MongoDb, Dash and Python - python

I can't get this code to run and I am supposed to get a couple of things to work. First, a data table which I managed to get up and get to work. Then I created a few buttons so I can filter the data table. The buttons don't do anything to change the data table, I need to get them to work. Second, I am trying to get a pie chart to work and have it be interactive with the data table. The pie chart does not render. Lastly, I need a geolocation chart that interacts with the data table as well. The data table has a lateral location and a longitude location. geolocation doesn't render either*
from jupyter_plotly_dash import JupyterDash
import dash
import dash_leaflet as dl
import dash_core_components as dcc
import dash_html_components as html
import plotly.express as px
import dash_table as dt
from dash.dependencies import Input, Output, State
import os
import numpy as np
import pandas as pd
from pymongo import MongoClient
from bson.json_util import dumps
# change animal_shelter and AnimalShelter to match your CRUD Python module file name and class name
from AnimalShelter import AnimalShelter
import base64
###########################
# Data Manipulation / Model
###########################
# FIX ME change for your username and password and CRUD Python module name
username = "aacuser"
password = "42213"
shelter = AnimalShelter(username, password)
# class read method must support return of cursor object
df = pd.DataFrame.from_records(shelter.read())
#########################
# Dashboard Layout / View
#########################
app = JupyterDash('SimpleExample')
#FIX ME Add in Grazioso Salvare’s logo
image_filename = 'Grazioso Salvare Logo.png' # replace with your own image
encoded_image = base64.b64encode(open(image_filename, 'rb').read())
#FIX ME Place the HTML image tag in the line below into the app.layout code according to your design
#FIX ME Also remember to include a unique identifier such as your name or date
#html.Img(src='data:image/png;base64,{}'.format(encoded_image.decode()))
app.layout = html.Div([
html.Div(id='hidden-div', style={'display':'none'}),
html.Img(src='data:image/png;base64,{}'.format(encoded_image.decode())),
html.Center(html.B(html.H1('Willi Blanco CS-340 Dashboard'))),
html.Hr(),
html.Div(
#FIXME Add in code for the interactive filtering options. For example, Radio buttons, drop down, checkboxes, etc.
className='row',
style={'display': 'flex'},
children=[
html.Button(id='submit-button-one',n_clicks=0, children= 'Water Rescue'),
html.Button(id='submit-button-two',n_clicks=0, children= 'Mountain or Wilderness Rescue'),
html.Button(id='submit-button-three',n_clicks=0, children='Disaster Rescue or Individual Tracking'),
html.Button(id='submit-button-four', n_clicks=0, children='reset')
]
),
html.Hr(),
dt.DataTable(
id='datatable-id',
columns=[
{"name": i, "id": i, "deletable": False, "selectable": True} for i in df.columns
],
data=df.to_dict('records'),
#FIXME: Set up the features for your interactive data table to make it user-friendly for your client
#If you completed the Module Six Assignment, you can copy in the code you created here
page_size=100,
style_table={'height':'300px','overflowY':'auto','overflowX':'auto'},
style_header={
'backgroundColor':'rgb(230,230,230)',
'fontWeight':'bold'
},
style_data={
'whiteSpace':'normal',
'height':'auto'
},
#tooltips that we are going to use on the table so that we know what information we are looking at
tooltip ={i: {
'value': i,
'use_with': 'both' # both refers to header & data cell
} for i in df.columns},
