I've been going through all the Stackoverflow answers on dynamic property setting, but for whatever reason I can't seem to get this to work.
I have a class, Evolution_Base, that in its init creates an instance of Value_Differences. Value_Differences should be dynamically creating properties, based on the list I pass, that returns the function value from _get_df_change:
from pandas import DataFrame
from dataclasses import dataclass
import pandas as pd
class Evolution_Base():
def __init__(self, res_date_0 : DataFrame , res_date_1 : DataFrame):
#dataclass
class Results_Data():
res_date_0_df : DataFrame
res_date_1_df : DataFrame
self.res = Results_Data(res_date_0_df= res_date_0,
res_date_1_df= res_date_1)
property_list = ['abc', 'xyz']
self.difference = Value_Differences(parent = self, property_list=property_list)
# Shared Functions
def _get_df_change(self, df_name, operator = '-'):
df_0 = getattr(self.res.res_date_0_df, df_name.lower())
df_1 = getattr(self.res.res_date_1_df, df_name.lower())
return self._df_change(df_1, df_0, operator=operator)
def _df_change(self, df_1 : pd.DataFrame, df_0 : pd.DataFrame, operator = '-') -> pd.DataFrame:
"""
Returns df_1 <operator | default = -> df_0
"""
# is_numeric mask
m_1 = df_1.select_dtypes('number')
m_0 = df_0.select_dtypes('number')
def label_me(x):
x.columns = ['t_1', 't_0']
return x
if operator == '-':
return label_me(df_1[m_1] - df_0[m_0])
elif operator == '+':
return label_me(df_1[m_1] + df_0[m_0])
class Value_Differences():
def __init__(self, parent : Evolution_Base, property_list = []):
self._parent = parent
for name in property_list:
def func(self, prop_name):
return self._parent._get_df_change(name)
# I've tried the following...
setattr(self, name, property(fget = lambda cls_self: func(cls_self, name)))
setattr(self, name, property(func(self, name)))
setattr(self, name, property(func))
Its driving me nuts... Any help appreciated!
My desired outcome is for:
evolution = Evolution_Base(df_1, df_2)
evolution.difference.abc == evolution._df_change('abc')
evolution.difference.xyz == evolution._df_change('xyz')
EDIT: The simple question is really, how do I setattr for a property function?
As asked
how do I setattr for a property function?
To be usable as a property, the accessor function needs to be wrapped as a property and then assigned as an attribute of the class, not the instance.
That function, meanwhile, needs to have a single unbound parameter - which will be an instance of the class, but is not necessarily the current self. Its logic needs to use the current value of name, but late binding will be an issue because of the desire to create lambdas in a loop.
A clear and simple way to work around this is to define a helper function accepting the Value_Differences instance and the name to use, and then bind the name value eagerly.
Naively:
from functools import partial
def _get_from_parent(name, instance):
return instance._parent._get_df_change(name)
class Value_Differences:
def __init__(self, parent: Evolution_Base, property_list = []):
self._parent = parent
for name in property_list:
setattr(Value_Differences, name, property(
fget = partial(_get_from_parent, name)
))
However, this of course has the issue that every instance of Value_Differences will set properties on the class, thus modifying what properties are available for each other instance. Further, in the case where there are many instances that should have the same properties, the setup work will be repeated at each instance creation.
The apparent goal
It seems that what is really sought, is the ability to create classes dynamically, such that a list of property names is provided and a corresponding class pops into existence, with code filled in for the properties implementing a certain logic.
There are multiple approaches to this.
Factory A: Adding properties to an instantiated template
Just like how functions can be nested within each other and the inner function will be an object that can be modified and returned (as is common when creating a decorator), a class body can appear within a function and a new class object (with the same name) is created every time the function runs. (The code in the OP already does this, for the Results_Data dataclass.)
def example():
class Template:
pass
return Template
>>> TemplateA, TemplateB = example(), example()
>>> TemplateA is TemplateB
False
>>> isinstance(TemplateA(), TemplateB)
False
>>> isinstance(TemplateB(), TemplateA)
False
So, a "factory" for value-difference classes could look like
from functools import partial
def _make_value_comparer(property_names, access_func):
class ValueDifferences:
def __init__(self, parent):
self._parent = parent
for name in property_names:
setattr(Value_Differences, name, property(
fget = partial(access_func, name)
))
return ValueDifferences
Notice that instead of hard-coding a helper, this factory expects to be provided with a function that implements the access logic. That function takes two parameters: a property name, and the ValueDifferences instance. (They're in that order because it's more convenient for functools.partial usage.)
Factory B: Using the type constructor directly
The built-in type in Python has two entirely separate functions.
With one argument, it discloses the type of an object.
With three arguments, it creates a new type. The class syntax is in fact syntactic sugar for a call to this builtin. The arguments are:
a string name (will be set as the __name__ attribute)
a list of classes to use as superclasses (will be set as __bases__)
a dict mapping attribute names to their values (including methods and properties - will become the __dict__, roughly)
In this style, the same factory could look something like:
from functools import partial
def _make_value_comparer(property_names, access_func):
methods = {
name: property(fget = partial(access_func, name)
for name in property_names
}
methods['__init__'] = lambda self, parent: setattr(self, '_parent', parent)
return type('ValueDifferences', [], methods)
Using the factory
In either of the above cases, EvolutionBase would be modified in the same way.
