Non-responsive scatter/bar plots to the Callback function - python

I am very new to Plotly Dash and I cannot get a hang of the #callback function with multiple inputs linked to two (scatter/bar) graphs.
Dashboard
Sample Data
For some reason, after selecting the inputs and clicking the “Run selection” button, the graphs do not update accordingly. Does anyone know what I am doing wrong? Been reading the documentation and browsing through online examples, but could not figure this one out... I believe something is wrong with the #callback function or the way I defined the data in my function.
Thank you in advance, would highly appreciate every bit of help! :slight_smile:
import pandas as pd
import dash
import dash_bootstrap_components as dbc
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output, State
import plotly.graph_objs as go
import plotly.express as px
# load the data
data = pd.read_excel('example_data.xlsx')
data.fillna(0, inplace=True)
data['Satellite'] = data['Satellite'].astype(int)
#initiate app and set theme
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# navigation bar
navbar = dbc.NavbarSimple(
children=[
dbc.NavItem(dbc.NavLink("Page 1", href="#")),
dbc.DropdownMenu(
children=[
dbc.DropdownMenuItem("Page 2", href="#"),
dbc.DropdownMenuItem("Page 3", href="#"),
],
nav=True,
in_navbar=True,
label="More",
),
],
brand="Sample Dash Application",
brand_href="#",
color="primary",
dark=True,
)
# Construct a dictionary of dropdown values for the days
day_options = []
for day in data['AsofDate'].unique():
# grab day_options and append to it
day_options.append({'label':str(day),'value':day})
# Construct a dictionary of dropdown values for the portfolios
portfolio_options = []
for portfolio in data['Satellite'].unique():
portfolio_options.append({'label':str(portfolio),'value':int(portfolio) or 0})
# Construct a dictionary of dropdown values for the region
region_options = []
for region in data['Region'].unique():
region_options.append({'label':str(region),'value':region})
###############################################################################
# Filter pane
# Check dash core components at https://dash.plotly.com/dash-core-components
###############################################################################
controls = [
html.Div(
[
'Select Day',
dcc.Dropdown(
id='day-dropdown',
options=day_options,
value=data['AsofDate'].min(),
clearable=False
),
]
),
html.Div(
[
'Select Portfolio',
dcc.Dropdown(
id='portfolio-dropdown',
options=portfolio_options,
value=data['Satellite'].min(),
clearable=False
),
]
),
html.Div(
[
'Select Region',
dcc.Dropdown(
id='region-dropdown',
options=region_options,
value=data['Region'].min(),
clearable=False
),
]
),
html.Br(),
dbc.Button("Run selection", color="primary", id="button-submit")
]
###############################################################################
# Add components here, e.g. graphs
###############################################################################
avp_graph = dcc.Graph(id="avp-graph", style={"height": "500px"})
bar_plot_graph = dcc.Graph(id='bar-plot-graph', style={"height": "500px"})
###############################################################################
# Container
# Check dash core components at https://dash.plotly.com/dash-core-components
###############################################################################
container = dbc.Container(
fluid=True,
children=[
html.Hr(),
html.H3('Dashboard'),
html.Hr(),
# Bootstrap Layout examples:
# https://getbootstrap.com/docs/4.0/examples/
# Bootstrap grid system: https://getbootstrap.com/docs/4.0/layout/grid/
# Under each column (2, 5, 5) you can add components.
# The left column has a width of 2 and contains the controls only.
# The middle column has a width of 5 and contains a table and a graph.
# The right column has a width of 5 and contains a table and a graph.
dbc.Row(
[
dbc.Col(
[
# See https://dash-bootstrap-components.opensource.faculty.ai/docs/components/card/
dbc.Card([
dbc.CardHeader("Filter Pane"),
dbc.CardBody(controls),
]
),
],
sm=2
),
dbc.Col(
[
html.H5('Column 1'),
avp_graph # middle column, graph 1
],
sm=5
),
dbc.Col(
[
html.H5('Column 2'),
bar_plot_graph # right column, graph 2
],
sm=5
)
]
)
]
)
# Define Layout
app.layout = html.Div([
navbar,
container
])
#app.callback(
[
Output("avp-graph", "figure"),
Output("bar-plot-graph", "figure")
],
[Input("button-submit", "n_clicks")],
[
State("day-dropdown", "value"),
State("portfolio-dropdown", "value"),
State("region-dropdown", "value"),
],
)
def run_submit(n_clicks, day, portfolio, region):
# Bar plot
mask = data["AsofDate"] == day
bar_plot_graph = px.bar(data[mask], x=data['Region'], y=data['Return'], title='Bar Plot') # barmode="group",
# Scatter Plot
avp_graph = px.scatter(
x=data['line_x'],
y=data['line_y'],
labels={"x": "x", "y": "y"},
title=f"Scatter Plot",
)
return [avp_graph, bar_plot_graph] # return the components in the order of Output Callbacks!!!
if __name__ == '__main__':
app.run_server(port=8051, debug=False)

