2ZGxzUXRzY3JuYTN1V1VIMkVvdHVpeE40N0l6SjVLelJhUGh6aXBrZ3B2V1gySG1YRUVLbGZGYzQzRzR3QjJwSTFieDZRQ242QTdKNlNEWVFIQ3lTWHJPQzUzZ1lKVzl5S0FoZWxHQ0xnTy0tODZDejdtSmFDek5GeUVMMnJweTJtUT09--a126f3bcc5b8af0a5a824e6b674d55f1fe9ee12e; lr=1644876939'
}
for page in range(3):
pld = payload.format(page+1, page*250, 250)
response = requests.request("POST", url, headers=headers, data=pld)
stock_info = response.json()['stock_infos']
stock_data(stock_info)
Here's how you do it in a loop. This works; I've tried it here.
for page in range(3):
pld = payload.format(page+1, page*250, 250)
response = requests.request("POST", url, headers=headers, data=pld)
stock_info = response.json()['stock_infos']
stock_data(stock_info)
You will, of course, need to modify your code so that stock_data doesn't overwrite the CSV file every time. You can either append to one big dataframe, or append to the CSV file.

Scraping Data from booking with python

hope you're doing well !
So i'm trying to scrape data from Booking (name of Hotel , room ..) , i run the code it's work but i don't get the data in the excel file, the data file is empty !
This is my code :
# Create an Extractor by reading from the YAML file
e = Extractor.from_yaml_file('C:/Users/pc/OneDrive/Bureau/booking-hotel-scraper-master/booking.yml')
def scrape(url):
headers = {
'Connection': 'keep-alive',
'Pragma': 'no-cache',
'Cache-Control': 'no-cache',
'DNT': '1',
'Upgrade-Insecure-Requests': '1',
# You may want to change the user agent if you get blocked
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.113 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9',
'Referer': 'https://www.booking.com/index.en-gb.html',
'Accept-Language': 'en-GB,en-US;q=0.9,en;q=0.8',
}
# Download the page using requests
print("Downloading %s"%url)
r = requests.get(url, headers=headers)
# Pass the HTML of the page and create
return e.extract(r.text,base_url=url)
with open("C:/Users/pc/OneDrive/Bureau/booking-hotel-scraper-master/urls.txt",'r') as urllist, open('C:/Users/pc/OneDrive/Bureau/booking-hotel-scraper-master/data.csv','w') as outfile:
fieldnames = [
"name",
"location",
"price",
"price_for",
"room_type",
"beds",
"rating",
"rating_title",
"number_of_ratings",
"url"
]
writer = csv.DictWriter(outfile, fieldnames=fieldnames,quoting=csv.QUOTE_ALL)
writer.writeheader()
for url in urllist.readlines():
data = scrape(url)
if data and data['hotels'] is not None:
for h in data["hotels"]:
writer.writerow(h)
And this is the result in the excel file :
There is no error in mycode it's only about how to get this data.
The booking.yml :