Presumably, every EvolutionBase should use the same ValueDifferences class (i.e., the one that specifically defines abc and xyz properties), so the EvolutionBase class can cache that class as a class attribute, and use it later:
class Evolution_Base():
def _get_from_parent(name, mvd):
# mvd._parent will be an instance of Evolution_Base.
return mvd._parent._get_df_change(name)
_MyValueDifferences = _make_value_comparer(['abc', 'xyz'], _get_from_parent)
def __init__(self, res_date_0 : DataFrame , res_date_1 : DataFrame):
#dataclass
class Results_Data():
res_date_0_df : DataFrame
res_date_1_df : DataFrame
self.res = Results_Data(res_date_0_df= res_date_0,
res_date_1_df= res_date_1)
self.difference = _MyValueDifferences(parent = self)
Notice that the cached _MyValueDifferences class no longer requires a list of property names to be constructed. That's because it was already provided when the class was created. The actual thing that varies per instance of _MyValueDifferences, is the parent, so that's all that gets passed.
Simpler approaches
It seems that the goal is to have a class whose instances are tightly associated with instances of Evolution_Base, providing properties specifically named abc and xyz that are computed using the Evolution_Base's data.
That could just be hard-coded as a nested class:
class Evolution_Base:
class EBValueDifferences:
def __init__(self, parent):
self._parent = parent
#property
def abc(self):
return self._parent._get_df_change('abc')
#property
def xyz(self):
return self._parent._get_df_change('xyz')
def __init__(self, res_date_0 : DataFrame , res_date_1 : DataFrame):
#dataclass
class Results_Data():
res_date_0_df : DataFrame
res_date_1_df : DataFrame
self.res = Results_Data(res_date_0_df = res_date_0,
res_date_1_df = res_date_1)
self.difference = EBValueDifferences(self)
# _get_df_change etc. as before
Even simpler, provide corresponding properties directly on Evolution_Base:
class Evolution_Base:
#property
def abc_difference(self):
return self._get_df_change('abc')
#property
def xyz_difference(self):
return self._get_df_change('xyz')
def __init__(self, res_date_0 : DataFrame , res_date_1 : DataFrame):
#dataclass
class Results_Data():
res_date_0_df : DataFrame
res_date_1_df : DataFrame
self.res = Results_Data(res_date_0_df = res_date_0,
res_date_1_df = res_date_1)
# _get_df_change etc. as before
# client code now calls my_evolution_base.abc_difference
# instead of my_evolution_base.difference.abc
If there are a lot of such properties, they could be attached using a much simpler dynamic approach (that would still be reusable for other classes that define a _get_df_change):
def add_df_change_property(name, cls):
setattr(
cls, f'{name}_difference',
property(fget = lambda instance: instance._get_df_change(name))
)
which can also be adapted for use as a decorator:
from functools import partial
def exposes_df_change(name):
return partial(add_df_change_property, name)
#exposes_df_change('abc')
#exposes_df_change('def')
class Evolution_Base:
# `self.difference` can be removed, no other changes needed
This is quite the rabbit hole. Impossible is a big call, but I will say this: they don't intend you to do this. The 'Pythonic' way of achieving your example use case is the __getattr__ method. You could also override the __dir__ method to insert your custom attributes for discoverability.
This is the code for that:
class Value_Differences():
def __init__(self, parent : Evolution_Base, property_list = []):
self._parent = parent
self._property_list = property_list
def __dir__(self):
return sorted(set(
dir(super(Value_Differences, self)) + \
list(self.__dict__.keys()) + self._property_list))
def __getattr__(self, __name: str):
if __name in self._property_list:
return self._parent._get_df_change(__name)
But that wasn't the question, and respect for a really, really interesting question. This is one of those things that you look at and say 'hmm, should be possible' and can get almost to a solution. I initially thought what you asked for was technically possible, just very hacky to achieve. But it turns out that it would be very, very weird hackery if it was possible.
Two small foundational things to start with:
Remind ourselves of the hierarchy of Python objects that the runtime is working with when defining and instantiating classes:
The metaclass (defaulting to type), which is used to build classes. I'm going to refer to this as the Metaclass Type Object (MTO).
The class definition, which is used to build objects. I'm going to refer to this as the Class Type Object (CTO).
And the class instance or object, which I'll refer to as the Class Instance Object (CIO).
MTOs are subclasses of type. CTOs are subclasses of object. CIOs are instances of CTOs, but instantiated by MTOs.
Python runs code inside class definitions as if it was running a function:
class Class1:
print("1")
def __init__(self, v1):
print("4")
print("2")
print("3")
c1 = Class1("x")
print("5")
gives 1, 2, 3, 4, 5
Put these two things together with:
class Class1:
def attr1_get(self):
return 'attr1 value'
attr1 = property(attr1_get)
we are defining a function attr1_get as part of the class definition. We are then running an inline piece of code that creates an object of type property. Note that this is just the name of the object's type - it isn't a property as you would describe it. Just an object with some attributes, being references to various functions. We then assign that object to an attribute in the class we are defining.