I'm not sure how you want your plots to change, but what I can see is:
The variables portfolio and region are defined by the state of the dropdown menus, but they are not used in your callback function.
The plot avp_graph in the callback function doesn't depend on any input. Therefore, it makes sense that it remains constant independently of what you select in your dropdown menus.
The plot bar_plot_graph only depends on the variable day.

Related

How to make Dash dropdown options depend upon another DCC inputs selection

Lets say I have some code as follows below:
import pandas as pd
import plotly.express as px
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import helper
from datetime import date
app = dash.Dash(__name__)
# import data
app.layout = html.Div(children=[
dcc.Dropdown(
id='slct_dataset',
options= ['dataset1', 'dataset2'],
placeholder="Select a dataset",
multi=False,
style={'width': '40%'}
),
dcc.DatePickerRange(
id='slct_date',
#todo make: below below depend upon dataset selection
min_date_allowed=date(1980, 1, 1),
max_date_allowed=date(2021, 1, 1),
initial_visible_month=date(2017, 8, 5),
end_date=date(2017, 8, 25)
),
html.Div(id='output_container', children=[], style={
'textAlign': 'center'
}),
html.Br(),
dcc.Graph(id='my_graph', figure={})
])
#callback to produce graph
#app.callback(
[
Output(component_id='output_container', component_property='children'),
Output(component_id='my_series_graph', component_property='figure')
],
[
Input(component_id='slct_dataset', component_property='value'),
Input(component_id='slct_date', component_property='start_date'),
Input(component_id='slct_date', component_property='end_date')
]
)
def update_graph(dataset_slctd, start_date_slctd, end_date_slctd):
container = 'Dataset: {}'.format(dataset_slctd) +\
'. Start date: {}'.format(start_date_slctd) + \
'. End date: {}'.format(end_date_slctd)
dff = helper.get_dataset(dataset_slctd, start_date_slctd, end_date_slctd)
dff['Datetime'] = dff.index
fig = px.line(dff, x='Datetime', y='Value', title=dataset_slctd)
return container, fig
if __name__ == '__main__':
app.run_server(debug=False)
Right now I have min and max date allowed hard coded as this
min_date_allowed=date(1980, 1, 1) in date picker range. How can I define a date range dynamically based on the selection of a dataset in the first dropdown? Eg. lets say I have 01-01-2000/01-01-2001 as my min/max dataset for dataset1, and I have 02-02-2000/02-02-2001 as my min/max daterange for dataset2. How can I make my datepickerrange dynamically update based on whether I select dataset1 or dataset2 in my slct_dataset dropdown? As I understand this might depend on using a callback, but I can't really find what the standard way to do this is. Let me know if any more information can make the question more clear- I basically took the code I am actually writing and simplified it as much as possible so hopefully its clear what Im trying to do here. thanks for the help.
You can take the dropdown as an input to a callback and output to the date ranges of the datepicker based on the selected value. The signature should look like this:
#app.callback(
[
Output(component_id='slct_date', component_property='min_date_allowed'),
Output(component_id='slct_date', component_property='max_date_allowed'),
],
[
Input(component_id='slct_dataset', component_property='value'),
]
)

How to show completion percentage in a bootstrap card in python dash?

