plot data on Geopandas matplotlib - python

i want to plot x and y from a csv file in a geopandas graph but only the graph axis that shows up
import fiona
import matplotlib.pyplot as plt
from mpl_toolkits.axisartist.axislines import Subplot
import pandas as pd
gpd.io.file.fiona.drvsupport.supported_drivers['KML'] = 'rw'
gpd.io.file.fiona.drvsupport.supported_drivers["KML"] = "rw"
dfN = pd.read_csv ("nodes.txt",delimiter ="\\s+")
dfN.to_csv ("nodes.csv", index=None)
df = gpd.read_file("data.kml", driver="KML")
df=df.to_crs(epsg=32733)
gdf = gpd.GeoDataFrame(dfN ,geometry=gpd.points_from_xy(dfN.X, dfN.Y))
dg=df.translate(433050,299)
fig,ax = plt.subplots()
ax.set_aspect('equal')
ax.scatter(gdf.X, gdf.Y , zorder=1, alpha= 1, c='r', s=10)
dg.plot(ax=ax,zorder=0,color='white', edgecolor='black',aspect= 'equal')
plt.show()

this is not a MWE so have sourced data from publicly available and have applied same transformations...
plotting code can simplified, then it works. using plot() on geopandas which includes POINT objects will produce a scatter
import geopandas as gpd
import matplotlib.pyplot as plt
import pandas as pd
import requests, io
# data sourcing generated two geopandas data frames, let's replace to make MWE
df = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres"))
df=df.to_crs(epsg=32733)
dg = df.loc[df["geometry"].is_valid *df["iso_a3"].eq("GBR")].translate(433050,299)
dfN = pd.read_csv(io.StringIO(requests.get("https://assets.nhs.uk/data/foi/Hospital.csv").text),
sep="Č",engine="python",).loc[:,["OrganisationName","Latitude","Longitude"]].rename(columns={"Latitude":"Y","Longitude":"X"})
gdf = gpd.GeoDataFrame(dfN ,geometry=gpd.points_from_xy(dfN.X, dfN.Y))
gdf = gdf.set_crs("EPSG:4326").to_crs(epsg=32733)
# plotting code is simplified as:
ax = dg.plot(zorder=0,color='white', edgecolor='black',aspect= 'equal')
gdf.plot(ax=ax, zorder=1, alpha= 1, c='r', markersize=10)
output
clearly within the defined CRS, plus one set of geometry has been transformed

