'int' object is not subscriptable in vae.fit() function - python

I am developing a VAE using this: dataset
I have used keras tutorial code and I have developed my own encoder and decoder, the problem is that when I run vae.fit() I get 'int' object is not subscriptable. What am I doing wrong?
df = pd.read_csv('local path')
xtrain, xtest = train_test_split(df, test_size=0.2)
encoder:
def encoder(input_shape):
inputs = keras.Input(shape=input_shape)
x = layers.Dense(128, activation='relu')(inputs)
x = layers.Dense(128, activation='relu')(x)
z_mean = layers.Dense(2, name='z_mean')(x)
z_log_var = layers.Dense(2, name='z_log_var')(x)
z = Sampling()([z_mean, z_log_var])
encoder = keras.Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
return encoder
decoder:
def decoder(input_shape):
inputs = keras.Input(shape=input_shape)
x = layers.Dense(128, activation='relu')(inputs)
x = layers.Dense(128, activation='relu')(x)
outputs = layers.Dense(input_shape[0], activation='sigmoid')(x)
decoder = keras.Model(inputs, outputs, name='decoder')
decoder.summary()
return decoder
VAE class:
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = keras.metrics.Mean(
name="reconstruction_loss"
)
self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")
#property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
]
def train_step(self, data):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2)
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
This is where I get the error:
data = np.concatenate([xtrain.values, xtest.values])
vae = VAE(encoder(data.shape[1]),
decoder(data.shape[1]))
vae.compile(optimizer="adam",
loss="binary_crossentropy")
vae.fit(data, epochs=10, batch_size=32,
validation_split=0.2)
Full traceback:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
c:\Users\User\Documents\Github\Generative-Models\TFG\VAE.ipynb Cell 9' in <cell line: 3>()
1 data = np.concatenate([xtrain.values, xtest.values])
----> 3 vae = VAE(encoder(data.shape[1]), decoder(data.shape[1]))
4 vae.compile(optimizer="adam", loss="binary_crossentropy")
5 vae.fit(data, epochs=10, batch_size=32, validation_split=0.2)
c:\Users\User\Documents\Github\Generative-Models\TFG\VAE.ipynb Cell 7' in
decoder(input_shape)
3 x = layers.Dense(128, activation='relu')(inputs)
4 x = layers.Dense(128, activation='relu')(x)
----> 5 outputs = layers.Dense(input_shape[0], activation='sigmoid')(x)
6 decoder = keras.Model(inputs, outputs, name='decoder')
7 decoder.summary()
TypeError: 'int' object is not subscriptable
What should I change? help is much appreciated.

The encoder and decoder functions expect an input_shape sequence. But with
vae = VAE(
encoder(data.shape[1]),
decoder(data.shape[1])
)
you are passing int values.
You can fix this by passing in a sequence of int values. For example with
vae = VAE(
encoder(data.shape[1:]),
decoder(data.shape[1:])
)
This assumes that the shape of data is (samples, features). Then your input_shape will be (features,).

