I have a list named "y" with 8 numpy arrays of the shape (180000,)
Now I want to create a new numpy array named "Collision" with the same shape that counts how many values of y are not 0. See the following example:
import numpy as np
collisions = np.zeros(len(y[0]), dtype=np.uint8)
for yi in y:
collisions[np.where(yi > 0)] += 1
The calculation of this function takes a relatively long time. Is there a faster implementation to do this?
I am not sure why your calculation takes so long, hope this helps to clarify, for example your list of array is like this:
import numpy as np
y = [np.random.normal(0,1,180000) for i in range(8)]
Running your code, it works ok:
collisions = np.zeros(len(y[0]), dtype=np.uint8)
for yi in y:
collisions[np.where(yi > 0)] += 1
collisions
array([4, 2, 4, ..., 4, 4, 5], dtype=uint8)
You can do it a bit faster like this, basically making your list of arrays a matrix and doing a row sum of >0, but I don't see the problem with that above:
(np.array(y)>0).sum(axis=0)
array([4, 2, 4, ..., 4, 4, 5])
I'm assuming you're looking for something like this:
import numpy as np
# simulating your data by randomly generating numbers in [-0.5, 0.5)
y = np.random.rand(8, 180_000) - 0.5
print(y.shape) # (8, 180000)
collisions = np.sum(y > 0, axis=0, dtype=np.uint8)
print(collisions.shape) # (180000,)
print(collisions) # [4 4 4 ... 1 6 7]
Related
Consider a NumPy array of shape (8, 8).
My Question: What is the index (x,y) of the 50th element?
Note: For counting the elements go row-wise.
Example, in array A, where A = [[1, 5, 9], [3, 0, 2]] the 5th element would be '0'.
Can someone explain how to find the general solution for this and, what would be the solution for this specific problem?
You can use unravel_index to find the coordinates corresponding to the index of the flattened array. Usually np.arrays start with index 0, you have to adjust for this.
import numpy as np
a = np.arange(64).reshape(8,8)
np.unravel_index(50-1, a.shape)
Out:
(6, 1)
In a NumPy array a of shape (r, c) (just like a list of lists), the n-th element is
a[(n-1) // c][(n-1) % c],
assuming that n starts from 1 as in your example.
It has nothing to do with r. Thus, when r = c = 8 and n = 50, the above formula is exactly
a[6][1].
Let me show more using your example:
from numpy import *
a = array([[1, 5, 9], [3, 0, 2]])
r = len(a)
c = len(a[0])
print(f'(r, c) = ({r}, {c})')
print(f'Shape: {a.shape}')
for n in range(1, r * c + 1):
print(f'Element {n}: {a[(n-1) // c][(n-1) % c]}')
Below is the result:
(r, c) = (2, 3)
Shape: (2, 3)
Element 1: 1
Element 2: 5
Element 3: 9
Element 4: 3
Element 5: 0
Element 6: 2
numpy.ndarray.faltten(a) returns a copy of the array a collapsed into one dimension. And please note that the counting starts from 0, therefore, in your example 0 is the 4th element and 1 is the 0th.
import numpy as np
arr = np.array([[1, 5, 9], [3, 0, 2]])
fourth_element = np.ndarray.flatten(arr)[4]
or
fourth_element = arr.flatten()[4]
the same for 8x8 matrix.
First need to create a 88 order 2d numpy array using np.array and range.Reshape created array as 88
In the output you check index of 50th element is [6,1]
import numpy as np
arr = np.array(range(1,(8*8)+1)).reshape(8,8)
print(arr[6,1])
output will be 50
or you can do it in generic way as well by the help of numpy where method.
import numpy as np
def getElementIndex(array: np.array, element):
elementIndex = np.where(array==element)
return f'[{elementIndex[0][0]},{elementIndex[1][0]}]'
def getXYOrderNumberArray(x:int, y:int):
return np.array(range(1,(x*y)+1)).reshape(x,y)
arr = getXYOrderNumberArray(8,8)
print(getElementIndex(arr,50))
I have an array of data-points, for example:
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
and I need to perform the following sum on the values:
However, the problem is that I need to perform this sum on each value > i. For example, using the last 3 values in the set the sum would be:
and so on up to 10.
