Related
I am using python and have an object, that object has a method. I am looking for a simple way, to replace the entire object from within that function.
E.g
class a():
def b(self):
self = other_object
How can you do that?
Thanks
You use a proxy/facade object to hold a reference to the actual object, the self if you wish and that proxy (better term than Facade, but not changing my code now) is what the rest of your codebase sees. However, any attribute/method access is forwarded on to the actual object, which is swappable.
Code below should give you a rough idea. Note that you need to be careful about recursion around __the_instance, which is why I am assigning to __dict__ directly. Bit messy, since it's been a while I've written code that wraps getattr and setattr entirely.
class Facade:
def __init__(self, instance):
self.set_obj(instance)
def set_obj(self, instance):
self.__dict__["__theinstance"] = instance
def __getattr__(self, attrname):
if attrname == "__theinstance":
return self.__dict__["__theinstance"]
return getattr(self.__dict__["__theinstance"], attrname)
def __setattr__(self, attrname, value):
if attrname == "__theinstance":
self.set_obj(value)
return setattr(self.__dict__["__theinstance"], attrname, value)
class Test:
def __init__(self, name, cntr):
self.name = name
self.cntr = cntr
def __repr__(self):
return "%s[%s]" % (self.__class__.__name__, self.__dict__)
obj1 = Test("first object", 1)
obj2 = Test("second", 2)
obj2.message = "greetings"
def pretend_client_code(facade):
print(id(facade), facade.name, facade.cntr, getattr(facade, "value", None))
facade = Facade(obj1)
pretend_client_code(facade)
facade.set_obj(obj2)
pretend_client_code(facade)
facade.value = 3
pretend_client_code(facade)
facade.set_obj(obj1)
pretend_client_code(facade)
output:
4467187104 first object 1 None
4467187104 second 2 None
4467187104 second 2 3
4467187104 first object 1 None
So basically, the "client code" always sees the same facade object, but what it is actually accessing depends on what your equivalent of def b is has done.
Facade has a specific meaning in Design Patterns terminology and it may not be really applicable here, but close enough. Maybe Proxy would have been better.
Note that if you want to change the class on the same object, that is a different thing, done through assigning self.__class__ . For example, say an RPG game with an EnemyClass who gets swapped to DeadEnemyClass once killed: self.__class__ = DeadEnemyClass
You can't directly do that. What you can do is save it as an instance variable.
class A():
def __init__(self, instance=None):
self.instance = val or self
# yes, you can make it a property as well.
def set_val(self, obj):
self.instance = obj
def get_val(self):
return self.instance
It is unlikely that replacing the 'self' variable will accomplish
whatever you're trying to do, that couldn't just be accomplished by
storing the result of func(self) in a different variable. 'self' is
effectively a local variable only defined for the duration of the
method call, used to pass in the instance of the class which is being
operated upon. Replacing self will not actually replace references to
the original instance of the class held by other objects, nor will it
create a lasting reference to the new instance which was assigned to
it.
Original source: Is it safe to replace a self object by another object of the same type in a method?
I have code that someone else wrote like this:
class MyClass(object):
def __init__(self, data):
self.data = data
#property
def attribute1(self):
return self.data.another_name1
#property
def attribute2(self):
return self.data.another_name2
and I want to automatically create the corresponding property setters at run time so I don't have to modify the other person's code. The property setters should look like this:
#attribute1.setter
def attribue1(self, val):
self.data.another_name1= val
#attribute2.setter
def attribue2(self, val):
self.data.another_name2= val
How do I dynamically add these setter methods to the class?
You can write a custom Descriptor like this:
from operator import attrgetter
class CustomProperty(object):
def __init__(self, attr):
self.attr = attr
def __get__(self, ins, type):
print 'inside __get__'
if ins is None:
return self
else:
return attrgetter(self.attr)(ins)
def __set__(self, ins, value):
print 'inside __set__'
head, tail = self.attr.rsplit('.', 1)
obj = attrgetter(head)(ins)
setattr(obj, tail, value)
class MyClass(object):
def __init__(self, data):
self.data = data
attribute1 = CustomProperty('data.another_name1')
attribute2 = CustomProperty('data.another_name2')
Demo:
>>> class Foo():
... pass
...