tooltip_delay=0,
tooltip_duration = None,
#sorting features that we are going to use
sort_action='native',
sort_mode='multi',
filter_action='native',
editable=False,
column_selectable=False,
row_selectable='single',
row_deletable=False,
selected_rows=[],
),
html.Br(),
html.Hr(),
#This sets up the dashboard so that your chart and your geolocation chart are side-by-side
html.Div(className='row',
style={'display' : 'flex'},
children=[
html.Div(
id='graph-id',
className='col s12 m6',
),
html.Div(
id='map-id',
className='col s12 m6',
)
])
])
#############################################
# Interaction Between Components / Controller
#############################################
#app.callback([Output('datatable-id','data')],
[Input('submit-button-one', 'n_clicks'),Input('submit-button-two','n_clicks'),
Input('submit-button-three','n_clicks'),Input('submit-button-four','n_clicks')])
def update_dashboard(bt1,bt2,bt3,bt4):
### FIX ME Add code to filter interactive data table with MongoDB queries
if (int(bt1) >= 1):
df = pd.Dataframe.from_records(shelter.read({'$and': [
{'$or': [ {'breed':'Labrador Retriever Mix'}, {'breed':'Chesapeake Bay Retriever'},
{'breed':'Newfoundland'}]},
{'sex_upon_outcome':'Intact Female'}, {'age_upon_outcome_in_weeks':{'$lte':26, 'gte':156}}]}))
bt2, bt3, bt4 = 0
elif (int(bt2)>= 1):
df = pd.Dataframe.from_records(shelter.read({'$and': [
{'$or': [ {'breed':'German Shepherd'}, {'breed':'Alaskan Malamute'},
{'breed':'Old English Sheepdog'},{'breed':'Siberian Husky'},{'breed':'Rottweiler'}]},
{'sex_upon_outcome':'Intact Male'}, {'age_upon_outcome_in_weeks':{'$lte':26, 'gte':156}}]}))
bt1, bt3 ,bt4 = 0
elif (int(bt3)>=1):
df = pd.Dataframe.from_records(shelter.read({'$and': [
{'$or': [ {'breed':'Doberman Pinscher'}, {'breed':'German Sheperd'},
{'breed':'Golden Retriever'},{'breed':'Bloodhound'},{'breed':'Rottweiler'}]},
{'sex_upon_outcome':'Intact Male'}, {'age_upon_outcome_in_weeks':{'$lte':20, 'gte':300}}]}))
bt1, bt2, bt4 = 0
elif(int(bt4)>=1):
df = pd.Dataframe.from_records(shelter.read())
bt1, bt2, bt3 = 0
columns=[{"name": i, "id": i, "deletable": False, "selectable": True} for i in df.columns]
data=df.to_dict('records')
return data
#app.callback(
Output('datatable-id', 'style_data_conditional'),
[Input('datatable-id', 'selected_columns')]
)
def update_styles(selected_columns):
return [{
'if': { 'column_id': i },
'background_color': '#D2F3FF'
} for i in selected_columns]
#app.callback(
Output('graph-id', "children"),
[Input('datatable-id', "derived_viewport_data")])
def update_graphs(viewData):
###FIX ME ####
# add code for chart of your choice (e.g. pie chart)
df = pd.DataFrame.from_dict(viewData)
return [
dcc.Graph(
figure = px.pie(df, values=values, names=names, title='Percentage of breeds available')
)
]
#app.callback(
Output('map-id', "children"),
[Input('datatable-id', "derived_viewport_data"),
Input('datatable-id',"derived_viewport_selected_rows")])
def update_map(viewData):
#FIXME: Add in the code for your geolocation chart
#If you completed the Module Six Assignment, you can copy in the code you created here.
viewDF = pd.DataFrame.from_dict(viewData)
dff = viewDF.loc[rows]
return [ dl.Map(style={'width': '1000px', 'height': '500px'}, center=[dff.loc[0,'location_lat'],dff.loc[0,'location_long']], zoom=15, children=[
dl.TileLayer(id="base-layer-id"),
# Marker with tool tip and pop up
dl.Marker(position=[dff.loc[0,'location_lat'],dff.loc[0,'location_long']], children=[
dl.Tooltip(dff['breed']),
dl.Popup([
html.H1("Animal Name"),
html.P(dff.loc[0,'name'])
])
])
])]
app

