I am trying to convert the below for loop to Python.
for (i = 5; i < n; i = i*5):
I am not sure how to make use of the Range function when i want the i value to be set to the multiple of 5. For example, 1st time I want the i to be 5, then followed by 25, then followed by 125 and it should go on.
The following is what i have tried:
i = 5
for i in range (i, n+1, i*5)
The problem with the above being, the value of i getting incremented by 25, making it to 30 whereas i want the i to be 25 in the second iteration. It is pretty easy when using the while loop. But I am seeing if there is a way to implement the same in the for loop. Please help. Thanks in advance.
I am not sure how to make use of the Range function when i want the i value to be set to the multiple of 5
It will not work that way. range can only create arithmetic sequences; multiplying every time creates a geometric sequence.
What you can do is take advantage of the fact that the i values are successive powers of 5; so make a loop over the desired exponent values, and compute i inside the loop:
# Computing the `limit` in terms of `n` is left as an exercise.
# Just in case you were already computing `n` in terms of an existing `limit`,
# in which case you could just use it directly ;)
for j in range(limit):
i = 5**j
There is a theorem in computer science that states that any "C-style" for loop can be transformed into an equivalent while loop. This is one of those cases where the transformation is desirable:
i = 5
while i < n:
# Loop body goes here
i *= 5
You can hide the loop logic behind a generator:
def multrange(start, stop, ratstep):
i = start
while i < stop:
yield i
i *= ratstep
list(multrange(5, 10000, 5))
#[5, 25, 125, 625, 3125]
You can define your own range function using yield!
def range(i, j, k):
while i * k < j:
i *= k
yield i
for i in range(5, 2000, 5):
print(i)
Output:
25
125
625
Most Python programmers would just use a while loop:
i = 5
while i < n:
....
i = i * 5
If you really, really want a for loop:
import itertools
for i in itertools.takewhile(lambda x: x < n, (5 ** i for i in itertools.count(1))):
... whatever ...
Related
This is for a school assignment.
I have been tasked to define a function determining the largest square pyramidal number up to a given integer(argument). For some background, these are square pyramidal numbers:
1 = 1^2
5 = 1^2+2^2
14 = 1^2+2^2+3^2
So for a function and parameter largest_square_pyramidal_num(15), the function should return 14, because that's the largest number within the domain of the argument.
I get the idea. And here's my code:
def largest_square_pyramidal_num(n):
sum = 0
i = 0
while sum < n:
sum += i**2
i += 1
return sum
Logically to me, it seemed nice and rosy until I realised it doesn't stop when it's supposed to. When n = 15, sum = 14, sum < n, so the code adds one more round of i**2, and n is exceeded. I've been cracking my head over how to stop the iteration before the condition sum < n turns false, including an attempt at break and continue:
def largest_square_pyramidal_num(n):
sum = 0
for i in range(n+1):
sum += i**2
if sum >= n:
break
else:
continue
return sum
Only to realise it doesn't make any difference.
Can someone give me any advice? Where is my logical lapse? Greatly appreciated!
You can do the following:
def largest_pyr(x):
pyr=[sum([i**2 for i in range(1,k+1)]) for k in range(int(x**0.5)+1)]
pyr=[i for i in pyr if i<=x]
return pyr[-1]
>>>largest_pyr(15)
14
>>> largest_pyr(150)
140
>>> largest_pyr(1500)
1496
>>> largest_pyr(15000)
14910
>>> largest_pyr(150000)
149226
Let me start by saying that continue in the second code piece is redundant. This instruction is used for scenario when you don't want the code in for loop to continue but rather to start a new iteration (in your case there are not more instructions in the loop body).
For example, let's print every number from 1 to 100, but skip those ending with 0:
for i in range(1, 100 + 1):
if i % 10 != 0:
print(i)
for i in range(1, 100 + 1):
if i % 10 == 0:
# i don't want to continue executing the body of for loop,
# get me to the next iteration
continue
print(i)
The first example is to accept all "good" numbers while the second is rather to exclude the "bad" numbers. IMHO, continue is a good way to get rid of some "unnecessary" elements in the container rather than writing an if (your code inside if becomes extra-indented, which worsens readability for bigger functions).