Related

training multiple sequence alignment in autoencoder

I have some code that I am trying to run. But I have a problem with the code. The code is from the internet page. My data is multiple sequence alignment of a specific protein. Firstly I applied one-hot encoding and then tried to put it into a variational autoencoder for training. But I failed. when I ran this code, I got the error message about ''' Input 0 of layer "encoder" is incompatible with the layer: expected shape=(None, 28, 28, 1), found shape=(None, 13, 1)''''
As I am a beginner in this field, I don't know where I made a mistake. would you please help with this issue? Or how to train it with multiple sequence alignment data?
###################################
datax = pd.DataFrame({'sequence':['ACKIENIKYKGKEVESKLGSQLIDIFNDLDRAKEEYDKLSSPEFIAKFGDWINDEVERNVNEDGEPLLIQDVRQDSSKHYFFILKNGERFDLLTR','---------TGKEVQSSLFDQILELVKDPQLAQDAYAQIRTPEFIEKFGDWINDPYESKLDDNGEPILIE-------------------------','-------PNTGKEVQSSLFDQIIELIKDPKLAQDAYEQVRTPEFIEKFGDWINDPYAAKLDDNGEPILVERD-----------------------','-------PNQGKEVESKLYNDLVNLTGSEKAADEAYEQVHHPNFLRWFGDWINNKVSNVVDENGEPLIV--------------------------','ACRIIISLNKGKEVKSKLFDSLLDLTQSEAKAEEAYKKVFSEEFINWFGDWINTPASKVVDENGEPLMVYRFTQEE-------------------','-------PNKGKEVRSKLYDDLLELTGDDNAALEAYKKVHHPNFLRWFGDWINNKVSKVVDENGEPLIVY-------------------------','-------PNKGKEVESKLYNDLVNLTGSEKAADEAYTKVHHPNFLRWFGDWMTNPSSKVVDENGEPKIV--------------------------','-------PNKGQRVDSILYNDLLSLTGNEKSADKAYTKAHTSSFLNWFGDWINTNIQDNVDQNGEPKV---------------------------','-----------------------------NLTSEQYKLVRTPEFIAWFGNWMDDPNASVIDENGEPLVCFH-GTDNSFHIF--------------','---------------------------------KQWVQVRTPAFIEWFGDWMNDPASKGVDENGEPLVVYHGTENKFTQYDFD------------','-------------------------------TPKQYKLVRTLEFKAWFGDWENDPASKVVDENGEPLVVYH--GTDSKHNVFSYEQ---------','--------------GSSLYEQYVVIIDSSNLTTEQYKLVRTPEFKKWFGDWENNPSEAVVDENGEPLVVYH------------------------','------------------------------LTPEQYKLVRTPEFKAWFGDWENNPSSKVVDDNGEPMVVY---HGSRKKAFTEFK----------']})
from sklearn.preprocessing import OneHotEncoder
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import pandas as pd
encoder = OneHotEncoder(sparse=False)
onehot = encoder.fit_transform(datax)
print(onehot)
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
latent_dim = 10
encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
encoder.summary()
latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
decoder.summary()
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = keras.metrics.Mean(
name="reconstruction_loss"
)
self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")
#property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
]
def train_step(self, data):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
keras.losses.binary_crossentropy(datax, reconstruction), axis=(1, 2)
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
data_digits = np.concatenate([train, test], axis=0)
data_digits = np.expand_dims(data_digits, -1).astype("float32") / 255
vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam())
vae.fit(mnist_digits, epochs=1, batch_size=128)
##########################################