In the #app.callback([Output('datatable-id','data')], add [Input('filter-type', 'value')]).
Also, in the callback before update_map, remove Input('datatable-id',"derived_viewport_selected_rows")]). Try: #app.callback(Output('map-id', "children"), [Input('datatable-id', "derived_viewport_data")])

Related

How can I use multiple datasets in the dash app to visualize a graph?

I am building a dash app. I want to viz a graph for crypto data (being extracted from APIs). The dash dropdowns contain different crypto ticker symbols & on that basis, I want to showcase different graphs. For e.g, if a user selects ETH in the dropdown, the API will extract the eth market price data & feeds it to the dash app so the user can see the graph, but I am struggling with using multiple datasets with the dropdowns.
So far, I think a dropdown is used to change the property of 1 dataset via changing rows, limits, etc. but unable to choose between multiple datasets.
I am looking for a method to show market price graphs for different cryptocurrencies through the dash app.
########################### Importing Libraries #############################################
import numpy as np
import pandas as pd
from dash import dcc,html,Dash
import plotly.express as px
import warnings
warnings.filterwarnings("ignore")
from api_to_df import open_df,high_df,low_df,close_df,volume_df,mkt_cap_df
###########################################################################################
# Defining app name
app = Dash(__name__)
colors = {
'background': '#231F20',
'text': '#ADD8E6'
}
############### Defining elements for dropdowns ####################################################
ticker_list = ['ETH', 'XRP','BTC','LTC','LRC','DOT','MANA','EGLD','SHIB','SOL','TFUEL','ICP','SAND','MATIC']
type_list = ['Open', 'High','Low','Close','Volume','Mkt cap']
currency_list = ['USD']
############################################################################################################
markdown_text = '''
Koin is a webapp focussed at providing crypto coin data to crypto newbies in a simple yet elegant fashion.
'''
def generate_table(dataframe, max_rows=15):
'''
generate_table function is used to parse pandas dataframes into html tables.
'''
return html.Table([
html.Thead(
html.Tr([html.Th(col) for col in dataframe.columns])
),
html.Tbody([
html.Tr([
html.Td(dataframe.iloc[i][col]) for col in dataframe.columns
]) for i in range(min(len(dataframe), max_rows))
])
])
#fig = px.bar(open_df, x="date", y="open",barmode = "group")
fig = px.line(open_df, x="date", y="open",markers = 1)
# Updating the layout of the figure
fig.update_layout(
plot_bgcolor=colors['background'],
paper_bgcolor=colors['background'],
font_color=colors['text']
)
#fig.update_traces(marker=dict(size=12,
# line=dict(width=2,
# color='Red')),
# selector=dict(mode='markers'))
# Div is used to create divisions in an html block
# children is a subbranch of an Division tree
app.layout = html.Div(style={'backgroundColor': colors['background']}, children=[
# H1 is header 1 i.e Heading of the webapp
html.H1(
children='KOIN',
style={
'textAlign': 'center',
'color': colors['text']
}
),
# style is used to style a particular dash/html component
html.Div(children='Your Koin, Our Data', style={
'textAlign': 'center',
'color': colors['text']
}),
#dcc.markdown is used to add markdown/text info to the frontend
html.Div(children =[dcc.Markdown(children=markdown_text,style={
'textAlign': 'center',
'color': colors['text'] } )]),
#Inside children branch, a dcc dropdown component is created to add filters
html.Div(children =[html.Label('Ticker symbol'),
dcc.Dropdown(ticker_list,style={'color':'#000000'})
],
style={'color': colors['text'],'padding': 10, 'flex': 1}
),
html.Div(children =[html.Label('Data type'),
dcc.Dropdown(type_list,style={'color':'#000000'})
],
style={'color': colors['text'],'padding': 10, 'flex': 1}
),
html.Div(children = [html.Label('Currency'),
dcc.Dropdown(currency_list,style={'color':'#000000'})
],
style={'color': colors['text'],'padding': 10, 'flex': 1}
),
html.H2(children='ETH opening price',style={'color':colors['text']}),
# Adding generate_table function to html division
html.Div(generate_table(open_df),style={'color':colors['text']}),
#dcc.graph is used to parse plotly graphs to html
dcc.Graph(
id='open graph',
figure=fig
)
]
)
if __name__ =="__main__":
app.run_server(debug=True)enter code here
You need a callback that listens to the dropdown and builds a graph for each value selected. It should loop over the selected values, and append a graph to the output value for each one.

