Scraping Data from booking with python - python

hope you're doing well !
So i'm trying to scrape data from Booking (name of Hotel , room ..) , i run the code it's work but i don't get the data in the excel file, the data file is empty !
This is my code :
# Create an Extractor by reading from the YAML file
e = Extractor.from_yaml_file('C:/Users/pc/OneDrive/Bureau/booking-hotel-scraper-master/booking.yml')
def scrape(url):
headers = {
'Connection': 'keep-alive',
'Pragma': 'no-cache',
'Cache-Control': 'no-cache',
'DNT': '1',
'Upgrade-Insecure-Requests': '1',
# You may want to change the user agent if you get blocked
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.113 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9',
'Referer': 'https://www.booking.com/index.en-gb.html',
'Accept-Language': 'en-GB,en-US;q=0.9,en;q=0.8',
}
# Download the page using requests
print("Downloading %s"%url)
r = requests.get(url, headers=headers)
# Pass the HTML of the page and create
return e.extract(r.text,base_url=url)
with open("C:/Users/pc/OneDrive/Bureau/booking-hotel-scraper-master/urls.txt",'r') as urllist, open('C:/Users/pc/OneDrive/Bureau/booking-hotel-scraper-master/data.csv','w') as outfile:
fieldnames = [
"name",
"location",
"price",
"price_for",
"room_type",
"beds",
"rating",
"rating_title",
"number_of_ratings",
"url"
]
writer = csv.DictWriter(outfile, fieldnames=fieldnames,quoting=csv.QUOTE_ALL)
writer.writeheader()
for url in urllist.readlines():
data = scrape(url)
if data and data['hotels'] is not None:
for h in data["hotels"]:
writer.writerow(h)
And this is the result in the excel file :
There is no error in mycode it's only about how to get this data.
The booking.yml :