If i run something like:
import numpy as np
x = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
alpha = 1/np.log(2)
for i in x:
y = sum(x**(alpha)*np.log(x))
print (y)
It returns a single value of y = 247.7827060452275, whereas I need an array of values. I think I need to reverse the order of the data to achieve what I want but I'm having trouble visualising the problem (hope I explained it properly) as a whole so any suggestions would be much appreciated.
The following computes all the partial sums of the grand sum in your formula
import numpy as np
# Generate numpy array [1, 10]
x = np.arange(1, 11)
alpha = 1 / np.log(2)
# Compute parts of the sum
parts = x ** alpha * np.log(x)
# Compute all partial sums
part_sums = np.cumsum(parts)
print(part_sums)
You really do not any explicit loop, or a non-numpy operation (like sum()) here. numpy takes care of all your needs.
I'm trying to vectorize a very simple operation but can't seem to figure out how.
Given a very large numerical vector (over 1M positions) and another array of size n with a given set of positions, I would like to get back a vector of size n with elements being the average of the values of the first vector as specified by the second
a = np.array([1,2,3,4,5,6,7])
b = np.array([[0,1],[2],[3,5],[4,6]])
c = [1.5,3,5,6]
I need to repeat this operation many times so performance is an issue.
Vanilla python solution:
import numpy as np
import time
a = np.array([1,2,3,4,5,6,7])
b = np.array([[0,1],[2],[3,5],[4,6]])
begin = time.time()
for i in range(100000):
c = []
for d in b:
c.append(np.mean(a[d]))
print(time.time() - begin, c)
# 3.7529971599578857 [1.5, 3.0, 5.0, 6.0]
I'm not sure if this is necessarily faster but you may as well try:
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6, 7])
b = np.array([[0, 1], [2], [3, 5], [4, 6]])
# Get the length of each subset of indices
lens = np.fromiter((len(bi) for bi in b), count=len(b), dtype=np.int32)
# Compute reduction indices
reduce_idx = np.roll(np.cumsum(lens), 1)
reduce_idx[0] = 0
# Make flattened array of index lists
idx = np.fromiter((i for bi in b for i in bi), count=lens.sum(), dtype=np.int32)
# Reorder according to indices
a2 = a[idx]
# Sum reordered array at reduction indices and divide by number of indices
c = np.add.reduceat(a2, reduce_idx) / lens
print(c)
# [1.5 3. 5. 6. ]
The Problem:
I want to calculate the dot product of a very large set of data. I am able to do this in a nested for-loop, but this is way too slow.
Here is a small example:
import numpy as np
points = np.array([[0.5, 2, 3, 5.5, 8, 11], [1, 2, -1.5, 0.5, 4, 5]])
lines = np.array([[0, 2, 4, 6, 10, 10, 0, 0], [0, 0, 0, 0, 0, 4, 4, 0]])
x1 = lines[0][0:-1]
y1 = lines[1][0:-1]
L1 = np.asarray([x1, y1])
# calculate the relative length of the projection
# of each point onto each line
a = np.diff(lines)
b = points[:,:,None] - L1[:,None,:]
print(a.shape)
print(b.shape)
[rows, cols, pages] = np.shape(b)
Z = np.zeros((cols, pages))
for k in range(cols):
for l in range(pages):
Z[k][l] = a[0][l]*b[0][k][l] + a[1][l]*b[1][k][l]
N = np.linalg.norm(a, axis=0)**2
relativeProjectionLength = np.squeeze(np.asarray(Z/N))
In this example, the first two dimensions of both a and b represent the x- and y-coordinates that I need for the dot product.
The shape of a is (2,7) and b has (2,6,7). Since the dot product reduces the first dimension I would expect the result to be of the shape (6,7). How can I calculate this without the slow loops?