>>> bar = MyClass(Foo())
>>>
>>> bar.attribute1 = 10
inside __set__
>>> bar.attribute2 = 20
inside __set__
>>> bar.attribute1
inside __get__
10
>>> bar.attribute2
inside __get__
20
>>> bar.data.another_name1
10
>>> bar.data.another_name2
20
This is the author of the question. I found out a very jerry-rigged solution, but I don't know another way to do it. (I am using python 3.4 by the way.)
I'll start with the problems I ran into.
First, I thought about overwriting the property entirely, something like this:
Given this class
class A(object):
def __init__(self):
self._value = 42
#property
def value(self):
return self._value
and you can over write the property entirely by doing something like this:
a = A()
A.value = 31 # This just redirects A.value from the #property to the int 31
a.value # Returns 31
The problem is that this is done at the class level and not at the instance level, so if I make a new instance of A then this happens:
a2 = A()
a.value # Returns 31, because the class itself was modified in the previous code block.
I want that to return a2._value because a2 is a totally new instance of A() and therefore shouldn't be influenced by what I did to a.
The solution to this was to overwrite A.value with a new property rather than whatever I wanted to assign the instance _value to. I learned that you can create a new property that instantiates itself from the old property using the special getter, setter, and deleter methods (see here). So I can overwrite A's value property and make a setter for it by doing this:
def make_setter(name):
def value_setter(self, val):
setattr(self, name, val)
return value_setter
my_setter = make_setter('_value')
A.value = A.value.setter(my_setter) # This takes the property defined in the above class and overwrites the setter with my_setter
setattr(A, 'value', getattr(A, 'value').setter(my_setter)) # This does the same thing as the line above I think so you only need one of them
This is all well and good as long as the original class has something extremely simple in the original class's property definition (in this case it was just return self._value). However, as soon as you get more complicated, to something like return self.data._value like I have, things get nasty -- like #BrenBarn said in his comment on my post. I used the inspect.getsourcelines(A.value.fget) function to get the source code line that contains the return value and parsed that. If I failed to parse the string, I raised an exception. The result looks something like this:
def make_setter(name, attrname=None):
def setter(self, val):
try:
split_name = name.split('.')
child_attr = getattr(self, split_name[0])
for i in range(len(split_name)-2):
child_attr = getattr(child_attr, split_name[i+1])
setattr(child_attr, split_name[-1], val)
except:
raise Exception("Failed to set property attribute {0}".format(name))
It seems to work but there are probably bugs.
Now the question is, what to do if the thing failed? That's up to you and sort of off track from this question. Personally, I did a bit of nasty stuff that involves creating a new class that inherits from A (let's call this class B). Then if the setter worked for A, it will work for the instance of B because A is a base class. However, if it didn't work (because the return value defined in A was something nasty), I ran a settattr(B, name, val) on the class B. This would normally change all other instances that were created from B (like in the 2nd code block in this post) but I dynamically create B using type('B', (A,), {}) and only use it once ever, so changing the class itself has no affect on anything else.
There is a lot of black-magic type stuff going on here I think, but it's pretty cool and quite versatile in the day or so I've been using it. None of this is copy-pastable code, but if you understand it then you can write your modifications.
I really hope/wish there is a better way, but I do not know of one. Maybe metaclasses or descriptors created from classes can do some nice magic for you, but I do not know enough about them yet to be sure.
Comments appreciated!