Related

Looping through a Payload to get all pages

I know you can loop through page numbers in a URL but is it possible loop through pages in a Payload? I would guess you need beautiful soup? At the end of the Payload, there is this code.
page=1&start=0&limit=250
Currently, I am just getting page 1 with 250 lines. I need to loop through the code and retrieve page=2&start=251&limit=250 and the subsequent 11 pages. Could anyone show me how to do this?
Working Code for first 250 Lines
import requests
import pandas as pd
def stock_data(stock_info):
data = pd.DataFrame(stock_info)
data = data.iloc[:, 4:]
data.to_csv("data.csv", index=False)
url = "https://www.stockrover.com/stock_infos/grid?_dc=1644876887410"
payload = "state=%7B%22sortInfo%22%3A%7B%7D%2C%22columns%22%3A%5B76%2C77%2C50%2C80%2C547%2C13%2C21%2C771%5D%2C%22view%22%3A313%2C%22priorPrimaryColumn%22%3A170%2C%22filterData%22%3A%5B%5D%2C%22name%22%3A%22New%201%22%2C%22cType%22%3A%22Screener%22%2C%22cNode%22%3A%22s_42%22%2C%22cIsFolder%22%3Afalse%2C%22gridSelection%22%3A%22ANDE%22%2C%22lastActive%22%3A1396898415%2C%22primaryColumn%22%3A76%2C%22folderDisabledParams%22%3A%7B%22filterData%22%3A%5B%5D%7D%2C%22mainGridDateRange%22%3A%22ytd%22%2C%22groupState%22%3Anull%2C%22moversGridDateRange%22%3A%221_day%22%2C%22peersGridDateRange%22%3A%221_day%22%2C%22lastGridSelections%22%3A%5B%22ANDE%22%5D%2C%22lastQuantNode%22%3A%5B%22s_42%22%2C%22s_42%22%5D%2C%22includeQuotesInTable%22%3Afalse%2C%22includeAllQuotesLastValue%22%3Afalse%2C%22markets%22%3A%7B%22panel%22%3A%22summary%22%7D%2C%22researchPanel%22%3A%22comparisonPanel%22%2C%22recentSearchTickers%22%3A%5B%22SPY%22%2C%22AMZN%22%2C%22AAPL%22%2C%22s_32%22%2C%22%5ENDX%22%2C%22AXP%22%2C%22XOM%22%2C%22AFL%22%2C%22%5EDJX%22%2C%22AIT%22%2C%22ADVC%22%5D%2C%22quotesBoxTickers%22%3A%5B%22AMZN%22%2C%22AAPL%22%2C%22SPY%22%5D%2C%22checkedQuotesBoxTickers%22%3A%5B%22AMZN%22%2C%22AAPL%22%2C%22SPY%22%5D%2C%22dashboard%22%3A%7B%22buttonRef%22%3A%22272%22%7D%2C%22tickerSelectedFeeds%22%3A%5B%22Benzinga%20News%22%2C%22Yahoo%20News%22%5D%2C%22marketSelectedFeeds%22%3A%5B%22Google%20News%22%2C%22Stock%20Market%20News%20-%20Investing.com%22%5D%2C%22bondsSelectedFeeds%22%3A%5B%22Bonds%20Strategy%20-%20Investing.com%22%5D%2C%22commoditiesSelectedFeeds%22%3A%5B%22Commodities%20%26%20Futures%20News%20-%20Investing.com%22%2C%22Commodities%20Fundamental%20Analysis%20-%20Investing.com%22%2C%22Commodities%20Strategy%20Analysis%20-%20Investing.com%22%5D%2C%22stocksSelectedFeeds%22%3A%5B%22CNNMoney%20News%22%2