In the terms I used above, once that code is run we have a CTO instantiated as an object in memory that contains an attribute attr1 of type property (an object subclass, containing a bunch of attributes itself - one of which is a reference to the function attr1_get).
That can be used to instantiate an object, the CIO.
This is where the MTO comes in. You instantiate the property object while defining the CTO so that when the runtime applies the MTO to create the CIO from the CTO, an attribute on the CIO will be formed with a custom getter function for that attribute rather than the 'standard' getter function the runtime would use. The property object means something to the type object when it is building a new object.
So when we run:
c1 = Class1()
we don't get a CIO c1 with an attribute attr1 that is an object of type property. The metaclass of type type formed a set of references against the attribute's internal state to all the functions we stored in the property object. Note that this is happening inside the runtime, and you can't call this directly from your code - you just tell the type metaclass to do it by using the property wrapper object.
So if you directly assign a property() result to an attribute of a CIO, you have a Pythonic object assigned that references some functions, but the internal state for the runtime to use to reference the getter, setter, etc. is not set up. The getter of an attribute that contains a property object is the standard getter and so returns the object instance, and not the result of the functions it wraps,
This next bit of code demonstrates how this flows:
print("Let's begin")
class MetaClass1(type):
print("Starting to define MetaClass1")
def __new__(cls, name, bases, dct):
x = super().__new__(cls, name, bases, dct)
print("Metaclass1 __new__({})".format(str(cls)))
return x
print("__new__ of MetaClass1 is defined")
def __init__(cls, name, bases, dct):
print("Metaclass1 __init__({})".format(str(cls)))
print("__init__ of MetaClass1 is defined")
print("Metaclass is defined")
class Class1(object,metaclass=MetaClass1):
print("Starting to define Class1")
def __new__(cls, *args, **kwargs):
print("Class1 __new__({})".format(str(cls)))
return super(Class1, cls).__new__(cls, *args, **kwargs)
print("__new__ of Class1 is defined")
def __init__(self):
print("Class1 __init__({})".format(str(self)))
print("__init__ of Class1 is defined")
def g1(self):
return 'attr1 value'
print("g1 of Class1 is defined")
attr1 = property(g1)
print("Class1.attr1 = ", attr1)
print("attr1 of Class1 is defined")
def addProperty(self, name, getter):
setattr(self, name, property(getter))
print("self.", name, " = ", getattr(self, name))
print("addProperty of Class1 is defined")
print("Class is defined")
c1 = Class1()
print("Instance is created")
print(c1.attr1)
def g2(cls):
return 'attr2 value'
c1.addProperty('attr2', g2)
print(c1.attr2)
I have put all those print statements there to demonstrate the order in which things happen very clearly.
In the middle, you see:
g1 of Class1 is defined
Class1.attr1 = <property object at 0x105115c10>
attr1 of Class1 is defined
We have created an object of type property and assigned it to a class attribute.
Continuing:
addProperty of Class1 is defined
Metaclass1 __new__(<class '__main__.MetaClass1'>)
Metaclass1 __init__(<class '__main__.Class1'>)
Class is defined
The metaclass got instantiated, being passed first itself (__new__) and then the class it will work on (__init__). This happened right as we stepped out of the class definition. I have only included the metaclass to show what will happen with the type metaclass by default.
Then:
Class1 __new__(<class '__main__.Class1'>)
Class1 __init__(<__main__.Class1 object at 0x105124c10>)
Instance is created
attr1 value
self. attr2 = <property object at 0x105115cb0>
<property object at 0x105115cb0>
Class1 is instantiated, providing first its type to __new__ and then its instance to __init__.
We see that attr1 is instantiated properly, but attr2 is not. That is because setattr is being called once the class instance is already constructed and is just saying attr2 is an instance of the class property and not defining attr2 as the actual runtime construct of a property.
Which is made more clear if we run:
print(c1.attr2.fget(c1))
print(c1.attr1.fget(c1))
attr2 (a property object) isn't aware of the class or instance of the containing attribute's parent. The function it wraps still needs to be given the instance to work on.
attr1 doesn't know what to do with that, because as far as it is concerned it is a string object, and has no concept of how the runtime is mapping its getter.
The fundamental reason why what you tried doesn't work is that a property, a use case of a descriptor, by design must be stored as a class variable, not as an instance attribute.