As for your first piece, let's think about it for a while. You while loop terminates when the piramid number is greater or equal than n. And that is not what you really want (yes, you may end up with a piramid number which is equal to n, but it is not always the case).
What I like to suggest is to generate a pyramid number until in exceedes n and then take a step back by removing an extra term:
def largest_square_pyramidal_num(n):
result = 0
i = 0
while result <= n:
i += 1
result += i**2
result -= i ** 2
return result
2 things to note:
don't use sum as a name for the variable (it might confuse people with built-in sum() function)
I swapped increment and result updating in the loop body (such that i is up-to-date when the while loop terminates)
So the function reads like this: keep adding terms until we take too much and go 1 step back.
Hope that makes some sense.
Cheers :)
I'm trying to write the fastest algorithm possible to return the number of "magic triples" (i.e. x, y, z where z is a multiple of y and y is a multiple of x) in a list of 3-2000 integers.
(Note: I believe the list was expected to be sorted and unique but one of the test examples given was [1,1,1] with the expected result of 1 - that is a mistake in the challenge itself though because the definition of a magic triple was explicitly noted as x < y < z, which [1,1,1] isn't. In any case, I was trying to optimise an algorithm for sorted lists of unique integers.)
I haven't been able to work out a solution that doesn't include having three consecutive loops and therefore being O(n^3). I've seen one online that is O(n^2) but I can't get my head around what it's doing, so it doesn't feel right to submit it.
My code is:
def solution(l):
if len(l) < 3:
return 0
elif l == [1,1,1]:
return 1
else:
halfway = int(l[-1]/2)
quarterway = int(halfway/2)
quarterIndex = 0
halfIndex = 0
for i in range(len(l)):
if l[i] >= quarterway:
quarterIndex = i
break
for i in range(len(l)):
if l[i] >= halfway:
halfIndex = i
break
triples = 0
for i in l[:quarterIndex+1]:
for j in l[:halfIndex+1]:
if j != i and j % i == 0:
multiple = 2
while (j * multiple) <= l[-1]:
if j * multiple in l:
triples += 1
multiple += 1
return triples
I've spent quite a lot of time going through examples manually and removing loops through unnecessary sections of the lists but this still completes a list of 2,000 integers in about a second where the O(n^2) solution I found completes the same list in 0.6 seconds - it seems like such a small difference but obviously it means mine takes 60% longer.
Am I missing a really obvious way of removing one of the loops?
Also, I saw mention of making a directed graph and I see the promise in that. I can make the list of first nodes from the original list with a built-in function, so in principle I presume that means I can make the overall graph with two for loops and then return the length of the third node list, but I hit a wall with that too. I just can't seem to make progress without that third loop!!
from array import array
def num_triples(l):
n = len(l)
pairs = set()
lower_counts = array("I", (0 for _ in range(n)))
upper_counts = lower_counts[:]
for i in range(n - 1):
lower = l[i]
for j in range(i + 1, n):
upper = l[j]
if upper % lower == 0:
lower_counts[i] += 1
upper_counts[j] += 1
return sum(nx * nz for nz, nx in zip(lower_counts, upper_counts))
Here, lower_counts[i] is the number of pairs of which the ith number is the y, and z is the other number in the pair (i.e. the number of different z values for this y).
Similarly, upper_counts[i] is the number of pairs of which the ith number is the y, and x is the other number in the pair (i.e. the number of different x values for this y).
So the number of triples in which the ith number is the y value is just the product of those two numbers.
The use of an array here for storing the counts is for scalability of access time. Tests show that up to n=2000 it makes negligible difference in practice, and even up to n=20000 it only made about a 1% difference to the run time (compared to using a list), but it could in principle be the fastest growing term for very large n.
How about using itertools.combinations instead of nested for loops? Combined with list comprehension, it's cleaner and much faster. Let's say l = [your list of integers] and let's assume it's already sorted.
from itertools import combinations
def div(i,j,k): # this function has the logic
return l[k]%l[j]==l[j]%l[i]==0
r = sum([div(i,j,k) for i,j,k in combinations(range(len(l)),3) if i<j<k])
#alaniwi provided a very smart iterative solution.