C%22Google%20News%22%2C%22Seeking%20Alpha%20Top%20Stories%22%5D%2C%22etfsSelectedFeeds%22%3A%5B%22Economy%20News%20-%20Investing.com%22%2C%22ETF%20Analysis%20-%20Investing.com%22%2C%22Investing%20Ideas%20-%20Investing.com%22%5D%2C%22topPanel%22%3A%22researchPanel%22%2C%22maxRecordsNode%22%3Afalse%2C%22version%22%3A7%2C%22lastGridSelectionsRaw%22%3A%5B%22ANDE%22%5D%2C%22lastSelectionScreeners%22%3A%22s_42%22%2C%22quotesDisabled%22%3Atrue%2C%22lastSelectionPortfolios%22%3A%22p_2%22%2C%22comparisonPanels%22%3A%7B%22Portfolio%22%3A%22p_2%22%2C%22Index%22%3A%22%5EDJX%22%2C%22Watchlist%22%3A%22Watchlists%22%2C%22Screener%22%3A%22s_42%22%7D%2C%22lastSelectionWatchlists%22%3A%22w_26%22%2C%22indicesSelectedFeeds%22%3A%5B%22Google%20News%22%2C%22Yahoo%20News%22%5D%2C%22newsActive%22%3A%22tickerNews%22%2C%22recentSearchMetrics%22%3A%5B%22Price%22%2C%22EPS%22%2C%22Sales%22%5D%2C%22editPanel%22%3A%22positionsPanel%22%2C%22newsType%22%3A%22marketNews%22%2C%22tableColumns%22%3A%5B%22ticker%22%2C%22rank%22%2C%22score_rank%22%2C%22filter_score%22%2C%22company%22%2C%22cash%22%2C%22currentassets%22%2C%22netppe%22%2C%22intangibles%22%2C%22totalassets%22%2C%22currentliabilities%22%2C%22longtermdebt%22%2C%22totaldebt%22%2C%22totalliabilities%22%2C%22equity%22%2C%22tangiblebookvalue%22%2C%22cash_short_term_p%22%2C%22net_ppe_p%22%2C%22intangibles_p%22%5D%2C%22last_save%22%3A1644837064%2C%22panels%22%3A%7B%22collapsed%22%3A%7B%22chp%22%3Atrue%2C%22ip%22%3Atrue%2C%22mp%22%3Afalse%2C%22qp%22%3Afalse%2C%22conp%22%3Atrue%2C%22fsp%22%3Afalse%7D%2C%22viewportWidth%22%3A%221920%22%2C%22viewportHeight%22%3A%221069%22%2C%22chartPanelHeight%22%3A483%2C%22controlPanelWidth%22%3A296%2C%22insightPanelWidth%22%3A%22485%22%2C%22quoteBoxHeight%22%3A200%2C%22navigationPanelWidth%22%3A277%7D%7D&updateMarket=true&page=1&start=0&limit=250"
headers = {
'authority': 'www.stockrover.com',
'sec-ch-ua': '" Not A;Brand";v="99", "Chromium";v="98", "Google Chrome";v="98"',
'x-csrf-token': 'fAeVScD26lby5MQf5YFI5p3snudo3E+rw0TL0h1W3j/vcjsIMvgxAF5Z9DkMjjCU4trT/b4EV0VCCPvmms5VIw==',
'sec-ch-ua-mobile': '?0',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82 Safari/537.36',
'content-type': 'application/x-www-form-urlencoded; charset=UTF-8',
'accept': 'application/json',
'x-requested-with': 'XMLHttpRequest',
'sec-ch-ua-platform': '"Windows"',
'origin': 'https://www.stockrover.com',
'sec-fetch-site': 'same-origin',
'sec-fetch-mode': 'cors',
'sec-fetch-dest': 'empty',
'referer': 'https://www.stockrover.com/research/all/313/s_42/ANDE',