Parsing a table with Pandas

I am trying to parse the table from https://alreits.com/screener
I have tried this:
main_url = 'https://alreits.com/screener'
r = requests.get(main_url)
df_list = pd.read_html(r.text)
df = df_list[0]
print(df)
but pandas cant find the table.
I have also tried using BeautifulSoup4 but it didnt seem to give better results.
This is the selector: #__next > div.MuiContainer-root.MuiContainer-maxWidthLg > div.MuiBox-root.jss9.Card__CardContainer-feksr6-0.fpbzHQ.ScreenerTable__CardContainer-sc-1c5wxgl-0.GRrTj > div > table > tbody
This is the full xPath: /html/body/div/div[2]/div[2]/div/table/tbody
I am trying to get the Stock symbol (under name),sector,score and market cap. The other data would be nice to have but is not necessary.
Thank You!
I found one JSON url from the dev tool. This is an easy way to extract the table instead of using selenium. Use post request to extract the data.
import requests
headers = {
'authority': 'api.alreits.com:8080',
'sec-ch-ua': '"Google Chrome";v="93", " Not;A Brand";v="99", "Chromium";v="93"',
'sec-ch-ua-mobile': '?0',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36',
'sec-ch-ua-platform': '"Windows"',
'content-type': 'application/json',
'accept': '*/*',
'origin': 'https://alreits.com',
'sec-fetch-site': 'same-site',
'sec-fetch-mode': 'cors',
'sec-fetch-dest': 'empty',
'referer': 'https://alreits.com/',
'accept-language': 'en-US,en;q=0.9',
}
params = (
('page', '0'),
('size', '500'),
('sort', ['marketCap,desc', 'score,desc', 'ffoGrowth,desc']),
)
data = '{"filters":[]}'
response = requests.post('https://api.alreits.com:8080/api/reits/screener', headers=headers, params=params, data=data)
df = pd.DataFrame(response.json())
The code below will return the data you are looking for.
import requests
import pprint
import json
headers = {'content-type': 'application/json',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36'}
r = requests.post(
'https://api.alreits.com:8080/api/reits/screener?page=0&size=500&sort=marketCap,desc&sort=score,desc&sort=ffoGrowth,desc',
headers=headers, data=json.dumps({'filters':[]}))
if r.status_code == 200:
pprint.pprint(r.json())
# Now you have the data - do what you want with it
else:
print(r.status_code)

Why getting empty list while try to get links which includes specific class in python using bs4?

I'm try to get some links which are includes specific class, therefore i writed this code:
from bs4 import BeautifulSoup
import requests
def getPages(requestedURLS):
_buff = []
for url in requestedURLS:
try:
_buff.append(requests.get(url))
except requests.exceptions.RequestException as err:
print(err)
return _buff
def getProductList(pages):
links = []
for page in pages:
content = BeautifulSoup(page.content, 'html.parser')
links.extend(content.find_all("a", class_="sresult lvresult clearfix li shic"))
print(links)
def main():
pageLinks = [
"https://www.ebay.co.uk/sch/m.html?_nkw=&_armrs=1&_from=&_ssn=carabaeuro13&_clu=2&_fcid=3&_localstpos=&_stpos=&gbr=1&_pppn=r1&scp=ce0",
"https://www.ebay.co.uk/sch/m.html?_nkw=&_armrs=1&_from=&_ssn=carabaeuro13&_clu=2&_fcid=3&_localstpos=&_stpos=&gbr=1&_pgn=2&_skc=200&rt=nc",
"https://www.ebay.co.uk/sch/m.html?_nkw=&_armrs=1&_from=&_ssn=carabaeuro13&_clu=2&_fcid=3&_localstpos=&_stpos=&gbr=1&_pgn=3&_skc=400&rt=nc"
]
#Results in : <div id="Results" class="results "> <ul id="ListViewInner">
pages = getPages(pageLinks)
productList = getProductList(pages)
if __name__ == '__main__':
main()
You can check links there are lots of links which includes this class but output is empty as you see in below:
C:\Users\projects\getMarketData\venv\Scripts\python.exe C:/Users/projects/getMarketData/getData.py
[]
[]
[]
Process finished with exit code 0
What is wrong?
Using appropriate headers should do the trick:
url = 'https://www.ebay.co.uk/sch/m.html?_nkw=&_armrs=1&_from=&_ssn=carabaeuro13&_clu=2&_fcid=3&_localstpos=&_stpos=&gbr=1&_pppn=r1&scp=ce0'
request_headers = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3',
'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'en-US,en;q=0.9',
'Cache-Control': 'max-age=0',
'Connection': 'keep-alive',
'Host': 'www.ebay.co.uk',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-Site': 'none',
'Sec-Fetch-User': '?1',
'Upgrade-Insecure-Requests': '1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36',
}
r = requests.get(url, headers=request_headers)
soup = BeautifulSoup(r.content, 'lxml')
items = soup.find_all('li', {'class': 'sresult lvresult clearfix li shic'})
Result:
print(len(items)) # 18
print(items[0]['listingid']) # 333200565336
Use the network tab of the developer tools to inspect the traffic. Check this out if you've never done this before.

Categories

Resources