Here is a recursive solution.
def find_magicals(lst, nplet):
"""Find the number of magical n-plets in a given lst"""
res = 0
for i, base in enumerate(lst):
# find all the multiples of current base
multiples = [num for num in lst[i + 1:] if not num % base]
res += len(multiples) if nplet <= 2 else find_magicals(multiples, nplet - 1)
return res
def solution(lst):
return find_magicals(lst, 3)
The problem can be divided into selecting any number in the original list as the base (i.e x), how many du-plets we can find among the numbers bigger than the base. Since the method to find all du-plets is the same as finding tri-plets, we can solve the problem recursively.
From my testing, this recursive solution is comparable to, if not more performant than, the iterative solution.
This answer was the first suggestion by #alaniwi and is the one I've found to be the fastest (at 0.59 seconds for a 2,000 integer list).
def solution(l):
n = len(l)
lower_counts = dict((val, 0) for val in l)
upper_counts = lower_counts.copy()
for i in range(n - 1):
lower = l[i]
for j in range(i + 1, n):
upper = l[j]
if upper % lower == 0:
lower_counts[lower] += 1
upper_counts[upper] += 1
return sum((lower_counts[y] * upper_counts[y] for y in l))
I think I've managed to get my head around it. What it is essentially doing is comparing each number in the list with every other number to see if the smaller is divisible by the larger and makes two dictionaries:
One with the number of times a number is divisible by a larger
number,
One with the number of times it has a smaller number divisible by
it.
You compare the two dictionaries and multiply the values for each key because the key having a 0 in either essentially means it is not the second number in a triple.
Example:
l = [1,2,3,4,5,6]
lower_counts = {1:5, 2:2, 3:1, 4:0, 5:0, 6:0}
upper_counts = {1:0, 2:1, 3:1, 4:2, 5:1, 6:3}
triple_tuple = ([1,2,4], [1,2,6], [1,3,6])
Currently taking a programming course and got as an assignment to find the first fibonacci number above a million and I'm having a bit of trouble finding the specific number. I'm also supposed to be finding the index of the n:th number when it hits 1 million. I'm pretty new to coding but this is what I've come up with so far, just having a hard time to figure out how to actually calculate what the number is.
I guess you would switch out the for-with a while-loop but haven't figured out it how to get it all to work.
Thanks in beforehand :)
def fib_seq(n):
if n <= 2:
return 1
return fib_seq(n-1) + fib_seq(n-2)
lst = []
for i in range(1, 20):
lst.append(i)
print(fib_seq(i), lst)
Some points:
You don't need to build a list. You're only asked to return an index and the corresponding Fibonnacci number.
The recursive algorithm for Fibonnacci is not best practice, unless you would use some memoization. Otherwise the same numbers have to be recalculated over and over again. Use an iterative method instead.
Here is how that could look:
def fib(atleast):
a = 0
b = 1
i = 1
while b < atleast:
a, b = b, a+b
i += 1
return i, b
print(fib(1000000)) # (31, 1346269)
If you need to do this with some find of recursion, you should try to avoid calling the recursions twice with each iteration. This is a classic example where the complexity explodes. One way to do this is to memoize the already calculated results. Another is to maintain state with the function arguments. For example this will deliver the answer and only call the function 32 times:
def findIndex(v, prev = 0, current = 1, index = 0):
if v < prev:
return (prev, index)
return findIndex(v, current, prev+current, index + 1 )
findIndex(1000000) # (1346269, 31)
Assume there are two variables, k and m, each already associated with a positive integer value and further assume that k's value is smaller than m's. Write the code necessary to compute the number of perfect squares between k and m. (A perfect square is an integer like 9, 16, 25, 36 that is equal to the square of another integer (in this case 3*3, 4*4, 5*5, 6*6 respectively).) Associate the number you compute with the variable q. For example, if k and m had the values 10 and 40 respectively, you would assign 3 to q because between 10 and 40 there are these perfect squares: 16, 25, and 36,.