Excerpt from the documentation of descriptor:
To use the descriptor, it must be stored as a class variable in
another class:
To create a class with dynamically named properties that has access to a parent class, one elegant approach is to create the class within a method of the main class, and use setattr to create class attributes with dynamic names and property objects. A class created in the closure of a method automatically has access to the self object of the parent instance, avoiding having to manage a clunky _parent attribute like you do in your attempt:
class Evolution_Base:
def __init__(self, property_list):
self.property_list = property_list
self._difference = None
#property
def difference(self):
if not self._difference:
class Value_Differences:
pass
for name in self.property_list:
# use default value to store the value of name in each iteration
def func(obj, prop_name=name):
return self._get_df_change(prop_name) # access self via closure
setattr(Value_Differences, name, property(func))
self._difference = Value_Differences()
return self._difference
def _get_df_change(self, df_name):
return f'df change of {df_name}' # simplified return value for demo purposes
so that:
evolution = Evolution_Base(['abc', 'xyz'])
print(evolution.difference.abc)
print(evolution.difference.xyz)
would output:
df change of abc
df change of xyz
Demo: https://replit.com/#blhsing/ExtralargeNaturalCoordinate
Responding directly to your question, you can create a class:
class FooBar:
def __init__(self, props):
def make_prop(name):
return property(lambda accessor_self: self._prop_impl(name))
self.accessor = type(
'Accessor',
tuple(),
{p: make_prop(p) for p in props}
)()
def _prop_impl(self, arg):
return arg
o = FooBar(['foo', 'bar'])
assert o.accessor.foo == o._prop_impl('foo')
assert o.accessor.bar == o._prop_impl('bar')
Further, it would be beneficiary to cache created class to make equivalent objects more similar and eliminate potential issues with equality comparison.
That said, I am not sure if this is desired. There's little benefit of replacing method call syntax (o.f('a')) with property access (o.a). I believe it can be detrimental on multiple accounts: dynamic properties are confusing, harder to document, etc., finally while none of this is strictly guaranteed in crazy world of dynamic python -- they kind of communicate wrong message: that the access is cheap and does not involve computation and that perhaps you can attempt to write to it.
I think that when you define the function func in the loop, it closes over the current value of the name variable, not the value of the name variable at the time the property is accessed. To fix this, you can use a lambda function to create a closure that captures the value of name at the time the property is defined.
class Value_Differences():
def __init__(self, parent : Evolution_Base, property_list = []):
self._parent = parent
for name in property_list:
setattr(self, name, property(fget = lambda self, name=name: self._parent._get_df_change(name)))
Does this help you ?
The simple question is really, how do I setattr for a property function?
In python we can set dynamic attributes like this:
class DynamicProperties():
def __init__(self, property_list):
self.property_list = property_list
def add_properties(self):
for name in self.property_list:
setattr(self.__class__, name, property(fget=lambda self: 1))
dync = DynamicProperties(['a', 'b'])
dync.add_properties()
print(dync.a) # prints 1
print(dync.b) # prints 1
Correct me if I am wrong but from reviewing your code, you want to create a dynamic attributes then set their value to a specific function call within the same class, where the passed in data is passed in attributes in the constructor " init " this is achievable, an example:
class DynamicProperties():
def __init__(self, property_list, data1, data2):
self.property_list = property_list
self.data1 = data1
self.data2 = data2
def add_properties(self):
for name in self.property_list:
setattr(self.__class__, name, property(fget=lambda self: self.change(self.data1, self.data2) ))
def change(self, data1, data2):
return data1 - data2
dync = DynamicProperties(['a', 'b'], 1, 2)
dync.add_properties()
print(dync.a == dync.change(1, 2)) # prints true
print(dync.b == dync.change(1,2)) # prints true
You just have to add more complexity to the member, __getattr__ / __setattr__ gives you the string, so it can be interpreted as needed. The biggest "problem" doing this is that the return might no be consistent and piping it back to a library that expect an object to have a specific behavior can cause soft errors.
This example is not the same as yours, but it has the same concept, manipulate columns with members. To get a copy with changes a set is not needed, with a copy, modify and return, the new instance can be created with whatever needed.
For example, the __getattr__ in this line will:
Check and interpret the string xyz_mull_0
Validate that the members and the operand exists
Make a copy of data_a
Modify the copy and return it
var = data_a.xyz_mull_0()
This looks more complex that it actually is, with the same instance members its clear what it is doing, but the _of modifier needs a callback, this is because the __getattr__ can only have one parameter, so it needs to save the attr and return a callback to be called with the other instance that then will call back to the __getattr__ and complete the rest of the function.