Non-responsive scatter/bar plots to the Callback function

I am very new to Plotly Dash and I cannot get a hang of the #callback function with multiple inputs linked to two (scatter/bar) graphs.
Dashboard
Sample Data
For some reason, after selecting the inputs and clicking the “Run selection” button, the graphs do not update accordingly. Does anyone know what I am doing wrong? Been reading the documentation and browsing through online examples, but could not figure this one out... I believe something is wrong with the #callback function or the way I defined the data in my function.
Thank you in advance, would highly appreciate every bit of help! :slight_smile:
import pandas as pd
import dash
import dash_bootstrap_components as dbc
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output, State
import plotly.graph_objs as go
import plotly.express as px
# load the data
data = pd.read_excel('example_data.xlsx')
data.fillna(0, inplace=True)
data['Satellite'] = data['Satellite'].astype(int)
#initiate app and set theme
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# navigation bar
navbar = dbc.NavbarSimple(
children=[
dbc.NavItem(dbc.NavLink("Page 1", href="#")),
dbc.DropdownMenu(
children=[
dbc.DropdownMenuItem("Page 2", href="#"),
dbc.DropdownMenuItem("Page 3", href="#"),
],
nav=True,
in_navbar=True,
label="More",
),
],
brand="Sample Dash Application",
brand_href="#",
color="primary",
dark=True,
)
# Construct a dictionary of dropdown values for the days
day_options = []
for day in data['AsofDate'].unique():
# grab day_options and append to it
day_options.append({'label':str(day),'value':day})
# Construct a dictionary of dropdown values for the portfolios
portfolio_options = []
for portfolio in data['Satellite'].unique():
portfolio_options.append({'label':str(portfolio),'value':int(portfolio) or 0})
# Construct a dictionary of dropdown values for the region
region_options = []
for region in data['Region'].unique():
region_options.append({'label':str(region),'value':region})
###############################################################################
# Filter pane
# Check dash core components at https://dash.plotly.com/dash-core-components
###############################################################################
controls = [
html.Div(
[
'Select Day',
dcc.Dropdown(
id='day-dropdown',
options=day_options,
value=data['AsofDate'].min(),
clearable=False
),
]
),
html.Div(
[
'Select Portfolio',
dcc.Dropdown(
id='portfolio-dropdown',
options=portfolio_options,
value=data['Satellite'].min(),
clearable=False
),
]
),
html.Div(
[
'Select Region',
dcc.Dropdown(
id='region-dropdown',
options=region_options,
value=data['Region'].min(),
clearable=False
),
]
),
html.Br(),
dbc.Button("Run selection", color="primary", id="button-submit")
]
###############################################################################
# Add components here, e.g. graphs
###############################################################################
avp_graph = dcc.Graph(id="avp-graph", style={"height": "500px"})
bar_plot_graph = dcc.Graph(id='bar-plot-graph', style={"height": "500px"})
###############################################################################
# Container
# Check dash core components at https://dash.plotly.com/dash-core-components
###############################################################################
container = dbc.Container(
fluid=True,
children=[
html.Hr(),
html.H3('Dashboard'),
html.Hr(),
# Bootstrap Layout examples:
# https://getbootstrap.com/docs/4.0/examples/
# Bootstrap grid system: https://getbootstrap.com/docs/4.0/layout/grid/
# Under each column (2, 5, 5) you can add components.
# The left column has a width of 2 and contains the controls only.
# The middle column has a width of 5 and contains a table and a graph.
# The right column has a width of 5 and contains a table and a graph.
dbc.Row(
[
dbc.Col(
[
# See https://dash-bootstrap-components.opensource.faculty.ai/docs/components/card/
dbc.Card([
dbc.CardHeader("Filter Pane"),
dbc.CardBody(controls),
]
),
],
sm=2
),
dbc.Col(
[
html.H5('Column 1'),
avp_graph # middle column, graph 1
],
sm=5
),
dbc.Col(
[
html.H5('Column 2'),
bar_plot_graph # right column, graph 2
],
sm=5
)
]
)
]
)
# Define Layout
app.layout = html.Div([
navbar,
container
])
#app.callback(
[
Output("avp-graph", "figure"),
Output("bar-plot-graph", "figure")
],
[Input("button-submit", "n_clicks")],
[
State("day-dropdown", "value"),
State("portfolio-dropdown", "value"),
State("region-dropdown", "value"),
],
)
def run_submit(n_clicks, day, portfolio, region):
# Bar plot
mask = data["AsofDate"] == day
bar_plot_graph = px.bar(data[mask], x=data['Region'], y=data['Return'], title='Bar Plot') # barmode="group",
# Scatter Plot
avp_graph = px.scatter(
x=data['line_x'],
y=data['line_y'],
labels={"x": "x", "y": "y"},
title=f"Scatter Plot",
)
return [avp_graph, bar_plot_graph] # return the components in the order of Output Callbacks!!!
if __name__ == '__main__':
app.run_server(port=8051, debug=False)
I'm not sure how you want your plots to change, but what I can see is:
The variables portfolio and region are defined by the state of the dropdown menus, but they are not used in your callback function.
The plot avp_graph in the callback function doesn't depend on any input. Therefore, it makes sense that it remains constant independently of what you select in your dropdown menus.
The plot bar_plot_graph only depends on the variable day.