**If I want to count the numbers between 16 and 100( 5,6,7,8,9 =makes 5)and write code in terms of with i and j, my code would be as follows but something goes wrong. I want to get the result,5 at last. how can I correct it?
k=16
m=100
i=0
j=0
q1=0
q2=0
while j**2 <m:
q2=q2+1
while i**2 <k:
q1=q1+1
i=i+1
j=j+1
print(q2-q1)
Your probably don't want to loop for this. If k and m are very far apart it will take a long time.
Given k < m, you want to compute how many integers l such that k < l^2 < m. The smallest possible such integer is floor( sqrt(k) +1 ) and the largest possible such integer is ceil(sqrt(m)-1). The number of such integers is:
import math
def sq_between(k,m):
return math.ceil(m**0.5-1) - math.floor(k**0.5+1) +1
This allows for
sq_between(16,100)
yielding:
5
Here is another version of your function that seems to do to what you ask for.
k = 16
m = 100
perfect_squares = []
for i in range(m):
if i**2 < k:
continue
if i**2 > m:
break
perfect_squares.append(i**2)
print(perfect_squares)
You code is mixing up everything in the second while loop. If you explain a bit further what you are trying to do there, I will probably be able to explain why your idea is not working.
I would change your code as follows in order to make it work:
k = 10
m = 40
i = 0
q = 0
while i ** 2 < m:
if i ** 2 > k:
print(i)
q += 1
i += 1
print (q)
By utilizing the fact that each square number can get expressed via square = sum from i = 1 to n (2 * i + 1) there is an easy way of speedup the above algorithm - but the algorithm will become much longer then ...
I was attempting to solve a programing challenge and the program i wrote solved the small test data correctly for this question. But When they run it against the larger datasets, my program timed out on some of the occasions . I am mostly a self taught programmer, if there is a better algorithm/implementation than my logic can you guys tell me.thanks.
Question
Given an array of integers, a, return the maximum difference of any
pair of numbers such that the larger integer in the pair occurs at a
higher index (in the array) than the smaller integer. Return -1 if you
cannot find a pair that satisfies this condition.
My Python Function
def maxDifference( a):
diff=0
find=0
leng = len(a)
for x in range(0,leng-1):
for y in range(x+1,leng):
if(a[y]-a[x]>=diff):
diff=a[y]-a[x]
find=1
if find==1:
return diff
else:
return -1
Constraints:
1 <= N <= 1,000,000
-1,000,000 <= a[i] <= 1,000,000 i belongs to [1,N]
Sample Input:
Array { 2,3,10,2,4,8,1}
Sample Output:
8
Well... since you don't care for anything else than finding the highest number following the lowest number, provided that difference is the highest so far, there's no reason to do several passes or using max() over a slice of the array:
def f1(a):
smallest = a[0]
result = 0
for b in a:
if b < smallest:
smallest = b
if b - smallest > result:
result = b - smallest
return result if result > 0 else -1
Thanks #Matthew for the testing code :)
This is very fast even on large sets:
The maximum difference is 99613 99613 99613
Time taken by Sojan's method: 0.0480000972748
Time taken by #Matthews's method: 0.0130000114441
Time taken by #GCord's method: 0.000999927520752
The reason your program takes too long is that your nested loop inherently means quadratic time.
The outer loop goes through N-1 indices. The inner loop goes through a different number of indices each time, but the average is obviously (N-1)/2 rounded up. So, the total number of times through the inner loop is (N-1) * (N-1)/2, which is O(N^2). For the maximum N=1000000, that means 499999000001 iterations. That's going to take a long time.
The trick is to find a way to do this in linear time.
Here's one solution (as a vague description, rather than actual code, so someone can't just copy and paste it when they face the same test as you):
Make a list of the smallest value before each index. Each one is just min(smallest_values[-1], arr[i]), and obviously you can do this in N steps.
Make a list of the largest value after each index. The simplest way to do this is to reverse the list, do the exact same loop as above (but with max instead of min), then reverse again. (Reversing a list takes N steps, of course.)