Sorry, badly worded title. I hope a simple example will make it clear. Here's the easiest way to do what I want to do:
class Lemon(object):
headers = ['ripeness', 'colour', 'juiciness', 'seeds?']
def to_row(self):
return [self.ripeness, self.colour, self.juiciness, self.seeds > 0]
def save_lemons(lemonset):
f = open('lemons.csv', 'w')
out = csv.writer(f)
out.write(Lemon.headers)
for lemon in lemonset:
out.writerow(lemon.to_row())
This works alright for this small example, but I feel like I'm "repeating myself" in the Lemon class. And in the actual code I'm trying to write (where the number of variables I'm exporting is ~50 rather than 4, and where to_row calls a number of private methods that do a bunch of weird calculations), it becomes awkward.
As I write the code to generate a row, I need to constantly refer to the "headers" variable to make sure I'm building my list in the correct order. If I want to change the variables being outputted, I need to make sure to_row and headers are being changed in parallel (exactly the kind of thing that DRY is meant to prevent, right?).
Is there a better way I could design this code? I've been playing with function decorators, but nothing has stuck. Ideally I should still be able to get at the headers without having a particular lemon instance (i.e. it should be a class variable or class method), and I don't want to have a separate method for each variable.
In this case, getattr() is your friend: it allows you to get a variable based on a string name. For example:
def to_row(self):
return [getattr(self, head) for head in self.headers]
EDIT: to properly use the header seeds?, you would need to set the attribute seeds? for the objects. setattr(self, 'seeds?', self.seeds > 0) right above the return statement.
We could use some metaclass shenanegans to do this...
In python 2, attributes are passed to the metaclass in a dict, without
preserving order, we'll also want a base class to work with so we can
distinguish class attributes that should be mapped into the row. In python3, we could dispense with just about all of this base descriptor class.
import itertools
import functools
#functools.total_ordering
class DryDescriptor(object):
_order_gen = itertools.count()
def __init__(self, alias=None):
self.alias = alias
self.order = next(self._order_gen)
def __lt__(self, other):
return self.order < other.order
We will want a python descriptor for every attribute we wish to map into the
row. slots are a nice way to get data descriptors without much work. One
caveat, though, we'll have to manually remove the helper instance to make the
real slot descriptor visible.
class slot(DryDescriptor):
def annotate(self, attr, attrs):
del attrs[attr]
self.attr = attr
slots = attrs.setdefault('__slots__', []).append(attr)
def annotate_class(self, cls):
if self.alias is not None:
setattr(cls, self.alias, getattr(self.attr))
For computed fields, we can memoize results. Memoizing off of the annotated
instance is tricky without a memory leak, we need weakref. alternatively, we
could have arranged for another slot just to store the cached value. This also isn't quite thread safe, but pretty close.
import weakref
class memo(DryDescriptor):
_memo = None
def __call__(self, method):
self.getter = method
return self
def annotate(self, attr, attrs):
if self.alias is not None:
attrs[self.alias] = self
def annotate_class(self, cls): pass
def __get__(self, instance, owner):
if instance is None:
return self
if self._memo is None:
self._memo = weakref.WeakKeyDictionary()
try:
return self._memo[instance]
except KeyError:
return self._memo.setdefault(instance, self.getter(instance))
On the metaclass, all of the descriptors we created above are found, sorted by
creation order, and instructed to annotate the new, created class. This does
not correctly treat derived classes and could use some other conveniences like
an __init__ for all the slots.
class DryMeta(type):
def __new__(mcls, name, bases, attrs):
descriptors = sorted((value, key)
for key, value
in attrs.iteritems()
if isinstance(value, DryDescriptor))
for descriptor, attr in descriptors:
descriptor.annotate(attr, attrs)
cls = type.__new__(mcls, name, bases, attrs)
for descriptor, attr in descriptors:
descriptor.annotate_class(cls)
cls._header_descriptors = [getattr(cls, attr) for descriptor, attr in descriptors]
return cls
Finally, we want a base class to inherit from so that we can have a to_row
method. this just invokes all of the __get__s for all of the respective
descriptors, in order.