I am building a dash application and have calculated a completion_percentage for the project completion. I am using dash_bootstrap_components and want to show that percentage inside the card. Is there any way to do so or is there any other way to graphically show the completion percentage on the application page?
Below is the code which I am using as part of the layout
completion_percentage = str((closed_tickets / total_tickets) * 100)
app.layout = html.Div(
children=[
html.H1(children="Project Analytics",),
html.P(
children="Get the status!",
),
dcc.Graph(
figure=fig,
),
dcc.Graph(
figure=pie_chart
),
dbc.Card(
dbc.CardBody(
[
html.H4("Completion Percentage", className="card-title"),
dbc.CardText(completion_percentage)
]
)
)
]
)
The above is giving me error as cardtext excpets P or Div. Can someone help with the following.
As the error says:
AttributeError: CardText has been removed from dash-bootstrap-components. Set className='card-text' on a html component such as Div, or P instead. CardText originally used P.
So you can use html.P or html.Div where you're now using dbc.CardText.
Example:
from dash import Dash
import dash_html_components as html
import dash_bootstrap_components as dbc
closed_tickets = 10
total_tickets = 80
completion_percentage = str((closed_tickets / total_tickets) * 100)
app = Dash(
external_stylesheets=[dbc.themes.BOOTSTRAP]
)
app.layout = html.Div(
children=[
html.H1(children="Project Analytics",),
html.P(
children="Get the status!",
),
dbc.Card(
dbc.CardBody(
[
html.H4("Completion Percentage", className="card-title"),
html.P(completion_percentage)
]
)
)
]
)
if __name__ == "__main__":
app.run_server()
https://dash-bootstrap-components.opensource.faculty.ai/docs/components/card/

How to insert several dropdowns in plotly dash

I am trying to get into using Plotly Dash and I am getting stuck on this one piece where I would like to dynamically add a user-defined number of dropdowns. Here is what I tried:
# Import required libraries
import dash
import math
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State
# App Begins
app = dash.Dash(
__name__, meta_tags=[{"name": "viewport", "content": "width=device-width"}],
)
app.title = "Tool"
server = app.server
# Create global chart template
mapbox_access_token = "pk.eyJ1IjoicGxvdGx5bWFwYm94IiwiYSI6ImNrOWJqb2F4djBnMjEzbG50amg0dnJieG4ifQ.Zme1-Uzoi75IaFbieBDl3A"
layout = dict(
autosize=True,
automargin=True,
margin=dict(l=30, r=30, b=20, t=40),
hovermode="closest",
plot_bgcolor="#F9F9F9",
paper_bgcolor="#F9F9F9",
legend=dict(font=dict(size=10), orientation="h"),
title="Satellite Overview",
mapbox=dict(
accesstoken=mapbox_access_token,
style="light",
center=dict(lon=-78.05, lat=42.54),
zoom=7,
),
)
# Create app layout
app.layout = html.Div(
[
dcc.Store(id="aggregate_data"),
# empty Div to trigger javascript file for graph resizing
html.Div(id="output-clientside"),
html.Div(
[
html.Div(
[
html.Img(
src=app.get_asset_url("dash-logo.png"),
id="plotly-image",
style={
"height": "60px",
"width": "auto",
"margin-bottom": "25px",
},
)
],
className="one-third column",
),
html.Div(
[
html.Div(
[
html.H3(
"Dash Tool",
style={"margin-bottom": "0px"},
),
]
)
],
className="one-half column",
id="title",
),
],
id="header",
className="row flex-display",
style={"margin-bottom": "25px"},
),
html.Div(
[
html.Div(
[
html.P("Quantity 1:", className="control_label"),
dcc.Input(
id="quantity_1",
type="number",
placeholder=33.
),
html.P("Quantity 2:", className="control_label"),
dcc.Input(
id="quantity_2",
type="number",
placeholder=-115.
),
html.P("Number of Drop Downs:", className="control_label"),
dcc.Slider(
id="drop_downs",
min=2,
max=10,
value=2,
step=1.0,
className="dcc_control",
),
html.P("Load Inputs:", className="control_label"),
dcc.Checklist(
id='sources_flag',
options=[
{'label': 'Yes', 'value': 'Y'},
],
value=['Y'],
labelStyle={'display': 'inline-block'}
),
html.Div(id='source_dropdown_container', children=[]),
html.Div(id='source_dropdown_container_output'),
html.Div(id='source_file_container', children=[]),
html.Div(id='source_file_container_output'),
],
className="pretty_container four columns",
id="cross-filter-options",
),
],
className="row flex-display",
),
],
id="mainContainer",
style={"display": "flex", "flex-direction": "column"},
)
# Create callbacks
#app.callback(
[
Output(component_id='source_dropdown_container_output', component_property='children'),
],
[
Input(component_id='drop_downs', component_property='value'),
Input(component_id='sources_flag', component_property='value'),
]
)
def update_source_dropdowns(value, value_1):
"""Controls the number of drop-downs available to choose sources"""
if value_1 == 'Y':
children = []
for i in range(0, value):
new_dropdown = dcc.Dropdown(
id=f'''source_dropdown_{str(i)}''',
options=['GOOG', 'FB', 'TDOC', 'FANG']
)
children.append(new_dropdown)
print(children)
print(type(children))
return children
I keep running into a callback error. The drop down is constructed properly, so I am kind of confused as to why that error is being invoked.
dash.exceptions.InvalidCallbackReturnValue: The callback ..source_dropdown_container_output.children.. is a multi-output.
Expected the output type to be a list or tuple but got:
None.
Any guidance or help is appreciated. All I am trying to do is add based on user input a dynamic number of drop downs to the layout.
you have three errors in your callback
there is only one return, hence do not define Output as a list
conditional check is wrong, should be if value_1 == ['Y']:
doc.Dropdown() options argument needs to define list of dict
# Create callbacks
#app.callback(
Output(component_id='source_dropdown_container_output', component_property='children'),
[
Input(component_id='drop_downs', component_property='value'),
Input(component_id='sources_flag', component_property='value'),
]
)
def update_source_dropdowns(value, value_1):
"""Controls the number of drop-downs available to choose sources"""
print("cb", value, value_1)
if value_1 == ['Y']:
children = []
for i in range(0, value):
new_dropdown = dcc.Dropdown(
id=f'''source_dropdown_{str(i)}''',
options=[{"label":v, "value":v } for v in ['GOOG', 'FB', 'TDOC', 'FANG']],
)
children.append(new_dropdown)
print(children)
print(type(children))
return children