Conditional Variational AutoEncoder

I tried to implement conditional variational auto encoder, using variational auto encoder at the Keras website : https://keras.io/examples/generative/vae/
I added the second input to the model but I don't know how to fit two inputs to encoder. I think custom train_step() function has some problem and should be updated according to encoder that has two inputs.
I got this error:
ValueError: Layer decoder expects 2 input(s), but it received 1 input tensors. Inputs received: [<tf.Tensor 'encoder/12_enc_sampling/add:0' shape=(8, 8) dtype=float32>]
and here is my script:
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
from tensorflow.keras.utils import plot_model
from VAEfunctions import track_loss, sample_decoding, test, latent_space_mds
# Add Graphviz to windows PATH for plot_model
import os
# os.environ["PATH"] += os.pathsep + 'C:/Program Files/Graphviz/bin/'
print("tensorflow version:",tf.__version__)
# =====================================Set initial parameters ==============================
epoch = 3
batch_size = 8
latent_dim = 8
random_sample_points = 3 #Number of random sample points from latent space
# ==========================================================================
# for seed_value in range(7, 8): # change the seed to find the best seed_value
# Seed value
seed_value = 7 #7 #8good
# 1. Set `PYTHONHASHSEED` environment variable at a fixed value
import os
os.environ['PYTHONHASHSEED'] = str(seed_value)
# 2. Set `python` built-in pseudo-random generator at a fixed value
import random
random.seed(seed_value)
# 3. Set `numpy` pseudo-random generator at a fixed value
import numpy as np
np.random.seed(seed_value)
# 4. Set the `tensorflow` pseudo-random generator at a fixed value
import tensorflow as tf
tf.random.set_seed(seed_value)
# for later versions:
# tf.compat.v1.set_random_seed(seed_value)
# 5. Configure a new global `tensorflow` session
session_conf = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
tf.compat.v1.keras.backend.set_session(sess)
# ========================================Load data===============================
x_train = np.load('data_x_train_3D_all_par_3D_800_64_64_64_1.npy') # load data, #shape:(800,64,64,64,1)
x_test = np.load('data_x_test_3D_all_par_3D_200_64_64_64_1.npy')
x = np.load('data_x_3D_all_par_3D_1000_64_64_64_1.npy')
input_num = x_train.shape[0]
input_d1 = x_train.shape[1]
input_d2 = x_train.shape[2]
input_d3 = x_train.shape[3]
input_channels = x_train.shape[4]
# ================================== Load one_hot_vector (Parameters) ===================
one_hot_vec_train = np.load('one_hot_vec.npy')[:800]
print(one_hot_vec_train.shape)
# ======================View a few images=======================
print("min of x_train is:", np.min(x_train), "max of x_train is:", np.max(x_train))
print("min of x is:", np.min(x), "max of x is:", np.max(x))
plt.figure(10)
fig, axes = plt.subplots(2, 2)
# fig.tight_layout()
for ax in axes.flat:
i = 1
im = ax.imshow(x_train[100*i][31][:][:], vmin=0, vmax=1)
i = i+1
cbar_ax = fig.add_axes([0.9, 0.15, 0.03, 0.70])
fig.colorbar(im, cax=cbar_ax)
plt.suptitle('Slide[31] of four input samples')
plt.show()
""""****************************** Variational Auto Encoder Model *************************"""
# ======================================= sampling layer ===============================================
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
# tf.random.set_seed(0)
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
# ===================== Define the VAE as a `Model` with a custom `train_step` ==============================
class CVAE(keras.Model):
# tf.random.set_seed(0)
def __init__(self, encoder, decoder, **kwargs):
super(CVAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = keras.metrics.Mean(
name="reconstruction_loss"
)
self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")
self.rec_tracker = keras.metrics.Mean(name="rec") ####
#property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
self.rec_tracker, ####
]
def train_step(self, data):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
keras.losses.mean_squared_error(data, reconstruction), axis=(1, 2, 3)
)
)
rec = tf.reduce_mean( #####
tf.reduce_mean(
keras.losses.mean_squared_error(data, reconstruction), axis=(1, 2, 3)
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
self.rec_tracker.update_state(rec) ####
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
"rec": self.rec_tracker.result() #####
}
# ===================================== Build the encoder ====================================
input_shape = (input_d1, input_d2, input_d3, input_channels) # input_shape=(64, 64, 64, 1)
encoder_input = keras.Input(shape=input_shape, name="enc_input")
input_one_hot_vec = keras.Input(shape=(27, ), name="one_hot_vec_input") # one_hot_vect input layer shape=(27)
x = layers.Conv3D(32, 3, activation="relu", padding="same", name="1_enc_conv")(encoder_input) # delete strides=2