class DryBase(object):
__metaclass__ = DryMeta
def to_row(self):
cls = type(self)
return [desc.__get__(self, cls) for desc in cls._header_descriptors]
Assuming all of that is tucked away, out of sight, the definition of a class
that uses this feature is mostly free of repitition. The only short coming is
that to be practical, every field needs a python friendly name, thus we had the
alias key to associate 'seeds?' to has_seeds
class ADryRow(DryBase):
__slots__ = ['seeds']
ripeness = slot()
colour = slot()
juiciness = slot()
#memo(alias='seeds?')
def has_seeds(self):
print "Expensive!!!"
return self.seeds > 0
>>> my_row = ADryRow()
>>> my_row.ripeness = "tart"
>>> my_row.colour = "#8C2"
>>> my_row.juiciness = 0.3479
>>> my_row.seeds = 19
>>>
>>> print my_row.to_row()
Expensive!!!
['tart', '#8C2', 0.3479, True]
>>> print my_row.to_row()
['tart', '#8C2', 0.3479, True]
What I would like to do there is declaring class variables, but actually use them as vars of the instance. I have a class Field and a class Thing, like this:
class Field(object):
def __set__(self, instance, value):
for key, v in vars(instance.__class__).items():
if v is self:
instance.__dict__.update({key: value})
def __get__(self, instance, owner):
for key, v in vars(instance.__class__).items():
if v is self:
try:
return instance.__dict__[key]
except:
return None
class Thing(object):
foo = Field()
So when I instantiate a thing and set attribute foo, it will be added to the instance, not the class, the class variable is never actually re-set.
new = Thing()
new.foo = 'bar'
# (foo : 'bar') is stored in new.__dict__
This works so far, but the above code for Field is rather awkward. It has too look for the Field object instance in the classes props, otherwise there seems no way of knowing the name of the property (foo) in __set__ and __get__. Is there another, more straight forward way to accomplish this?
Every instance of Field (effectively) has a name. Its name is the attribute name (or key) which references it in Thing. Instead of having to look up the key dynamically, you could instantiate Fields with the name at the time the class attribute is set in Thing:
class Field(object):
def __init__(self, name):
self.name = name
def __set__(self, instance, value):
instance.__dict__.update({self.name: value})
def __get__(self, instance, owner):
if instance is None:
return self
try:
return instance.__dict__[self.name]
except KeyError:
return None
def make_field(*args):
def wrapper(cls):
for arg in args:
setattr(cls, arg, Field(arg))
return cls
return wrapper
#make_field('foo')
class Thing(object):
pass
And it can be used like this:
new = Thing()
Before new.foo is set, new.foo returns None:
print(new.foo)
# None
After new.foo is set, 'foo' is an instance attribute of new:
new.foo = 'bar'
print(new.__dict__)
# {'foo': 'bar'}
You can access the descriptor (the Field instance itself) with Thing.foo:
print(Thing.foo)
# <__main__.Field object at 0xb76cedec>
PS. I'm assuming you have a good reason why
class Thing(object):
foo = None
does not suffice.
Reread your question and realized I had it wrong:
You don't need to override the default python behavior to do this. For example, you could do the following:
class Thing(object):
foo = 5
>>> r = Thing()
>>> r.foo = 10
>>> s = Thing()
>>> print Thing.foo
5
>>> print r.foo
10
>>> print s.foo
5
If you want the default to be 'None' for a particular variable, you could just set the class-wide value to be None. That said, you would have to declare it specifically for each variable.