Related

seaborn jointplot with same size plots

I'm doing a jointplot with a basemap, the problem is that when I add the basemap the main plot doesn't have the same size of the marginal plots. I've tried with different parameters without luck. Does anyone have an idea?
import seaborn as sns
import matplotlib.pyplot as plt
import contextily as ctx
import pandas as pd
##exaplme of the data
coords={'longitud':[-62.2037376443, -62.1263309099, -62.1111660957, -62.2094232682, -62.2373117384, -62.4837603464,
-62.4030570833, -62.3975699059, -62.7017114116, -62.7830883096, -62.7786038141, -62.7683234105, -62.7490101452,
-62.7709656745, -63.1002199219, -63.1890252191, -63.1183018549, -63.069960016, -62.7957745659, -63.1715687622,
-63.2156105034, -63.0634381954, -63.2243260588, -63.1153871895, -63.1068292891, -63.103945266, -63.046202785,
-63.1002257551, -63.2076065143, -62.9766391316, -62.9639256604, -62.9911452446, -62.9819984159, -62.9693649898,
-63.066770885, -62.9867441519, -62.9566360192, -62.962616287, -62.835080907, -63.0704805194, -62.8796906301,
-63.0725050601, -63.2224345145, -63.1609069526, -63.0614466072, -62.8847887504, -63.1093652381, -62.822694115,
-63.211982035, -63.1689040153],
'latitud':[8.54644405234, 8.54344899107, 8.54223724187, 8.54290207992, 8.49122679072, 8.48386575122, 8.46450360179,
8.46404720757, 8.35310083084, 8.31701565261, 8.30258604829, 8.29974870902, 8.29281679496, 8.28939264064, 8.28785272804,
8.28221439317, 8.27978694565, 8.27864159366, 8.27634987807, 8.27619269053, 8.27236343925, 8.27258932351, 8.26833993531,
8.267530064, 8.26446669791, 8.26266392333, 8.2641092051, 8.26208837315, 8.26034269744, 8.26123972942, 8.25789799656,
8.25825378832, 8.25833002805, 8.25914612933, 8.2540499893, 8.25347956867, 8.2540932736, 8.25405171513, 8.2478564527,
8.24561857662, 8.2440865055, 8.24256528837, 8.24089278, 8.23877286416, 8.23782626443, 8.23865421655, 8.23733824299,
8.23477115627, 8.23552604027, 8.24327920905]}
df = pd.DataFrame(coords)
OSM_C = 'http://c.tile.openstreetmap.org/{z}/{x}/{y}.png'
joint_axes = sns.jointplot(
x='longitud', y='latitud', data=df, ec="r", s=5)
ctx.add_basemap(joint_axes.ax_joint,crs=4326,attribution=False,url=OSM_C)
adjust(hspace=0, wspace=0)
#plt.tight_layout()
plt.show()
Here is an approach that:
removes the axes sharing in the y-direction to be able to change the aspect to 'datalim'
sets the aspect to 'equal', 'datalim'
sets the y data limits of the marginal plot to be the same as the joint plot; this seems to need a redraw
The following code shows the idea (using imshow, as I don't have contextily installed):
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
coords = {'longitud' : [-62.2037376443, -62.1263309099, -62.1111660957, -62.2094232682, -62.2373117384, -62.4837603464, -62.4030570833, -62.3975699059, -62.7017114116, -62.7830883096, -62.7786038141, -62.7683234105, -62.7490101452, -62.7709656745, -63.1002199219, -63.1890252191, -63.1183018549, -63.069960016, -62.7957745659, -63.1715687622, -63.2156105034, -63.0634381954, -63.2243260588, -63.1153871895, -63.1068292891, -63.103945266, -63.046202785, -63.1002257551, -63.2076065143, -62.9766391316, -62.9639256604, -62.9911452446, -62.9819984159, -62.9693649898, -63.066770885, -62.9867441519, -62.9566360192, -62.962616287, -62.835080907, -63.0704805194, -62.8796906301, -63.0725050601, -63.2224345145, -63.1609069526, -63.0614466072, -62.8847887504, -63.1093652381, -62.822694115, -63.211982035, -63.1689040153],
'latitud' : [8.54644405234, 8.54344899107, 8.54223724187, 8.54290207992, 8.49122679072, 8.48386575122, 8.46450360179, 8.46404720757, 8.35310083084, 8.31701565261, 8.30258604829, 8.29974870902, 8.29281679496, 8.28939264064, 8.28785272804, 8.28221439317, 8.27978694565, 8.27864159366, 8.27634987807, 8.27619269053, 8.27236343925, 8.27258932351, 8.26833993531, 8.267530064, 8.26446669791, 8.26266392333, 8.2641092051, 8.26208837315, 8.26034269744, 8.26123972942, 8.25789799656, 8.25825378832, 8.25833002805, 8.25914612933, 8.2540499893, 8.25347956867, 8.2540932736, 8.25405171513, 8.2478564527, 8.24561857662, 8.2440865055, 8.24256528837, 8.24089278, 8.23877286416, 8.23782626443, 8.23865421655, 8.23733824299, 8.23477115627, 8.23552604027, 8.24327920905]}
df = pd.DataFrame(coords)
g = sns.jointplot(data=df, x='longitud', y='latitud')
ctx.add_basemap(g.ax_joint,crs=4326,attribution=False,url=OSM_C)
# g.ax_joint.imshow(np.random.rand(20, 10), cmap='spring', interpolation='bicubic',
# extent=[df['longitud'].min(), df['longitud'].max(), df['latitud'].min(), df['latitud'].max()])
for axes in g.ax_joint.get_shared_y_axes():
for ax in axes:
g.ax_joint.get_shared_y_axes().remove(ax)
g.ax_joint.set_aspect('equal', 'datalim')
g.fig.canvas.draw()
g.ax_marg_y.set_ylim(g.ax_joint.get_ylim())
plt.show()
You can still combine this approach with changing the figure's width or height, or adding more whitespace on top or below.