What I have tried:
I think that numpy.dot with correct broadcasting could do the job, however I have trouble setting up the dimensions correctly.
a = a[:, None, :]
Z = np.dot(a,b)
This on gives me the following error:
shapes (2,1,7) and (2,6,7) not aligned: 7 (dim 2) != 6 (dim 1)
You can use np.einsum -
np.einsum('ij,ikj->kj',a,b)
Explanation :
Keep the last axes aligned for the two inputs.
Sum-reduce the first from those.
Let the rest stay, which is the second axis of b.
Usual rules on whether to use einsum or stick to a loopy-dot based method apply here.
numpy.dot does not reduce the first dimension. From the docs:
For N dimensions it is a sum product over the last axis of a and the second-to-last of b:
dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
That is exactly what the error is telling you: it is attempting to match axis 2 in the first vector to axis 1 in the second.
You can fix this using numpy.rollaxis or better yet numpy.moveaxis. Instead of a = a[:, None, :], do
a = np.movesxis(a, 0, -1)
b = np.moveaxis(b, 0, -2)
Z = np.dot(a, b)
Better yet, you can construct your arrays to have the correct shape up front. For example, transpose lines and do a = np.diff(lines, axis=0).
I have a large array of thousands of vals in numpy. I want to decrease its size by averaging adjacent values.
For example:
a = [2,3,4,8,9,10]
#average down to 2 values here
a = [3,9]
#it averaged 2,3,4 and 8,9,10 together
So, basically, I have n number of elements in array, and I want to tell it to average down to X number of values, and it averages like above.
Is there some way to do that with numpy (already using it for other things, so I'd like to stick with it).
Using reshape and mean, you can average every m adjacent values of an 1D-array of size N*m, with N being any positive integer number. For example:
import numpy as np
m = 3
a = np.array([2, 3, 4, 8, 9, 10])
b = a.reshape(-1, m).mean(axis=1)
#array([3., 9.])
1)a.reshape(-1, m) will create a 2D image of the array without copying data:
array([[ 2, 3, 4],
[ 8, 9, 10]])
2)taking the mean in the second axis (axis=1) will then calculate the mean value of each row, resulting in:
array([3., 9.])
Try this:
n_averaged_elements = 3
averaged_array = []
a = np.array([ 2, 3, 4, 8, 9, 10])
for i in range(0, len(a), n_averaged_elements):
slice_from_index = i
slice_to_index = slice_from_index + n_averaged_elements
averaged_array.append(np.mean(a[slice_from_index:slice_to_index]))
>>>> averaged_array
>>>> [3.0, 9.0]
Looks like a simple non-overlapping moving window average to me, how about:
In [3]:
import numpy as np
a = np.array([2,3,4,8,9,10])
window_sz = 3
a[:len(a)/window_sz*window_sz].reshape(-1,window_sz).mean(1)
#you want to be sure your array can be reshaped properly, so the [:len(a)/window_sz*window_sz] part
Out[3]:
array([ 3., 9.])
In this example, I presume that a is the 1D numpy array that needs to be averaged. In the method that I give below, we first find the factors of the length of this array a. And, then we choose the an appropriate factor as the step size to average the array with.
Here is the code.
import numpy as np
from functools import reduce
''' Function to find factors of a given number 'n' '''
def factors(n):
return list(set(reduce(list.__add__,
([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))))
a = [2,3,4,8,9,10] #Given array.
'''fac: list of factors of length of a.
In this example, len(a) = 6. So, fac = [1, 2, 3, 6] '''
fac = factors(len(a))
'''step: choose an appropriate step size from the list 'fac'.
In this example, we choose one of the middle numbers in fac
(3). '''
step = fac[int( len(fac)/3 )+1]
'''avg: initialize an empty array. '''
avg = np.array([])
for i in range(0, len(a), step):
avg = np.append( avg, np.mean(a[i:i+step]) ) #append averaged values to `avg`
print avg #Prints the final result
[3.0, 9.0]