'accept-language': 'en-US,en;q=0.9',
'cookie': 'remember_me_pref=0; user_name=test11964; plan=3; premiumBraintreeKey=MIIBCgKCAQEAzM4LJfrNnBOgRFB1dDJkmqTFCWT2Y%2BksOydD8xDH4R033WUzxbffMZb%2B3dqEyQvOVjLcwFIHByDc4Xwej7enas2E%2FVRyh7Cvyadn7M5zQeRyLcI9Ys5KCozMwxJPc0x76FlXPwiAo1Qlz3RcLb9wGHBag2R51FuTie%2BhVDCgzWajqDCREzRhi%2Fqlt3D%2FxXNo%2FiwJlpOUr%2Fx1QnkkILxgKlq1dD7KJ767O5ojYKXsO%2BV2Bfu7sSD3djsOxQJ1%2FRbaDm2E96EDkWhhOeOpPndQ6IuSl4NmnJg%2Fcq6f8csW8M3Ys%2BMZPFkdxPC4%2FfRM1XC9o76PjpVNBIO%2ByJEELKZedwIDAQAB; lr=1644876886; _Ruby2_session=OEs3djBGVmtrSXhSWjFibnp2ck9vem8vd1VmQ00wUkZCVWlaWmYzOFBQQUJyemc0MFNjMlVmTGRUeFpNSTFIRGliVitnb2M1L2JNcCt5SnQxN2xtZDV5M20waEd0elh3aUU3R0k3YnJiVy9BcUhObGpBUU54c2tQRE9RZHBZWk8wa0NBQXJub2tHU3pHZmUvM3dRNGZvVStsT0ZEbUNEa3ZyVDkxdDA5S1B5d3VZWlZNUERxL01VNlYzdHhBci9uSnduOGxodk8rSDJLaUJIWTVyM25GL3o4RHYva3pGeDdIY1NJODV4WkV4MnRiR2RoNHZDUktPWSsxaElPdXNEU0tSaCtKL1o0K2FsSE1rcVI2TkgxOFo0MktSL1JRWjgzRllBZGFhMjg4bitpTUJzQjR6Nk5OZzhzUFMzVGRpVFNZOUxrTnhWNTB2K0dYNXdDcFFXZnpZdlZleFR2cWY5cmJqaDNiY0JhWVJJT0s1TDEvOHU0UTV6NW5uTjcwZjFzdHpxeFg0cVQ3NTRob2xTMlA2ZDhCQT09LS1LOEljN3laVTlBVUpsVVo3c093Y2NnPT0%3D--b963330daa985315420ea5893f1cfa3e3a54c9d5; _Ruby2_session=UmE1NVo0cjJ1YmR3RGlQUis0V3JVWUprR0xtbzVaV0k2NTNhUmFUU2VsNVB4WFN6M0Y5M0xIVmpMdGdBTEgzMDZwb3JZNGpJRmFkdjRyWG9iY3NGT1pENTRaaXdZZit3b3FCZzdvMTVxZ3p2RGpUUUtyTGpOcjhZcXVxS0FIcElBTnhtZDlJQ3g3d1o2bUF3Tzl4NnIyZ2ZHYmMyb09vVnMwaGU5SEsvTWRwaHdFeUNGUDJZUDY4eXEwRlcyYzFqVVh2VzVjcEhDSU9jOUw4NmVJcmd6aHEwVUUya25Yb0Y5d21hY3g5VTdxbi81dkdiZ2Qrc0YrdEZtNWU5c3ZlcHFRSXVqcXdBVEM1RnV5bFo3N3hQNzg4Q1lJWTRtakp2MHJyN3gvUEtvN0h2R3lTZEFqZkwrVFlDRlk2czZoaDBQcXltUjdQbUNiTXJWMW42WnlPdUc2ZGxzUXRzY3JuYTN1V1VIMkVvdHVpeE40N0l6SjVLelJhUGh6aXBrZ3B2V1gySG1YRUVLbGZGYzQzRzR3QjJwSTFieDZRQ242QTdKNlNEWVFIQ3lTWHJPQzUzZ1lKVzl5S0FoZWxHQ0xnTy0tODZDejdtSmFDek5GeUVMMnJweTJtUT09--a126f3bcc5b8af0a5a824e6b674d55f1fe9ee12e; lr=1644876939'
}
for page in range(3):
pld = payload.format(page+1, page*250, 250)
response = requests.request("POST", url, headers=headers, data=pld)
stock_info = response.json()['stock_infos']
stock_data(stock_info)
Here's how you do it in a loop. This works; I've tried it here.
for page in range(3):
pld = payload.format(page+1, page*250, 250)
response = requests.request("POST", url, headers=headers, data=pld)
stock_info = response.json()['stock_infos']
stock_data(stock_info)
You will, of course, need to modify your code so that stock_data doesn't overwrite the CSV file every time. You can either append to one big dataframe, or append to the CSV file.