MongoDb, Dash and Python

I can't get this code to run and I am supposed to get a couple of things to work. First, a data table which I managed to get up and get to work. Then I created a few buttons so I can filter the data table. The buttons don't do anything to change the data table, I need to get them to work. Second, I am trying to get a pie chart to work and have it be interactive with the data table. The pie chart does not render. Lastly, I need a geolocation chart that interacts with the data table as well. The data table has a lateral location and a longitude location. geolocation doesn't render either*
from jupyter_plotly_dash import JupyterDash
import dash
import dash_leaflet as dl
import dash_core_components as dcc
import dash_html_components as html
import plotly.express as px
import dash_table as dt
from dash.dependencies import Input, Output, State
import os
import numpy as np
import pandas as pd
from pymongo import MongoClient
from bson.json_util import dumps
# change animal_shelter and AnimalShelter to match your CRUD Python module file name and class name
from AnimalShelter import AnimalShelter
import base64
###########################
# Data Manipulation / Model
###########################
# FIX ME change for your username and password and CRUD Python module name
username = "aacuser"
password = "42213"
shelter = AnimalShelter(username, password)
# class read method must support return of cursor object
df = pd.DataFrame.from_records(shelter.read())
#########################
# Dashboard Layout / View
#########################
app = JupyterDash('SimpleExample')
#FIX ME Add in Grazioso Salvare’s logo
image_filename = 'Grazioso Salvare Logo.png' # replace with your own image
encoded_image = base64.b64encode(open(image_filename, 'rb').read())
#FIX ME Place the HTML image tag in the line below into the app.layout code according to your design
#FIX ME Also remember to include a unique identifier such as your name or date
#html.Img(src='data:image/png;base64,{}'.format(encoded_image.decode()))
app.layout = html.Div([
html.Div(id='hidden-div', style={'display':'none'}),
html.Img(src='data:image/png;base64,{}'.format(encoded_image.decode())),
html.Center(html.B(html.H1('Willi Blanco CS-340 Dashboard'))),
html.Hr(),
html.Div(
#FIXME Add in code for the interactive filtering options. For example, Radio buttons, drop down, checkboxes, etc.
className='row',
style={'display': 'flex'},
children=[
html.Button(id='submit-button-one',n_clicks=0, children= 'Water Rescue'),
html.Button(id='submit-button-two',n_clicks=0, children= 'Mountain or Wilderness Rescue'),
html.Button(id='submit-button-three',n_clicks=0, children='Disaster Rescue or Individual Tracking'),
html.Button(id='submit-button-four', n_clicks=0, children='reset')
]
),
html.Hr(),
dt.DataTable(
id='datatable-id',
columns=[
{"name": i, "id": i, "deletable": False, "selectable": True} for i in df.columns
],
data=df.to_dict('records'),
#FIXME: Set up the features for your interactive data table to make it user-friendly for your client
#If you completed the Module Six Assignment, you can copy in the code you created here
page_size=100,
style_table={'height':'300px','overflowY':'auto','overflowX':'auto'},
style_header={
'backgroundColor':'rgb(230,230,230)',
'fontWeight':'bold'
},
style_data={
'whiteSpace':'normal',
'height':'auto'
},
#tooltips that we are going to use on the table so that we know what information we are looking at
tooltip ={i: {
'value': i,
'use_with': 'both' # both refers to header & data cell
} for i in df.columns},
tooltip_delay=0,
tooltip_duration = None,
#sorting features that we are going to use
sort_action='native',
sort_mode='multi',
filter_action='native',