The easiest way would be to call the attribute something else than the name of the descriptor variable - preferably starting with _ to signal its an implementation detail. That way, you end up with:
def __set__(self, instance, value):
instance._foo = value
def __get__(self, instance, owner):
return getattr(instance, '_foo', None)
The only drawback of this is that you can't determine the name of the key from the one used for the descriptor. If that increased coupling isn't a problem compared to the loop, you could just use a property:
class Thing:
#property
def foo(self):
return getattr(self, '_foo', None)
#foo.setter
def foo(self, value):
self._foo = value
otherwise, you could pass the name of the variable into the descriptor's __init__, so that you have:
class Thing:
foo = Field('_foo')
Of course, all this assumes that the simplest and most Pythonic way - use a real variable Thing().foo that you set to None in Thing.__init__ - isn't an option for some reason. If that way will work for you, you should prefer it.
This question already has answers here:
Creating a singleton in Python
(38 answers)
Closed 4 years ago.
There seem to be many ways to define singletons in Python. Is there a consensus opinion on Stack Overflow?
I don't really see the need, as a module with functions (and not a class) would serve well as a singleton. All its variables would be bound to the module, which could not be instantiated repeatedly anyway.
If you do wish to use a class, there is no way of creating private classes or private constructors in Python, so you can't protect against multiple instantiations, other than just via convention in use of your API. I would still just put methods in a module, and consider the module as the singleton.
Here's my own implementation of singletons. All you have to do is decorate the class; to get the singleton, you then have to use the Instance method. Here's an example:
#Singleton
class Foo:
def __init__(self):
print 'Foo created'
f = Foo() # Error, this isn't how you get the instance of a singleton
f = Foo.instance() # Good. Being explicit is in line with the Python Zen
g = Foo.instance() # Returns already created instance
print f is g # True
And here's the code:
class Singleton:
"""
A non-thread-safe helper class to ease implementing singletons.
This should be used as a decorator -- not a metaclass -- to the
class that should be a singleton.
The decorated class can define one `__init__` function that
takes only the `self` argument. Also, the decorated class cannot be
inherited from. Other than that, there are no restrictions that apply
to the decorated class.
To get the singleton instance, use the `instance` method. Trying
to use `__call__` will result in a `TypeError` being raised.
"""
def __init__(self, decorated):
self._decorated = decorated
def instance(self):
"""
Returns the singleton instance. Upon its first call, it creates a
new instance of the decorated class and calls its `__init__` method.
On all subsequent calls, the already created instance is returned.
"""
try:
return self._instance
except AttributeError:
self._instance = self._decorated()
return self._instance
def __call__(self):
raise TypeError('Singletons must be accessed through `instance()`.')
def __instancecheck__(self, inst):
return isinstance(inst, self._decorated)
You can override the __new__ method like this:
class Singleton(object):
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(Singleton, cls).__new__(
cls, *args, **kwargs)
return cls._instance
if __name__ == '__main__':
s1 = Singleton()
s2 = Singleton()
if (id(s1) == id(s2)):
print "Same"
else:
print "Different"
A slightly different approach to implement the singleton in Python is the borg pattern by Alex Martelli (Google employee and Python genius).
class Borg:
__shared_state = {}
def __init__(self):
self.__dict__ = self.__shared_state
So instead of forcing all instances to have the same identity, they share state.
The module approach works well. If I absolutely need a singleton I prefer the Metaclass approach.
class Singleton(type):
def __init__(cls, name, bases, dict):
super(Singleton, cls).__init__(name, bases, dict)
cls.instance = None
def __call__(cls,*args,**kw):
if cls.instance is None:
cls.instance = super(Singleton, cls).__call__(*args, **kw)
return cls.instance
class MyClass(object):
__metaclass__ = Singleton
See this implementation from PEP318, implementing the singleton pattern with a decorator:
def singleton(cls):
instances = {}
def getinstance():
if cls not in instances:
instances[cls] = cls()
return instances[cls]
return getinstance
#singleton
class MyClass:
...