import re
class FlexibleFrame:
operand_mod = {
'sub': lambda a, b: a - b,
'add': lambda a, b: a + b,
'div': lambda a, b: a / b,
'mod': lambda a, b: a % b,
'mull': lambda a, b: a * b,
}
#staticmethod
def add_operand(name, func):
if name not in FlexibleFrame.operand_mod.keys():
FlexibleFrame.operand_mod[name] = func
# This makes this class subscriptable
def __getitem__(self, item):
return self.__dict__[item]
# Uses:
# -> object.value
# -> object.member()
# -> object.<name>_<operand>_<name|int>()
# -> object.<name>_<operand>_<name|int>_<flow>()
def __getattr__(self, attr):
if re.match(r'^[a-zA-Z]+_[a-zA-Z]+_[a-zA-Z0-9]+(_of)?$', attr):
seg = attr.split('_')
var_a, operand, var_b = seg[0:3]
# If there is a _of: the second operand is from the other
# instance, the _of is removed and a callback is returned
if len(seg) == 4:
self.__attr_ref = '_'.join(seg[0:3])
return self.__getattr_of
# Checks if this was a _of attribute and resets it
if self.__back_ref is not None:
other = self.__back_ref
self.__back_ref = None
self.__attr_ref = None
else:
other = self
if var_a not in self.__dict__:
raise AttributeError(
f'No match of {var_a} in (primary) {__class__.__name__}'
)
if operand not in FlexibleFrame.operand_mod.keys():
raise AttributeError(
f'No match of operand {operand}'
)
# The return is a copy of self, if not the instance
# is getting modified making x = a.b() useless
ret = FlexibleFrame(**self.__dict__)
# Checks if the second operand is a int
if re.match(r'^\d+$', var_b) :
ref_b_num = int(var_b)
for i in range(len(self[var_a])):
ret[var_a][i] = FlexibleFrame.operand_mod[operand](
self[var_a][i], ref_b_num
)
elif var_b in other.__dict__:
for i in range(len(self[var_a])):
# out_index = operand[type](in_a_index, in_b_index)
ret[var_a][i] = FlexibleFrame.operand_mod[operand](
self[var_a][i], other[var_b][i]
)
else:
raise AttributeError(
f'No match of {var_b} in (secondary) {__class__.__name__}'
)
# This swaps the .member to a .member()
# it also adds and extra () in __getattr_of
return lambda: ret
# return ret
if attr in self.__dict__:
return self[attr]
raise AttributeError(
f'No match of {attr} in {__class__.__name__}'
)
def __getattr_of(self, other):
self.__back_ref = other
return self.__getattr__(self.__attr_ref)()
def __init__(self, **kwargs):
self.__back_ref = None
self.__attr_ref = None
#TODO: Check if data columns match in size
# if not, implement column_<name>_filler=<default>
for i in kwargs:
self.__dict__[i] = kwargs[i]
if __name__ == '__main__':
data_a = FlexibleFrame(**{
'abc': [i for i in range(10)],
'nmv': [i for i in range(10)],
'xyz': [i for i in range(10)],
})
data_b = FlexibleFrame(**{
'fee': [i + 10 for i in range(10)],
'foo': [i + 10 for i in range(10)],
})
FlexibleFrame.add_operand('set', lambda a, b: b)
var = data_a.xyz_mull_0()
var = var.abc_set_xyz()
var = var.xyz_add_fee_of(data_b)
As a extra thing, lambdas in python have this thing, so it can make difficult using them when self changes.
It seems you're bending the language to do weird things. I'd take it as a smell that your code is probably getting convoluted but I'm not saying there would never be a use-case for it so here is a minimal example of how to do it:
class Obj:
def _df_change(self, arg):
print('change', arg)
class DynAttributes(Obj):
def __getattr__(self, name):
return self._df_change(name)
class Something:
difference = DynAttributes()
a = Something()
b = Obj()
assert a.difference.hello == b._df_change('hello')
When calling setattr , use self.__class__ instead of self
Code sample:
class A:
def __init__(self,names : List[str]):
for name in names:
setattr(self.__class__,name,property(fget=self.__create_getter(name)))
def __create_getter(self,name: str):
def inner(self):
print(f"invoking {name}")
return 10
return inner
a = A(['x','y'])
print(a.x + 1)
print(a.y + 2)
I have code that someone else wrote like this:
class MyClass(object):
def __init__(self, data):
self.data = data
#property
def attribute1(self):
return self.data.another_name1
#property
def attribute2(self):
return self.data.another_name2
and I want to automatically create the corresponding property setters at run time so I don't have to modify the other person's code. The property setters should look like this:
#attribute1.setter
def attribue1(self, val):
self.data.another_name1= val
#attribute2.setter
def attribue2(self, val):
self.data.another_name2= val
How do I dynamically add these setter methods to the class?
You can write a custom Descriptor like this:
from operator import attrgetter
class CustomProperty(object):
def __init__(self, attr):
self.attr = attr
def __get__(self, ins, type):
print 'inside __get__'
if ins is None:
return self
else:
return attrgetter(self.attr)(ins)
def __set__(self, ins, value):
print 'inside __set__'
head, tail = self.attr.rsplit('.', 1)
obj = attrgetter(head)(ins)
setattr(obj, tail, value)
class MyClass(object):
def __init__(self, data):
self.data = data
attribute1 = CustomProperty('data.another_name1')
attribute2 = CustomProperty('data.another_name2')
Demo:
>>> class Foo():
... pass
...
>>> bar = MyClass(Foo())
>>>
>>> bar.attribute1 = 10
inside __set__
>>> bar.attribute2 = 20
inside __set__
>>> bar.attribute1
inside __get__
10
>>> bar.attribute2
inside __get__
20
>>> bar.data.another_name1
10
>>> bar.data.another_name2
20
This is the author of the question. I found out a very jerry-rigged solution, but I don't know another way to do it. (I am using python 3.4 by the way.)
I'll start with the problems I ran into.