Read URLs from external file

I found the following TikTok Downloader which is working fine.
from argparse import ArgumentParser
import os
from urllib.parse import parse_qsl, urlparse
import requests
class TikTokDownloader:
HEADERS = {
'Connection': 'keep-alive',
'Pragma': 'no-cache',
'Cache-Control': 'no-cache',
'DNT': '1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36',
'Accept': '*/*',
'Sec-Fetch-Site': 'same-site',
'Sec-Fetch-Mode': 'no-cors',
'Sec-Fetch-Dest': 'video',
'Referer': 'https://www.tiktok.com/',
'Accept-Language': 'en-US,en;q=0.9,bs;q=0.8,sr;q=0.7,hr;q=0.6',
'sec-gpc': '1',
'Range': 'bytes=0-',
}
def __init__(self, url: str, web_id: str):
self.__url = url
self.__cookies = {
'tt_webid': web_id,
'tt_webid_v2': web_id
}
def __get_video_url(self) -> str:
response = requests.get(self.__url, cookies=self.__cookies, headers=TikTokDownloader.HEADERS)
return response.text.split('"playAddr":"')[1].split('"')[0].replace(r'\u0026', '&')
def download(self, file_path: str):
video_url = self.__get_video_url()
url = urlparse(video_url)
params = tuple(parse_qsl(url.query))
request = requests.Request(method='GET',
url='{}://{}{}'.format(url.scheme,
url.netloc, url.path),
cookies=self.__cookies,
headers=TikTokDownloader.HEADERS,
params=params)
prepared_request = request.prepare()
session = requests.Session()
response = session.send(request=prepared_request)
response.raise_for_status()
if os.path.exists(file_path):
choice = input('File already exists. Overwrite? (Y/N): ')
if choice.lower() != 'y':
return
with open(os.path.abspath(file_path), 'wb') as output_file:
output_file.write(response.content)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--web-id', help='Value of tt_webid or tt_webid_v2 cookie (they are the same).')
parser.add_argument('-o', '--output', default='download.mp4', help='Full output path.')
parser.add_argument('url', help='Video url (https://www.tiktok.com/#username/video/1234567890123456789 or https://vm.tiktok.com/a1b2c3/).')
args = parser.parse_args()
downloader = TikTokDownloader(args.url, args.web_id)
downloader.download(args.output)
The issue is that I have to run this command to download each video:
python3 ./tiktok.py --web-id 1234567890123 -o ./file.mp4 https://vm.tiktok.com/...
And I have 1000 links to download. All the links are in A txt file without comma. Like:
Https://tiktok.com/1
Https://tiktok.com/2
Https://tiktok.com/3
So- I'm looking to find a way to read the text file and automatically replace the link in the command that I have to run. Or should I change the actual script?
Use my code please, I have just defined a function that will help you to download all those videos by just entering the path where the file with a thousand links is located, preferably save this python script in the same directory where your file with a thousand links is located:
Use the function
A_thousand_links_jbsidis("my_file_with_1000_links.txt")
This is going to put automatic names to each video based on date and time, I tested it and it works!
Here is the code by jbsidis:
from argparse import ArgumentParser
import os
from urllib.parse import parse_qsl, urlparse
import requests
class TikTokDownloaderjbsidis:
HEADERS = {
'Connection': 'keep-alive',
'Pragma': 'no-cache',
'Cache-Control': 'no-cache',
'DNT': '1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36',
'Accept': '*/*',
'Sec-Fetch-Site': 'same-site',
'Sec-Fetch-Mode': 'no-cors',
'Sec-Fetch-Dest': 'video',
'Referer': 'https://www.tiktok.com/',
'Accept-Language': 'en-US,en;q=0.9,bs;q=0.8,sr;q=0.7,hr;q=0.6',
'sec-gpc': '1',
'Range': 'bytes=0-',
}
def __init__(self, url, web_id):
self.__url = url
self.__cookies = {
'tt_webid': web_id,
'tt_webid_v2': web_id
}
def __get_video_url(self) -> str:
response = requests.get(self.__url, cookies=self.__cookies, headers=TikTokDownloaderjbsidis.HEADERS)
return response.text.split('"playAddr":"')[1].split('"')[0].replace(r'\u0026', '&')
def download(self, file_path: str):
video_url = self.__get_video_url()
url = urlparse(video_url)
params = tuple(parse_qsl(url.query))
request = requests.Request(method='GET',
url='{}://{}{}'.format(url.scheme,
url.netloc, url.path),
cookies=self.__cookies,
headers=TikTokDownloaderjbsidis.HEADERS,
params=params)
prepared_request = request.prepare()
session = requests.Session()
response = session.send(request=prepared_request)
response.raise_for_status()
if os.path.exists(file_path):
choice = str('jbsidis File already exists. Overwrite? (Y/N): ')
print("Downloading jbsidis == "+str(file_path))
with open(os.path.abspath(file_path), 'wb') as output_file:
output_file.write(response.content)
import time
import random
def A_thousand_links_jbsidis(file_with_a_thousand_links):
n=open(file_with_a_thousand_links).read()
m=n.splitlines() #guessing the links are per line
MyWebIDis="1234567890123" #put the id that works for you
c=0
for new_url in m:
c=c+1
new_auto_file_name=str(c)+" - "+str(time.strftime("_%Y%m%d_%H%M%S_"))+"_video_"+".mp4" #i guess they are mp4
clean_url=str(new_url).replace("\n","").replace("\x0a","").replace("\x0d","").replace(" ","")
downloader = TikTokDownloaderjbsidis(clean_url, MyWebIDis)
downloader.download(new_auto_file_name)
time.sleep(10) #just in case the internet is not that fast, wait 10 seconds after next download
A_thousand_links_jbsidis("my_file_with_1000_links.txt")
And here is the image, I don't know why sometimes we answer questions without giving a real solution, greetings from El Salvador.
jbsidis