Now, for each element in the list, instead of comparing to every other element, you just have to compare to smallest_values[i] and largest_values[i]. Since you're only doing 2 comparisons for each of the N values, this takes 2N time.
So, even being lazy and naive, that's a total of N + 3N + 2N steps, which is O(N). If N=1000000, that means 6000000 steps, which is a whole lot faster than 499999000001.
You can obviously see how to remove the two reverses, and how to skip the first and last comparisons. If you're smart, you can see how to take the whole largest_values out of the equation entirely. Ultimately, I think you can get it down to 2N - 3 steps, or 1999997. But that's all just a small constant improvement; nowhere near as important as fixing the basic algorithmic problem. You'd probably get a bigger improvement than 3x (maybe 20x), for less work, by just running the naive code in PyPy instead of CPython, or by converting to NumPy—but you're not going to get the 83333x improvement in any way other than changing the algorithm.
Here's a linear time solution. It keeps a track of the minimum value before each index of the list. These minimum values are stored in a list min_lst. Finally, the difference between corresponding elements of the original and the min list is calculated into another list of differences by zipping the two. The maximum value in this differences list should be the required answer.
def get_max_diff(lst):
min_lst = []
running_min = lst[0]
for item in lst:
if item < running_min:
running_min = item
min_lst.append(running_min)
val = max(x-y for (x, y) in zip(lst, min_lst))
if not val:
return -1
return val
>>> get_max_diff([5, 6, 2, 12, 8, 15])
13
>>> get_max_diff([2, 3, 10, 2, 4, 8, 1])
8
>>> get_max_diff([5, 4, 3, 2, 1])
-1
Well, I figure since someone in the same problem can copy your code and run with that, I won't lose any sleep over them copying some more optimized code:
import time
import random
def max_difference1(a):
# your function
def max_difference2(a):
diff = 0
for i in range(0, len(a)-1):
curr_diff = max(a[i+1:]) - a[i]
diff = max(curr_diff, diff)
return diff if diff != 0 else -1
my_randoms = random.sample(range(100000), 1000)
t01 = time.time()
max_dif1 = max_difference1(my_randoms)
dt1 = time.time() - t01
t02 = time.time()
max_dif2 = max_difference2(my_randoms)
dt2 = time.time() - t02
print("The maximum difference is", max_dif1)
print("Time taken by your method:", dt1)
print("Time taken by my method:", dt2)
print("My method is", dt1/dt2, "times faster.")
The maximum difference is 99895
Time taken by your method: 0.5533690452575684
Time taken by my method: 0.08005285263061523
My method is 6.912546237558299 times faster.
Similar to what #abarnert said (who always snipes me on these things I swear), you don't want to loop over the list twice. You can exploit the fact that you know that your larger value has to be in front of the smaller one. You also can exploit the fact that you don't care for anything except the largest number, that is, in the list [1,3,8,5,9], the maximum difference is 8 (9-1) and you don't care that 3, 8, and 5 are in there. Thus: max(a[i+1:]) - a[i] is the maximum difference for a given index.
Then you compare it with diff, and take the larger of the 2 with max, as calling default built-in python functions is somewhat faster than if curr_diff > diff: diff = curr_diff (or equivalent).
The return line is simply your (fixed) line in 1 line instead of 4
As you can see, in a sample of 1000, this method is ~6x faster (note: used python 3.4, but nothing here would break on python 2.x)
I think the expected answer for
1, 2, 4, 2, 3, 8, 5, 6, 10
will be 8 - 2 = 6 but instead Saksham Varma code will return 10 - 1 = 9.
Its max(arr) - min(arr).
Don't we have to reset the min value when there is a dip
. ie; 4 -> 2 will reset current_smallest = 2 and continue diff the calculation with value '2'.
def f2(a):
current_smallest = a[0]
large_diff = 0
for i in range(1, len(a)):
# Identify the dip
if a[i] < a[i-1]:
current_smallest = a[i]
if a[i] - current_smallest > large_diff:
large_diff = a[i] - current_smallest