Plotly: How to create 'input text' on one page and output (graphs) on second page or tab, by using plotly-dash?

I am creating an app where the first page should take only 'text input' and results(graph) must show on second page or new tab. I do not want text input and charts on the same page. It means, if I write the input as 'USA' in text input bar, the graph of USA should populate on second tab. Following is the working code that I have written so far in dropdown format. In this code, dropdown and graphs are on the same page which I do not want. Please suggest.
import pandas as pd
import plotly.express as px
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Output, Input
import numpy as np
import plotly.io as pio
pio.renderers.default='browser'
app = dash.Dash(__name__)
app.layout = html.Div([
html.H1("Economy Analysis"),
dcc.Dropdown(id='Country_select',
options=[{'label': x, 'value': x}
for x in df.Country.unique()],
value = 'USA'
),
dcc.Graph(id ='my-graph', figure = {})
])
#app.callback(
Output(component_id = 'my-graph', component_property = 'figure'),
Input(component_id = 'Country_select', component_property = 'value'))
def interactive_graphing(value_country):
print(value_country)
s = 100
cat_g = ["developing","develop"]
sample_cat = [cat_g[np.random.randint(0,2)]for i in range(100)]
df = pd.DataFrame({"Country": np.random.choice(["USA", "JPY", "MEX", "IND", "AUS"], s),
"Net": np.random.randint(5, 75, s),
})
df["sample_cat"] = sample_cat
df = df[df.Country==value_country]
df2 = df.pivot_table(index='Country',columns='sample_cat',values='Net',aggfunc='sum')
df2.reset_index(inplace=True)
fig = px.bar(df2, x="Country",
y=['develop','developing'])
return fig
if __name__=='__main__':
app.run_server()
You can use dcc.Tabs and dcc.Tab containers in your layout, and put the input/graph in separate tabs. Dash bootstrap components tabs would also work for this. The ids will still work as inputs/outputs with your callback.
Sample layout:
app.layout = html.Div([
html.H1("Economy Analysis"),
dcc.Tabs([
dcc.Tab(
label='Dropdown',
children=[
dcc.Dropdown(id='Country_select',
options=[{'label': x, 'value': x}
for x in df.Country.unique()],
value = 'USA')
]
),
dcc.Tab(
label='Graph',
children=[
dcc.Graph(id ='my-graph')
]
)
])
])

In dash, how do I use a callback to update a graph when a radio button is selected?