First, I thought about overwriting the property entirely, something like this:
Given this class
class A(object):
def __init__(self):
self._value = 42
#property
def value(self):
return self._value
and you can over write the property entirely by doing something like this:
a = A()
A.value = 31 # This just redirects A.value from the #property to the int 31
a.value # Returns 31
The problem is that this is done at the class level and not at the instance level, so if I make a new instance of A then this happens:
a2 = A()
a.value # Returns 31, because the class itself was modified in the previous code block.
I want that to return a2._value because a2 is a totally new instance of A() and therefore shouldn't be influenced by what I did to a.
The solution to this was to overwrite A.value with a new property rather than whatever I wanted to assign the instance _value to. I learned that you can create a new property that instantiates itself from the old property using the special getter, setter, and deleter methods (see here). So I can overwrite A's value property and make a setter for it by doing this:
def make_setter(name):
def value_setter(self, val):
setattr(self, name, val)
return value_setter
my_setter = make_setter('_value')
A.value = A.value.setter(my_setter) # This takes the property defined in the above class and overwrites the setter with my_setter
setattr(A, 'value', getattr(A, 'value').setter(my_setter)) # This does the same thing as the line above I think so you only need one of them
This is all well and good as long as the original class has something extremely simple in the original class's property definition (in this case it was just return self._value). However, as soon as you get more complicated, to something like return self.data._value like I have, things get nasty -- like #BrenBarn said in his comment on my post. I used the inspect.getsourcelines(A.value.fget) function to get the source code line that contains the return value and parsed that. If I failed to parse the string, I raised an exception. The result looks something like this:
def make_setter(name, attrname=None):
def setter(self, val):
try:
split_name = name.split('.')
child_attr = getattr(self, split_name[0])
for i in range(len(split_name)-2):
child_attr = getattr(child_attr, split_name[i+1])
setattr(child_attr, split_name[-1], val)
except:
raise Exception("Failed to set property attribute {0}".format(name))
It seems to work but there are probably bugs.
Now the question is, what to do if the thing failed? That's up to you and sort of off track from this question. Personally, I did a bit of nasty stuff that involves creating a new class that inherits from A (let's call this class B). Then if the setter worked for A, it will work for the instance of B because A is a base class. However, if it didn't work (because the return value defined in A was something nasty), I ran a settattr(B, name, val) on the class B. This would normally change all other instances that were created from B (like in the 2nd code block in this post) but I dynamically create B using type('B', (A,), {}) and only use it once ever, so changing the class itself has no affect on anything else.
There is a lot of black-magic type stuff going on here I think, but it's pretty cool and quite versatile in the day or so I've been using it. None of this is copy-pastable code, but if you understand it then you can write your modifications.
I really hope/wish there is a better way, but I do not know of one. Maybe metaclasses or descriptors created from classes can do some nice magic for you, but I do not know enough about them yet to be sure.
Comments appreciated!
Sorry, badly worded title. I hope a simple example will make it clear. Here's the easiest way to do what I want to do:
class Lemon(object):
headers = ['ripeness', 'colour', 'juiciness', 'seeds?']
def to_row(self):
return [self.ripeness, self.colour, self.juiciness, self.seeds > 0]
def save_lemons(lemonset):
f = open('lemons.csv', 'w')
out = csv.writer(f)
out.write(Lemon.headers)
for lemon in lemonset:
out.writerow(lemon.to_row())
This works alright for this small example, but I feel like I'm "repeating myself" in the Lemon class. And in the actual code I'm trying to write (where the number of variables I'm exporting is ~50 rather than 4, and where to_row calls a number of private methods that do a bunch of weird calculations), it becomes awkward.
As I write the code to generate a row, I need to constantly refer to the "headers" variable to make sure I'm building my list in the correct order. If I want to change the variables being outputted, I need to make sure to_row and headers are being changed in parallel (exactly the kind of thing that DRY is meant to prevent, right?).
Is there a better way I could design this code? I've been playing with function decorators, but nothing has stuck. Ideally I should still be able to get at the headers without having a particular lemon instance (i.e. it should be a class variable or class method), and I don't want to have a separate method for each variable.
In this case, getattr() is your friend: it allows you to get a variable based on a string name. For example:
def to_row(self):
return [getattr(self, head) for head in self.headers]
EDIT: to properly use the header seeds?, you would need to set the attribute seeds? for the objects. setattr(self, 'seeds?', self.seeds > 0) right above the return statement.
We could use some metaclass shenanegans to do this...
In python 2, attributes are passed to the metaclass in a dict, without
preserving order, we'll also want a base class to work with so we can
distinguish class attributes that should be mapped into the row. In python3, we could dispense with just about all of this base descriptor class.
import itertools
import functools
#functools.total_ordering
class DryDescriptor(object):
_order_gen = itertools.count()
def __init__(self, alias=None):
self.alias = alias
self.order = next(self._order_gen)
def __lt__(self, other):
return self.order < other.order
We will want a python descriptor for every attribute we wish to map into the
row. slots are a nice way to get data descriptors without much work. One
caveat, though, we'll have to manually remove the helper instance to make the
real slot descriptor visible.