Populate a csv file with scraped data

I'm having trouble with this and I know it is basic as I was blocked for 2 days for asking a similar question on Friday, but I'm really struggling so would appreciate help.
How do I edit the code below to populate the csv I have created with the table I have pulled from the airport site i.e. the flight arrival data?
import requests
import csv, sys
from bs4 import BeautifulSoup
cookies = {
'ApplicationGatewayAffinity': '1d2ad8ab214d1293a4e31bcd161589fa82a54a39bb7b3be80b503996092d4296',
'ApplicationGatewayAffinityCORS': '1d2ad8ab214d1293a4e31bcd161589fa82a54a39bb7b3be80b503996092d4296',
}
headers = {
'Connection': 'keep-alive',
'Cache-Control': 'max-age=0',
'Upgrade-Insecure-Requests': '1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9',
'Sec-Fetch-Site': 'cross-site',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-User': '?1',
'Sec-Fetch-Dest': 'document',
'Referer': 'https://www.google.com/',
'Accept-Language': 'en-GB,en;q=0.9,en-US;q=0.8,fr;q=0.7,nl;q=0.6',
}
response = requests.get('https://www.corkairport.com/arrivals-departures', headers=headers, cookies=cookies)
#print(response.content)
soup = BeautifulSoup(response.content, 'html.parser')
writer = csv.writer(sys.stdout)
writer.writerow([
'Arriving From'
'Airline',
'Scheduled to arrive', 'Latest Update', 'Status'
])
with open('flight.csv','w') as f:
[table] = soup.find_all("table")
for row in table.find_all("tr"):
writer.writerow(
[td.string.strip() for td in row.find_all("td")]
)
writer = csv.writer(f)
One minor error, you need to have the writer = csv.writer(f) in the with block
with open('flight.csv','w') as f:
[table] = soup.find_all("table")
writer = csv.writer(f)
for row in table.find_all("tr"):
writer.writerow(
[td.string.strip() for td in row.find_all("td")]
)

How to get cookies value to set in requests?

I am accessing a URL https://streeteasy.com/sales/all which does not show the page unless Cookie is set. I am having no idea how this cookie value being generated. I highly doubt that cookie value is fixed so I guess I can't use a hard-coded Cookie value either.
Code below:
import requests
from bs4 import BeautifulSoup
headers = {
'authority': 'streeteasy.com',
'pragma': 'no-cache',
'cache-control': 'no-cache',
'upgrade-insecure-requests': '1',
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36',
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3',
'referer': 'https://streeteasy.com/sales/all',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'en-US,en;q=0.9,ur;q=0.8',
'cookie': 'D_SID=103.228.157.1:Bl5GGXCWIxq4AopS1Hkr7nkveq1nlhWXlD3PMrssGpU; _se_t=0944dfa5-bfb4-4085-812e-fa54d44acc54; google_one_tap=0; D_IID=AFB68ACC-B276-36C0-8718-13AB09A55E51; D_UID=23BA0A61-D0DF-383D-88A9-8CF65634135F; D_ZID=C0263FA4-96BF-3071-8318-56839798C38D; D_ZUID=C2322D79-7BDB-3E32-8620-059B1D352789; D_HID=CE522333-8B7B-3D76-B45A-731EB750DF4D; last_search_tab=sales; se%3Asearch%3Asales%3Astate=%7C%7C%7C%7C; streeteasy_site=nyc; se_rs=123%2C1029856%2C123%2C1172313%2C2815; se%3Asearch%3Ashared%3Astate=102%7C%7C%7C%7Cfalse; anon_searcher_stage=initial; se_login_trigger=4; se%3Abig_banner%3Asearch=%7B%22123%22%3A2%7D; se%3Abig_banner%3Ashown=true; se_lsa=2019-07-08+04%3A01%3A30+-0400; _ses=BAh7DEkiD3Nlc3Npb25faWQGOgZFVEkiJWRiODVjZTA1NmYzMzZkMzZiYmU4YTk4Yjk5YmU5ZTBlBjsAVEkiEG5ld192aXNpdG9yBjsARlRJIhFsYXN0X3NlY3Rpb24GOwBGSSIKc2FsZXMGOwBUSSIQX2NzcmZfdG9rZW4GOwBGSSIxbTM5eGRPUVhLeGYrQU1jcjZIdi81ajVFWmYzQWFSQmhxZThNcG92cWxVdz0GOwBGSSIIcGlzBjsARmkUSSIOdXNlcl9kYXRhBjsARnsQOhBzYWxlc19vcmRlckkiD3ByaWNlX2Rlc2MGOwBUOhJyZW50YWxzX29yZGVySSIPcHJpY2VfZGVzYwY7AFQ6EGluX2NvbnRyYWN0RjoNaGlkZV9tYXBGOhJzaG93X2xpc3RpbmdzRjoSbW9ydGdhZ2VfdGVybWkjOhltb3J0Z2FnZV9kb3ducGF5bWVudGkZOiFtb3J0Z2FnZV9kb3ducGF5bWVudF9kb2xsYXJzaQJQwzoSbW9ydGdhZ2VfcmF0ZWYJNC4wNToTbGlzdGluZ3Nfb3JkZXJJIhBsaXN0ZWRfZGVzYwY7AFQ6EHNlYXJjaF92aWV3SSIMZGV0YWlscwY7AFRJIhBsYXN0X3NlYXJjaAY7AEZpAXs%3D--d869dc53b8165c9f9e77233e78c568f610994ba7',
}
session = requests.Session()
response = session.get('https://streeteasy.com/for-sale/downtown', headers=headers, timeout=20)
if response.status_code == 200:
html = response.text
soup = BeautifulSoup(html, 'lxml')
links = soup.select('h3 > a')
print(links)