editable=False,
column_selectable=False,
row_selectable='single',
row_deletable=False,
selected_rows=[],
),
html.Br(),
html.Hr(),
#This sets up the dashboard so that your chart and your geolocation chart are side-by-side
html.Div(className='row',
style={'display' : 'flex'},
children=[
html.Div(
id='graph-id',
className='col s12 m6',
),
html.Div(
id='map-id',
className='col s12 m6',
)
])
])
#############################################
# Interaction Between Components / Controller
#############################################
#app.callback([Output('datatable-id','data')],
[Input('submit-button-one', 'n_clicks'),Input('submit-button-two','n_clicks'),
Input('submit-button-three','n_clicks'),Input('submit-button-four','n_clicks')])
def update_dashboard(bt1,bt2,bt3,bt4):
### FIX ME Add code to filter interactive data table with MongoDB queries
if (int(bt1) >= 1):
df = pd.Dataframe.from_records(shelter.read({'$and': [
{'$or': [ {'breed':'Labrador Retriever Mix'}, {'breed':'Chesapeake Bay Retriever'},
{'breed':'Newfoundland'}]},
{'sex_upon_outcome':'Intact Female'}, {'age_upon_outcome_in_weeks':{'$lte':26, 'gte':156}}]}))
bt2, bt3, bt4 = 0
elif (int(bt2)>= 1):
df = pd.Dataframe.from_records(shelter.read({'$and': [
{'$or': [ {'breed':'German Shepherd'}, {'breed':'Alaskan Malamute'},
{'breed':'Old English Sheepdog'},{'breed':'Siberian Husky'},{'breed':'Rottweiler'}]},
{'sex_upon_outcome':'Intact Male'}, {'age_upon_outcome_in_weeks':{'$lte':26, 'gte':156}}]}))
bt1, bt3 ,bt4 = 0
elif (int(bt3)>=1):
df = pd.Dataframe.from_records(shelter.read({'$and': [
{'$or': [ {'breed':'Doberman Pinscher'}, {'breed':'German Sheperd'},
{'breed':'Golden Retriever'},{'breed':'Bloodhound'},{'breed':'Rottweiler'}]},
{'sex_upon_outcome':'Intact Male'}, {'age_upon_outcome_in_weeks':{'$lte':20, 'gte':300}}]}))
bt1, bt2, bt4 = 0
elif(int(bt4)>=1):
df = pd.Dataframe.from_records(shelter.read())
bt1, bt2, bt3 = 0
columns=[{"name": i, "id": i, "deletable": False, "selectable": True} for i in df.columns]
data=df.to_dict('records')
return data
#app.callback(
Output('datatable-id', 'style_data_conditional'),
[Input('datatable-id', 'selected_columns')]
)
def update_styles(selected_columns):
return [{
'if': { 'column_id': i },
'background_color': '#D2F3FF'
} for i in selected_columns]
#app.callback(
Output('graph-id', "children"),
[Input('datatable-id', "derived_viewport_data")])
def update_graphs(viewData):
###FIX ME ####
# add code for chart of your choice (e.g. pie chart)
df = pd.DataFrame.from_dict(viewData)
return [
dcc.Graph(
figure = px.pie(df, values=values, names=names, title='Percentage of breeds available')
)
]
#app.callback(
Output('map-id', "children"),
[Input('datatable-id', "derived_viewport_data"),
Input('datatable-id',"derived_viewport_selected_rows")])
def update_map(viewData):
#FIXME: Add in the code for your geolocation chart
#If you completed the Module Six Assignment, you can copy in the code you created here.
viewDF = pd.DataFrame.from_dict(viewData)
dff = viewDF.loc[rows]
return [ dl.Map(style={'width': '1000px', 'height': '500px'}, center=[dff.loc[0,'location_lat'],dff.loc[0,'location_long']], zoom=15, children=[
dl.TileLayer(id="base-layer-id"),
# Marker with tool tip and pop up
dl.Marker(position=[dff.loc[0,'location_lat'],dff.loc[0,'location_long']], children=[
dl.Tooltip(dff['breed']),
dl.Popup([
html.H1("Animal Name"),
html.P(dff.loc[0,'name'])
])
])
])]
app
In the #app.callback([Output('datatable-id','data')], add [Input('filter-type', 'value')]).
Also, in the callback before update_map, remove Input('datatable-id',"derived_viewport_selected_rows")]). Try: #app.callback(Output('map-id', "children"), [Input('datatable-id', "derived_viewport_data")])