The Python documentation does cover this:
class Singleton(object):
def __new__(cls, *args, **kwds):
it = cls.__dict__.get("__it__")
if it is not None:
return it
cls.__it__ = it = object.__new__(cls)
it.init(*args, **kwds)
return it
def init(self, *args, **kwds):
pass
I would probably rewrite it to look more like this:
class Singleton(object):
"""Use to create a singleton"""
def __new__(cls, *args, **kwds):
"""
>>> s = Singleton()
>>> p = Singleton()
>>> id(s) == id(p)
True
"""
it_id = "__it__"
# getattr will dip into base classes, so __dict__ must be used
it = cls.__dict__.get(it_id, None)
if it is not None:
return it
it = object.__new__(cls)
setattr(cls, it_id, it)
it.init(*args, **kwds)
return it
def init(self, *args, **kwds):
pass
class A(Singleton):
pass
class B(Singleton):
pass
class C(A):
pass
assert A() is A()
assert B() is B()
assert C() is C()
assert A() is not B()
assert C() is not B()
assert C() is not A()
It should be relatively clean to extend this:
class Bus(Singleton):
def init(self, label=None, *args, **kwds):
self.label = label
self.channels = [Channel("system"), Channel("app")]
...
As the accepted answer says, the most idiomatic way is to just use a module.
With that in mind, here's a proof of concept:
def singleton(cls):
obj = cls()
# Always return the same object
cls.__new__ = staticmethod(lambda cls: obj)
# Disable __init__
try:
del cls.__init__
except AttributeError:
pass
return cls
See the Python data model for more details on __new__.
Example:
#singleton
class Duck(object):
pass
if Duck() is Duck():
print "It works!"
else:
print "It doesn't work!"
Notes:
You have to use new-style classes (derive from object) for this.
The singleton is initialized when it is defined, rather than the first time it's used.
This is just a toy example. I've never actually used this in production code, and don't plan to.
I'm very unsure about this, but my project uses 'convention singletons' (not enforced singletons), that is, if I have a class called DataController, I define this in the same module:
_data_controller = None
def GetDataController():
global _data_controller
if _data_controller is None:
_data_controller = DataController()
return _data_controller
It is not elegant, since it's a full six lines. But all my singletons use this pattern, and it's at least very explicit (which is pythonic).
The one time I wrote a singleton in Python I used a class where all the member functions had the classmethod decorator.
class Foo:
x = 1
#classmethod
def increment(cls, y=1):
cls.x += y
Creating a singleton decorator (aka an annotation) is an elegant way if you want to decorate (annotate) classes going forward. Then you just put #singleton before your class definition.
def singleton(cls):
instances = {}
def getinstance():
if cls not in instances:
instances[cls] = cls()
return instances[cls]
return getinstance
#singleton
class MyClass:
...
There are also some interesting articles on the Google Testing blog, discussing why singleton are/may be bad and are an anti-pattern:
Singletons are Pathological Liars
Where Have All the Singletons Gone?
Root Cause of Singletons
I think that forcing a class or an instance to be a singleton is overkill. Personally, I like to define a normal instantiable class, a semi-private reference, and a simple factory function.
class NothingSpecial:
pass
_the_one_and_only = None
def TheOneAndOnly():
global _the_one_and_only
if not _the_one_and_only:
_the_one_and_only = NothingSpecial()
return _the_one_and_only
Or if there is no issue with instantiating when the module is first imported:
class NothingSpecial:
pass
THE_ONE_AND_ONLY = NothingSpecial()
That way you can write tests against fresh instances without side effects, and there is no need for sprinkling the module with global statements, and if needed you can derive variants in the future.
The Singleton Pattern implemented with Python courtesy of ActiveState.