class slot(DryDescriptor):
def annotate(self, attr, attrs):
del attrs[attr]
self.attr = attr
slots = attrs.setdefault('__slots__', []).append(attr)
def annotate_class(self, cls):
if self.alias is not None:
setattr(cls, self.alias, getattr(self.attr))
For computed fields, we can memoize results. Memoizing off of the annotated
instance is tricky without a memory leak, we need weakref. alternatively, we
could have arranged for another slot just to store the cached value. This also isn't quite thread safe, but pretty close.
import weakref
class memo(DryDescriptor):
_memo = None
def __call__(self, method):
self.getter = method
return self
def annotate(self, attr, attrs):
if self.alias is not None:
attrs[self.alias] = self
def annotate_class(self, cls): pass
def __get__(self, instance, owner):
if instance is None:
return self
if self._memo is None:
self._memo = weakref.WeakKeyDictionary()
try:
return self._memo[instance]
except KeyError:
return self._memo.setdefault(instance, self.getter(instance))
On the metaclass, all of the descriptors we created above are found, sorted by
creation order, and instructed to annotate the new, created class. This does
not correctly treat derived classes and could use some other conveniences like
an __init__ for all the slots.
class DryMeta(type):
def __new__(mcls, name, bases, attrs):
descriptors = sorted((value, key)
for key, value
in attrs.iteritems()
if isinstance(value, DryDescriptor))
for descriptor, attr in descriptors:
descriptor.annotate(attr, attrs)
cls = type.__new__(mcls, name, bases, attrs)
for descriptor, attr in descriptors:
descriptor.annotate_class(cls)
cls._header_descriptors = [getattr(cls, attr) for descriptor, attr in descriptors]
return cls
Finally, we want a base class to inherit from so that we can have a to_row
method. this just invokes all of the __get__s for all of the respective
descriptors, in order.
class DryBase(object):
__metaclass__ = DryMeta
def to_row(self):
cls = type(self)
return [desc.__get__(self, cls) for desc in cls._header_descriptors]
Assuming all of that is tucked away, out of sight, the definition of a class
that uses this feature is mostly free of repitition. The only short coming is
that to be practical, every field needs a python friendly name, thus we had the
alias key to associate 'seeds?' to has_seeds
class ADryRow(DryBase):
__slots__ = ['seeds']
ripeness = slot()
colour = slot()
juiciness = slot()
#memo(alias='seeds?')
def has_seeds(self):
print "Expensive!!!"
return self.seeds > 0
>>> my_row = ADryRow()
>>> my_row.ripeness = "tart"
>>> my_row.colour = "#8C2"
>>> my_row.juiciness = 0.3479
>>> my_row.seeds = 19
>>>
>>> print my_row.to_row()
Expensive!!!
['tart', '#8C2', 0.3479, True]
>>> print my_row.to_row()
['tart', '#8C2', 0.3479, True]
I would like to replace an object instance by another instance inside a method like this:
class A:
def method1(self):
self = func(self)
The object is retrieved from a database.
It is unlikely that replacing the 'self' variable will accomplish whatever you're trying to do, that couldn't just be accomplished by storing the result of func(self) in a different variable. 'self' is effectively a local variable only defined for the duration of the method call, used to pass in the instance of the class which is being operated upon. Replacing self will not actually replace references to the original instance of the class held by other objects, nor will it create a lasting reference to the new instance which was assigned to it.
As far as I understand, If you are trying to replace the current object with another object of same type (assuming func won't change the object type) from an member function. I think this will achieve that:
class A:
def method1(self):
newObj = func(self)
self.__dict__.update(newObj.__dict__)
It is not a direct answer to the question, but in the posts below there's a solution for what amirouche tried to do:
Python object conversion
Can I dynamically convert an instance of one class to another?
And here's working code sample (Python 3.2.5).
class Men:
def __init__(self, name):
self.name = name
def who_are_you(self):
print("I'm a men! My name is " + self.name)
def cast_to(self, sex, name):
self.__class__ = sex
self.name = name
def method_unique_to_men(self):
print('I made The Matrix')
class Women:
def __init__(self, name):
self.name = name
def who_are_you(self):
print("I'm a women! My name is " + self.name)
def cast_to(self, sex, name):
self.__class__ = sex
self.name = name
def method_unique_to_women(self):
print('I made Cloud Atlas')
men = Men('Larry')
men.who_are_you()
#>>> I'm a men! My name is Larry
men.method_unique_to_men()
#>>> I made The Matrix
men.cast_to(Women, 'Lana')
men.who_are_you()
#>>> I'm a women! My name is Lana
men.method_unique_to_women()
#>>> I made Cloud Atlas
Note the self.__class__ and not self.__class__.__name__. I.e. this technique not only replaces class name, but actually converts an instance of a class (at least both of them have same id()). Also, 1) I don't know whether it is "safe to replace a self object by another object of the same type in [an object own] method"; 2) it works with different types of objects, not only with ones that are of the same type; 3) it works not exactly like amirouche wanted: you can't init class like Class(args), only Class() (I'm not a pro and can't answer why it's like this).
Yes, all that will happen is that you won't be able to reference the current instance of your class A (unless you set another variable to self before you change it.) I wouldn't recommend it though, it makes for less readable code.