I'm new to dash and I'm having problems finding examples on using data frames within a callback. I created a weekly radio button and a monthly radio button.
When the monthly radio button is selected I would like the graph to pull data from df_monthly where each bar would be a monthly sum of pay. When the weekly radio button is checked I would like to see the graph populate each bar on a weekly basis which would be each row in the data frame since I get paid once a week.
I'm not certain where I'm going wrong but I keep receiving an error stating TypeError: update_fig() takes 0 positional arguments but 1 was given
The graph populates without data like the picture below. Thanks for any help on this matter.
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.plotly as py
import plotly.graph_objs as go
import sqlite3
import pandas as pd
from functools import reduce
import datetime
conn = sqlite3.connect('paychecks.db')
df_ct = pd.read_sql('SELECT * FROM CheckTotal',conn)
df_earn = pd.read_sql('SELECT * FROM Earnings', conn)
df_whold = pd.read_sql('SELECT * FROM Withholdings', conn)
data_frames = [df_ct, df_earn, df_whold]
df_paystub = reduce(lambda left,right: pd.merge(left,right,on=['Date'], how='outer'), data_frames)
def date_extraction(df):
df['Date'] = pd.to_datetime(df['Date'])
df['Year'] = df['Date'].dt.strftime('%Y')
df['Month'] = df['Date'].dt.strftime('%B')
df['Day'] = df['Date'].dt.strftime('%d')
return df
date_extraction(df_paystub)
df_monthly = df_paystub.groupby(['Month']).sum()
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.css.append_css({'external_url': 'https://codepen.io/amyoshino/pen/jzXypZ.css'})
app.layout = html.Div(children=[
html.Div([
html.Div([
dcc.RadioItems(
id='data-view',
options=[
{'label': 'Weekly', 'value': 'Weekly'},
{'label': 'Monthly', 'value': 'Monthly'},
],
value='',
labelStyle={'display': 'inline-block'}
),
], className = 'two columns'),
html.Div([
dcc.Dropdown(
id='year-dropdown',
options=[
{'label': i, 'value': i} for i in df_paystub['Year'].unique()
],
placeholder="Select a year",
),
], className='five columns'),
html.Div([
dcc.Dropdown(
id='month-dropdown',
options=[
{'label': i, 'value': i} for i in df_paystub['Month'].unique()
],
placeholder="Select a month(s)",
multi=True,
),
], className='five columns'),
], className = 'row'),
# HTML ROW CREATED IN DASH
html.Div([
# HTML COLUMN CREATED IN DASH
html.Div([
# PLOTLY BAR GRAPH
dcc.Graph(
id='pay',
)
], className = 'six columns'),
# HTML COLUMN CREATED IN DASH
html.Div([
# PLOTLY LINE GRAPH
dcc.Graph(
id='hours',
figure={
'data': [
go.Scatter(
x = df_earn['Date'],
y = df_earn['RegHours'],
mode = 'lines',
name = 'Regular Hours',
),
go.Scatter(
x = df_earn['Date'],
y = df_earn['OtHours'],
mode = 'lines',
name = 'Overtime Hours',
)
]
}
)
], className='six columns')
], className='row')
], className='ten columns offset-by-one')
#app.callback(dash.dependencies.Output('pay', 'figure'),
[dash.dependencies.Input('data-view', 'value')])
def update_fig():
figure={
'data': [
go.Bar(
x = df_monthly['Month'],
y = df_monthly['CheckTotal'],
name = 'Take Home Pay',
),
go.Bar(
x = df_monthly['Month'],
y = df_monthly['EarnTotal'],
name = 'Earnings',
)
],
'layout': go.Layout(
title = 'Take Home Pay vs. Earnings',
barmode = 'group',
yaxis = dict(title = 'Pay (U.S. Dollars)'),
xaxis = dict(title = 'Date Paid')
)
}
return figure
if __name__ == "__main__":
app.run_server(debug=True)
Hi #prime90 and welcome to Dash.
In glancing at your callback signature it looks like the update_fig() function needs to take the Input you've given it (using dash.dependencies.Input).
The callback is sending this Input what changes in your app you've specified. So it's sending along the value of #data-view you've given to your function update_fig(), which doesn't currently accept any variables, causing the error message.
Just update your function signature and add a couple of boolean variables to rid yourself of the error and get the potential functionality:
def update_fig(dataview_value):
# define your weekly OR monthly dataframe
# you'll need to supply df_weekly similarly to df_monthly
# though DO NOT modify these, see note below!
df = df_weekly if dataview == 'weekly' else df_monthly
dfkey = 'Week' if 'week' in df.columns else 'Month' # eh, worth a shot!
figure={
'data': [
go.Bar(
x = df[dfkey],
y = df['CheckTotal'],
name = 'Take Home Pay',
),
go.Bar(
x = df[dfkey],
y = df['EarnTotal'],
name = 'Earnings',
)
],
'layout': go.Layout(
title = 'Take Home Pay vs. Earnings',
barmode = 'group',
yaxis = dict(title = 'Pay (U.S. Dollars)'),
xaxis = dict(title = 'Date Paid')
)
}
return figure
As was written in the comments above, you'll need to do some type of prior manipulation to create a df_weekly, as you have with your current df_monthly.
In addition, the code snippet I wrote assumes the df column is named "Week" and "Month"--obviously update these as is necessary.
Data manipulation in Dash:
Ensure you read the data sharing docs, as they highlight how data should never be modified out of scope.
I hope this helps :-)