It looks like the trick is to put the class that's supposed to only have one instance inside of another class.
class Singleton(object[,...]):
staticVar1 = None
staticVar2 = None
def __init__(self):
if self.__class__.staticVar1==None :
# create class instance variable for instantiation of class
# assign class instance variable values to class static variables
else:
# assign class static variable values to class instance variables
class Singeltone(type):
instances = dict()
def __call__(cls, *args, **kwargs):
if cls.__name__ not in Singeltone.instances:
Singeltone.instances[cls.__name__] = type.__call__(cls, *args, **kwargs)
return Singeltone.instances[cls.__name__]
class Test(object):
__metaclass__ = Singeltone
inst0 = Test()
inst1 = Test()
print(id(inst1) == id(inst0))
OK, singleton could be good or evil, I know. This is my implementation, and I simply extend a classic approach to introduce a cache inside and produce many instances of a different type or, many instances of same type, but with different arguments.
I called it Singleton_group, because it groups similar instances together and prevent that an object of the same class, with same arguments, could be created:
# Peppelinux's cached singleton
class Singleton_group(object):
__instances_args_dict = {}
def __new__(cls, *args, **kwargs):
if not cls.__instances_args_dict.get((cls.__name__, args, str(kwargs))):
cls.__instances_args_dict[(cls.__name__, args, str(kwargs))] = super(Singleton_group, cls).__new__(cls, *args, **kwargs)
return cls.__instances_args_dict.get((cls.__name__, args, str(kwargs)))
# It's a dummy real world use example:
class test(Singleton_group):
def __init__(self, salute):
self.salute = salute
a = test('bye')
b = test('hi')
c = test('bye')
d = test('hi')
e = test('goodbye')
f = test('goodbye')
id(a)
3070148780L
id(b)
3070148908L
id(c)
3070148780L
b == d
True
b._Singleton_group__instances_args_dict
{('test', ('bye',), '{}'): <__main__.test object at 0xb6fec0ac>,
('test', ('goodbye',), '{}'): <__main__.test object at 0xb6fec32c>,
('test', ('hi',), '{}'): <__main__.test object at 0xb6fec12c>}
Every object carries the singleton cache... This could be evil, but it works great for some :)
My simple solution which is based on the default value of function parameters.
def getSystemContext(contextObjList=[]):
if len( contextObjList ) == 0:
contextObjList.append( Context() )
pass
return contextObjList[0]
class Context(object):
# Anything you want here
Being relatively new to Python I'm not sure what the most common idiom is, but the simplest thing I can think of is just using a module instead of a class. What would have been instance methods on your class become just functions in the module and any data just becomes variables in the module instead of members of the class. I suspect this is the pythonic approach to solving the type of problem that people use singletons for.
If you really want a singleton class, there's a reasonable implementation described on the first hit on Google for "Python singleton", specifically:
class Singleton:
__single = None
def __init__( self ):
if Singleton.__single:
raise Singleton.__single
Singleton.__single = self
That seems to do the trick.
Singleton's half brother
I completely agree with staale and I leave here a sample of creating a singleton half brother:
class void:pass
a = void();
a.__class__ = Singleton
a will report now as being of the same class as singleton even if it does not look like it. So singletons using complicated classes end up depending on we don't mess much with them.
Being so, we can have the same effect and use simpler things like a variable or a module. Still, if we want use classes for clarity and because in Python a class is an object, so we already have the object (not and instance, but it will do just like).
class Singleton:
def __new__(cls): raise AssertionError # Singletons can't have instances
There we have a nice assertion error if we try to create an instance, and we can store on derivations static members and make changes to them at runtime (I love Python). This object is as good as other about half brothers (you still can create them if you wish), however it will tend to run faster due to simplicity.
In cases where you don't want the metaclass-based solution above, and you don't like the simple function decorator-based approach (e.g. because in that case static methods on the singleton class won't work), this compromise works:
class singleton(object):
"""Singleton decorator."""
def __init__(self, cls):
self.__dict__['cls'] = cls
instances = {}
def __call__(self):
if self.cls not in self.instances:
self.instances[self.cls] = self.cls()
return self.instances[self.cls]
def __getattr__(self, attr):
return getattr(self.__dict__['cls'], attr)
def __setattr__(self, attr, value):
return setattr(self.__dict__['cls'], attr, value)