Note that you're only changing a variable, just like any other. Doing self = 123 is the same as doing abc = 123. self is only a reference to the current instance within the method. You can't change your instance by setting self.
What func(self) should do is to change the variables of your instance:
def func(obj):
obj.var_a = 123
obj.var_b = 'abc'
Then do this:
class A:
def method1(self):
func(self) # No need to assign self here
In many cases, a good way to achieve what you want is to call __init__ again. For example:
class MyList(list):
def trim(self,n):
self.__init__(self[:-n])
x = MyList([1,2,3,4])
x.trim(2)
assert type(x) == MyList
assert x == [1,2]
Note that this comes with a few assumptions such as the all that you want to change about the object being set in __init__. Also beware that this could cause problems with inheriting classes that redefine __init__ in an incompatible manner.
Yes, there is nothing wrong with this. Haters gonna hate. (Looking at you Pycharm with your in most cases imaginable, there's no point in such reassignment and it indicates an error).
A situation where you could do this is:
some_method(self, ...):
...
if(some_condition):
self = self.some_other_method()
...
return ...
Sure, you could start the method body by reassigning self to some other variable, but if you wouldn't normally do that with other parametres, why do it with self?
One can use the self assignment in a method, to change the class of instance to a derived class.
Of course one could assign it to a new object, but then the use of the new object ripples through the rest of code in the method. Reassiging it to self, leaves the rest of the method untouched.
class aclass:
def methodA(self):
...
if condition:
self = replace_by_derived(self)
# self is now referencing to an instance of a derived class
# with probably the same values for its data attributes
# all code here remains untouched
...
self.methodB() # calls the methodB of derivedclass is condition is True
...
def methodB(self):
# methodB of class aclass
...
class derivedclass(aclass):
def methodB(self):
#methodB of class derivedclass
...
But apart from such a special use case, I don't see any advantages to replace self.
You can make the instance a singleton element of the class
and mark the methods with #classmethod.
from enum import IntEnum
from collections import namedtuple
class kind(IntEnum):
circle = 1
square = 2
def attr(y): return [getattr(y, x) for x in 'k l b u r'.split()]
class Shape(namedtuple('Shape', 'k,l,b,u,r')):
self = None
#classmethod
def __repr__(cls):
return "<Shape({},{},{},{},{}) object at {}>".format(
*(attr(cls.self)+[id(cls.self)]))
#classmethod
def transform(cls, func):
cls.self = cls.self._replace(**func(cls.self))
Shape.self = Shape(k=1, l=2, b=3, u=4, r=5)
s = Shape.self
def nextkind(self):
return {'k': self.k+1}
print(repr(s)) # <Shape(1,2,3,4,5) object at 139766656561792>
s.transform(nextkind)
print(repr(s)) # <Shape(2,2,3,4,5) object at 139766656561888>
In class B below I wanted the __set__ function in class A to be called whenever you assign a value to B().a . Instead, setting a value to B().a overwrites B().a with the value. Class C assigning to C().a works correctly, but I wanted to have a separate instance of A for each user class, i.e. I don't want changing 'a' in one instance of C() to change 'a' in all other instances. I wrote a couple of tests to help illustrate the problem. Can you help me define a class that will pass both test1 and test2?
class A(object):
def __set__(self, instance, value):
print "__set__ called: ", value
class B(object):
def __init__(self):
self.a = A()
class C(object):
a = A()
def test1( class_in ):
o = class_in()
o.a = "test"
if isinstance(o.a, A):
print "pass"
else:
print "fail"
def test2( class_in ):
o1, o2 = class_in(), class_in()
if o1.a is o2.a:
print "fail"
else:
print "pass"
Accordingly to the documentation:
The following methods only apply when an instance of the class containing
the method (a so-called descriptor
class) appears in the class dictionary
of another new-style class, known as
the owner class. In the examples
below, “the attribute” refers to the
attribute whose name is the key of the
property in the owner class’ __dict__.
Descriptors can only be implemented as
new-style classes themselves.
So you can't have descriptors on instances.
However, since the descriptor gets a ref to the instance being used to access it, just use that as a key to storing state and you can have different behavior depending on the instance.
Here's a class that can pass the original tests, but don't try using it in most situations. it fails the isinstance test on itself!
class E(object):
def __new__(cls, state):
class E(object):
a = A(state)
def __init__(self, state):
self.state = state
return E(state)
#>>> isinstance(E(1), E)
#False
I was bitten by a similar issue in that I wanted to class objects with attributes governed by a descriptor. When I did this, I noticed that the attributes were being overwritten in all of the objects such that they weren't individual.
I raised a SO question and the resultant answer is here: class attribute changing value for no reason
A good document link discussing descriptors is here: http://martyalchin.com/2007/nov/24/python-descriptors-part-2-of-2/
An example descriptor from the aforementioned link is below:
class Numberise(object):
def __init__(self, name):
self.name = name
def __get__(self, instance, owner):
if self.name not in instance.__dict__:
raise (AttributeError, self.name)
return '%o'%(instance.__dict__[self.name])
def __set__(self, instance, value):
print ('setting value to: %d'%value)
instance.__dict__[self.name] = value