Plot GeoDataFrame with multiple column attributes

I'm using geopandas (python 3.8.2) to plot variables contained in a geodataframe.
I would like to plot on a single figure, all datasets with their own colormap.
The problem is that the plot shows only the last dataset, which corresponds to 'var_5' with colormap 'Reds'. Even if I set: ax = geodataframe.plot() it does not work.
Any idea ? Many Thanks!
import geopandas as gpd
import matplotlib.pyplot as plt
filename = 'myfile.geojson'
geodataframe = gpd.read_file(filename)
cmaps = ['plasma', 'Greens', 'Blues', 'binary', 'Reds']
variables = ['var_1', 'var_2', 'var_3', 'var_4', 'var_5']
plt.rcParams['figure.figsize'] = (20, 10)
ax = plt.gca()
for i, var in enumerate(variables):
geodataframe.plot(ax=ax, column=var, cmap=cmaps[i])
plt.show()
Edit:
After taking into account the answers, I got this image:

Seaborn - Display Last Value / Label

I would like create an plot with to display the last value on line. But i can not create the plot with the last value on chart. Do you have an idea for to resolve my problem, thanks you !
Input :
DataFrame
Plot
Output :
Cross = Last Value In columns
Output Final
# import eikon as ek
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import os
import seaborn as sns; sns.set()
import pylab
from scipy import *
from pylab import *
fichier = "P:/GESTION_RPSE/GES - Gestion Epargne Salariale/Dvp Python/Florian/Absolute
Performance/PLOT.csv"
df = pd.read_csv(fichier)
df = df.drop(columns=['Unnamed: 0'])
# sns.set()
plt.figure(figsize=(16, 10))
df = df.melt('Date', var_name='Company', value_name='Value')
#palette = sns.color_palette("husl",12)
ax = sns.lineplot(x="Date", y="Value", hue='Company', data=df).set_title("LaLaLa")
plt.show()
Do you just want to put an 'X' at the end of your lines?
If so, you could pass markerevery=[-1] to the call to lineplot(). However there are a few caveats:
You have to use style= instead of hue= otherwise, there are no markers drawn
Filled markers work better than unfilled markers (like "x"). You can just use markers=True to use the default markers, or pass a list markers=['s','d','o',etc...]
code:
fmri = sns.load_dataset("fmri")
fig, ax = plt.subplots()
ax = sns.lineplot(x="timepoint", y="signal",
style="event", data=fmri, ci=None, markers=True, markevery=[-1], markersize=10)

Adding a legend to a Pandas DataFrame boxplot

I am plotting a series of boxplots on the same axes and want to adda legend to identify them.
Very simplified, my script looks like this:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df={}
bp={}
positions = [1,2,3,4]
df[0]= pd.DataFrame (np.random.rand(4,4),columns =['A','B','C','D'])
df[1]= pd.DataFrame (np.random.rand(4,4),columns =['A','B','C','D'])
colour=['red','blue']
fig, ax = plt.subplots()
for i in [0,1]:
bp[i] = df[i].plot.box(ax=ax,
positions = positions,
color={'whiskers': colour[i],
'caps': colour[i],
'medians': colour[i],
'boxes': colour[i]}
)
plt.legend([bp[i] for i in [0,1]], ['first plot', 'second plot'])
fig.show()
The plot is fine, but the legend is not drawn and I get this warning
UserWarning: Legend does not support <matplotlib.axes._subplots.AxesSubplot object at 0x000000000A7830F0> instances.
A proxy artist may be used instead.
(I have had this warning before when adding a legend to a scatter plot, but the legend was still drawn, so i could ignore it. )
Here is a link to a description of proxy artists, but it is not clear how to apply this to my script. Any suggestions?
'pandas' plots return AxesSubplot objects which can not be used for generating legends. You must generate you own legend using proxy artist instead. I have modified your code:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.patches as mpatches
df={}
bp={}
positions = [1,2,3,4]
df[0]= pd.DataFrame (np.random.rand(4,4),columns =['A','B','C','D'])
df[1]= pd.DataFrame (np.random.rand(4,4),columns =['A','B','C','D'])
colour=['red','blue']
fig, ax = plt.subplots()
for i in [0,1]:
bp[i] = df[i].plot.box(ax=ax,
positions = positions,
color={'whiskers': colour[i],
'caps': colour[i],
'medians': colour[i],
'boxes': colour[i]}
)
red_patch = mpatches.Patch(color='red', label='The red data')
blue_patch = mpatches.Patch(color='blue', label='The blue data')
plt.legend(handles=[red_patch, blue_patch])
plt.show()
The results are shown below:

Change the facecolor of boxplot in pandas

I need to change the colors of the boxplot drawn using pandas utility function. I can change most properties using the color argument but can't figure out how to change the facecolor of the box. Someone knows how to do it?
import pandas as pd
import numpy as np
data = np.random.randn(100, 4)
labels = list("ABCD")
df = pd.DataFrame(data, columns=labels)
props = dict(boxes="DarkGreen", whiskers="DarkOrange", medians="DarkBlue", caps="Gray")
df.plot.box(color=props)
While I still recommend seaborn and raw matplotlib over the plotting interface in pandas, it turns out that you can pass patch_artist=True as a kwarg to df.plot.box, which will pass it as a kwarg to df.plot, which will pass is as a kwarg to matplotlib.Axes.boxplot.
import pandas as pd
import numpy as np
data = np.random.randn(100, 4)
labels = list("ABCD")
df = pd.DataFrame(data, columns=labels)
props = dict(boxes="DarkGreen", whiskers="DarkOrange", medians="DarkBlue", caps="Gray")
df.plot.box(color=props, patch_artist=True)
As suggested, I ended up creating a function to plot this, using raw matplotlib.
def plot_boxplot(data, ax):
bp = ax.boxplot(data.values, patch_artist=True)
for box in bp['boxes']:
box.set(color='DarkGreen')
box.set(facecolor='DarkGreen')
for whisker in bp['whiskers']:
whisker.set(color="DarkOrange")
for cap in bp['caps']:
cap.set(color="Gray")
for median in bp['medians']:
median.set(color="white")
ax.axhline(0, color="DarkBlue", linestyle=":")
ax.set_xticklabels(data.columns)
I suggest using df.plot.box with patch_artist=True and return_type='both' (which returns the matplotlib axes the boxplot is drawn on and a dictionary whose values are the matplotlib Lines of the boxplot) in order to have the best customization possibilities.
For example, given this data:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(
data=np.random.randn(100, 4),
columns=list("ABCD")
)
you can set a specific color for all the boxes:
fig,ax = plt.subplots(figsize=(9,6))
ax,props = df.plot.box(patch_artist=True, return_type='both', ax=ax)
for patch in props['boxes']:
patch.set_facecolor('lime')
plt.show()
you can set a specific color for each box:
colors = ['green','blue','yellow','red']
fig,ax = plt.subplots(figsize=(9,6))
ax,props = df.plot.box(patch_artist=True, return_type='both', ax=ax)
for patch,color in zip(props['boxes'],colors):
patch.set_facecolor(color)
plt.show()
you can easily integrate a colormap:
colors = np.random.randint(0,10, 4)
cm = plt.cm.get_cmap('rainbow')
colors_cm = [cm((c-colors.min())/(colors.max()-colors.min())) for c in colors]
fig,ax = plt.subplots(figsize=(9,6))
ax,props = df.plot.box(patch_artist=True, return_type='both', ax=ax)
for patch,color in zip(props['boxes'],colors_cm):
patch.set_facecolor(color)
# to add colorbar
fig.colorbar(plt.cm.ScalarMappable(
plt.cm.colors.Normalize(min(colors),max(colors)),
cmap='rainbow'
), ax=ax, cmap='rainbow')
plt.show()

Categories

Resources