plotly-dash: embed indicator graph inside of a dbc card

I have been banging my head off the wall all day and cannot find a way to fit a dash indicator inside of a dash_bootstrap_components card.
It seems that the body of the card and the graph do not live inside of the card. I am not very familiar with dash so it is difficult to find a way to solve the issue.
here is what I have been able to do so far in terms of plotting the indicator:
fig3 = go.Figure()
fig3.add_trace(go.Indicator(
mode = "number+delta",
number = {"font":{"size":40},'prefix': "$"},
value = 2045672,
delta = {'reference': 30000},
gauge = {'shape': "bullet"},
title = {"text": "On Hand<br><span style='font-size:0.9em;color:gray'></span>"},
#title='Stock On Hand',
domain = {'x': [0, 1], 'y': [0, 1]},
))
fig3.update_layout(paper_bgcolor = "rgba(0,0,0,0)",
plot_bgcolor = "rgba(0,0,0,0)",
autosize=False,
width = 200,
height=200,
)
fig3.update_traces(align="center", selector=dict(type='indicator'))
I am forced to specify width and height for the indicator otherwise it is way too big, however this cause issues because its size does not adjust in regards to the card.
here is the html dash code for the box and the plot:
html.Div(children=[
html.Div(children=[
html.Div(children=[
html.Div(children=[
dbc.Card(
[dbc.CardBody(
[dcc.Graph(figure=fig3)
]
)],className="card", style={"width": "15rem", "height":"8rem"}
),
], className='jumbotron', style={'background-color': '#fffffff'}),
])
],className="col-3 mx-auto"),
],className="row p-0 h-100", style={'background-color': '#f7f7f7', 'height':110}),
], className="full-width p-0 h-100", style={'background-color': '#fffffff'}),
and here is what the final output looks like:
I am not sure what else I can try to bring the graph inside of the box, any help would be appreciated
Remove the instances where you set the height in the style of dash components and the indicator doesn't get cut off.
So you can do something like this:
app.layout = html.Div(
children=[
html.Div(
children=[
html.Div(
children=[
html.Div(
children=[
dbc.Card(
[
dbc.CardBody(
[dcc.Graph(figure=fig3)],
style={"width": "15rem"},
)
]
)
],
className="jumbotron",
style={"backgroundColor": "#fffffff"},
)
],
className="col-3 mx-auto",
)
],
className="row p-0 h-100",
style={"backgroundColor": "#f7f7f7"},
)
],
className="full-width p-0 h-100",
style={"backgroundColor": "#fffffff"},
)
I've also changed the casing of the style properties to camelCase as this is what React (which dash uses) likes.

Categories

Resources