Create Dropdown with label and values using panda library and Dash Plotly in python

I am using panda library in Python to read from a csv file and fill a Dropdown. My application uses Dash Plotly to create a HTML web interface. I am filling with only the values of the Dropdown, the labels of the Dropdown are the same of the values. How do I change the labels to be the text from the csv file?
available_rpi.csv
ip,name
192.168.1.6,"Virtual I²C (192.168.1.6)"
192.168.1.102,"GPS UART (192.168.1.102)"
192.168.1.106,"Ultrasonic I²C (192.168.1.103)"
python script:
import dash,requests,pandas as pd
df = pd.read_csv('available_rpi.csv', usecols = ['ip','name'])
available_rpi = df['ip'].unique()
app.layout = html.Div( [
html.H1(children='RESENSE'),
html.Div(children='''RESENSE: Transparent Record and Replay in the Internet of Things (IoT).'''),
# html.Div(['Name : ', dcc.Input(id='input',value='ACC',type='text') ]),
# dcc.Markdown(''' '''),
html.Label('Raspberry Pi'),
dcc.Dropdown(
id = "input",
options=[{'label': i, 'value': i} for i in available_rpi],
value=''
),
html.Div(id='output'),
# Graph for arriving data (static)
dcc.Graph(id='data', animate=True),
dcc.Interval(id='graph-update',interval=2*1000)
])
How about reading the CSV data in a bit different way with pandas and storing it in a dictionary?
import dash
import pandas as pd
import dash_core_components as dcc
import dash_html_components as html
df = pd.read_csv('available_rpi.csv', usecols = ['ip','name'])
available_rpi = df.to_dict('records')
app = dash.Dash(__name__)
app.layout = html.Div( [
html.H1(children='RESENSE'),
html.Div(children='''RESENSE: Transparent Record and Replay in the Internet of Things (IoT).'''),
# html.Div(['Name : ', dcc.Input(id='input',value='ACC',type='text') ]),
# dcc.Markdown(''' '''),
html.Label('Raspberry Pi'),
dcc.Dropdown(
id = "input",
options=[{'label': i['name'], 'value': i['ip']} for i in available_rpi],
value=''
),
html.Div(id='output'),
# Graph for arriving data (static)
dcc.Graph(id='data', animate=True),
dcc.Interval(id='graph-update',interval=2*1000)
])
if __name__ == '__main__':
app.run_server()
You should store your .csv file as a list of dictionaries using orient='records' and then use a list comprehension to set your options for your Dropdown component:
import dash
import pandas as pd
import dash_core_components as dcc
import dash_html_components as html
available_rpi = pd.read_csv('available_rpi.csv').to_dict(orient='records')
app = dash.Dash(__name__)
app.layout = html.Div([
html.H1(children='RESENSE'),
html.Div(children='''RESENSE: Transparent Record and Replay in the Internet of Things (IoT).'''),
html.Label('Raspberry Pi'),
dcc.Dropdown(
id = "input",
options=[{'label': i['name'], 'value': i['ip']} for i in available_rpi],
value=''
),
html.Div(id='output'),
#Graph for arriving data (static)
dcc.Graph(id='data', animate=True),
dcc.Interval(id='graph-update',interval=2*1000)
])
if __name__ == '__main__':
app.run_server()
I have to use a dictionary....
available_rpi = pd.read_csv('available_rpi.csv', header=None, dtype={0: str}).set_index(0).squeeze().to_dict()
#print("Raspberry Pi's available:")
#for key, car in available_rpi.items():
# print('{} : {}'.format(key, car))
app.layout = html.Div( [
html.H1(children='RESENSE'),
html.Div(children='''RESENSE: Transparent Record and Replay in the Internet of Things (IoT).'''),
# html.Div(['Name : ', dcc.Input(id='input',value='ACC',type='text') ]),
# dcc.Markdown(''' '''),
html.Label('Raspberry Pi'),
dcc.Dropdown(
id = "input",
options=[{'label': v, 'value': k} for k, v in available_rpi.items()],
value=''
),
html.Div(id='output'),
# Graph for arriving data (static)
dcc.Graph(id='data', animate=True),
dcc.Interval(id='graph-update',interval=2*1000)
])

Categories

Resources