Download file from POST request in scrapy

I know there is builtin middleware to handle downloadings. but it only accept a url. but in my case, my downloading link is a POST request.
When i made that POST request pdf file starts downloading.
Now i want to download that file from POST request in scrapy.
Website is http://scrb.bihar.gov.in/View_FIR.aspx
You can enter district Aurangabad and police station Kasma PS
On last column status there is a link to downloading file.
ps_x = '//*[#id="ctl00_ContentPlaceHolder1_ddlPoliceStation"]//option[.="Kasma PS"]/#value'
police_station_val = response.xpath(ps_x).extract_first()
d_x = '//*[#id="ctl00_ContentPlaceHolder1_ddlDistrict"]//option[.="Aurangabad"]/#value'
district_val = response.xpath(d_x).extract_first()
viewstate = response.xpath(self.viewstate_x).extract_first()
viewstategen = response.xpath(self.viewstategen_x).extract_first()
eventvalidator = response.xpath(self.eventvalidator_x).extract_first()
eventtarget = response.xpath(self.eventtarget_x).extract_first()
eventargs = response.xpath(self.eventargs_x).extract_first()
lastfocus = response.xpath(self.lastfocus_x).extract_first()
payload = {
'__EVENTTARGET': eventtarget,
'__EVENTARGUMENT': eventargs,
'__LASTFOCUS': lastfocus,
'__VIEWSTATE': viewstate,
'__VIEWSTATEGENERATOR': viewstategen,
'__EVENTVALIDATION': eventvalidator,
'ctl00$ContentPlaceHolder1$ddlDistrict': district_val,
'ctl00$ContentPlaceHolder1$ddlPoliceStation': police_station_val,
'ctl00$ContentPlaceHolder1$optionsRadios': 'radioPetioner',
'ctl00$ContentPlaceHolder1$txtSearchBy': '',
'ctl00$ContentPlaceHolder1$rptItem$ctl06$lnkStatus.x': '21',
'ctl00$ContentPlaceHolder1$rptItem$ctl06$lnkStatus.y': '24',
}
headers = {
'Connection': 'keep-alive',
'Cache-Control': 'max-age=0',
'Origin': 'http://scrb.bihar.gov.in',
'Upgrade-Insecure-Requests': '1',
'Content-Type': 'application/x-www-form-urlencoded',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'Referer': 'http://scrb.bihar.gov.in/View_FIR.aspx',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'en-US,en;q=0.9',
}
# req = requests.post(response.url, data=payload, headers=headers)
# with open('pdf/ch.pdf', 'w+b') as f:
# f.write(req.content)
When You click donwload, webbrowser sends POST request.
So this answer mentioned by El Ruso earlier is applyable in your case
.....
def parse(self, response):
......
yield scrapy.FormRequest("http://scrb.bihar.gov.in/View_FIR.aspx",.#your post request configuration, callback=self.save_pdf)
def save_pdf(self, response):
path = response.url.split('/')[-1]
self.logger.info('Saving PDF %s', path)
with open(path, 'wb') as f:
f.write(response.body)

Categories

Resources