x = layers.MaxPooling3D(name="2_enc_MaxPool")(x)
x = layers.Dropout(0.2)(x)
x = layers.Conv3D(32, 3, activation="relu", padding="same", name="3_enc_conv")(x)
x = layers.MaxPooling3D(name="4_enc_MaxPool")(x)
x = layers.Dropout(0.2)(x)
x = layers.Conv3D(32, 3, activation="relu", padding="same", name="5_enc_conv")(x)
x = layers.MaxPooling3D(name="6_enc_MaxPool")(x)
x = layers.Dropout(0.2)(x)
x = layers.Conv3D(32, 3, activation="relu", padding="same", name="7_en_conv")(x)
enc_last_conv = x.shape
x = layers.Flatten(name="8_enc_flat")(x)
# ============Add one_hot_vector here: ==============
concat_layer_enc = layers.concatenate([x, input_one_hot_vec], axis=1) # ====== concat one_hot_vec here
x = layers.Dense(16, activation="relu", name="9_enc_dense")(concat_layer_enc)
z_mean = layers.Dense(latent_dim, name="10_enc_z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="11_enc_z_log_var")(x)
z = Sampling(name="12_enc_sampling")([z_mean, z_log_var])
encoder = keras.Model([encoder_input, input_one_hot_vec], [z_mean, z_log_var, z], name="encoder")
print(encoder.summary())
plot_model(encoder, to_file='Plot_Model/CVAE/encoder.jpg', show_shapes=True)
print("encoder model created")
# ===================================== Build the decoder ====================
latent_input = keras.Input(shape=(latent_dim,), name="dec_input")
concat_layer_dec = layers.concatenate([latent_input, input_one_hot_vec], axis=1) # ======= concat one_hot_vec here
x = layers.Dense(enc_last_conv[1] * enc_last_conv[2] * enc_last_conv[3] * enc_last_conv[4], activation="relu", name="1_dec_dense")(concat_layer_dec)
x = layers.Reshape((enc_last_conv[1], enc_last_conv[2], enc_last_conv[3], enc_last_conv[4]), name="2_dec")(x)
x = layers.Conv3DTranspose(32, 3, activation="relu", padding="same", name="3_dec_conv")(x)
x = layers.UpSampling3D(name="4_dec_MaxPool")(x)
x = layers.Conv3DTranspose(32, 3, activation="relu", padding="same", name="5_dec_conv")(x)
x = layers.UpSampling3D(name="6_dec_MaxPool")(x)
x = layers.Conv3DTranspose(32, 3, activation="relu", padding="same", name="7_dec_conv")(x)
x = layers.UpSampling3D(name="8_dec_MaxPool")(x)
x = layers.Conv3DTranspose(32, 3, activation="relu", padding="same", name="9_dec_conv")(x)
decoder_outputs = layers.Conv3DTranspose(1, 3, activation="sigmoid", padding="same", name="10_dec_conv_out")(x)
decoder = keras.Model([latent_input, input_one_hot_vec], decoder_outputs, name="decoder")
print(decoder.summary())
plot_model(decoder, to_file='Plot_Model/CVAE/decoder.jpg', show_shapes=True)
# =========================================== **Train the CVAE** ==================================================
random.seed(seed_value)
cvae = CVAE(encoder, decoder)
cvae.compile(optimizer=keras.optimizers.Adam())
history = cvae.fit([x_train, one_hot_vec_train], epochs=epoch, batch_size=batch_size)
track_loss(history, epoch, batch_size, latent_dim, random_sample_points, seed_value)
random_sample_list = latent_space_mds(cvae, x_train, epoch, latent_dim, random_sample_points, seed_value)
sample_decoding(cvae, epoch, latent_dim, random_sample_points, random_sample_list, seed_value)
test(cvae, x_test, 4, epoch, latent_dim)
# end of seed loop
print("finish")
Here is the model that I created:
Encoder model:
and
Here is the decoder model:
Thanks!

module 'tensorflow._api.v1.keras.metrics' has no attribute 'Mean'

I am trying to run a Variational AutoEncoder and I used the code in Keras.io, but it produces the following error and I do not know why this error is shown! the code is in link : https://keras.io/examples/generative/vae/ and I could not put the code here because it said the question is code, so I put the link here. I use python 3.7.
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
latent_dim = 2
encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
encoder.summary()
latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
decoder.summary()
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = keras.metrics.Mean(
name="reconstruction_loss"
)
self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")
#property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
]
def train_step(self, data):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2)
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
mnist_digits = np.concatenate([x_train, x_test], axis=0)
mnist_digits = np.expand_dims(mnist_digits, -1).astype("float32") / 255
vae = VAE(encoder, decoder)
the error is :
Traceback (most recent call last):
File "<ipython-input-8-94ab36f0ba4a>", line 46, in <module>
vae = VAE(encoder, decoder)
File "<ipython-input-8-94ab36f0ba4a>", line 6, in __init__
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
AttributeError: module 'tensorflow._api.v1.keras.metrics' has no attribute 'Mean'
I changed it to mean, but it produced another error.

tf.model.predict() Produces Value Error when Predicting Data with the Same Dimensions

I am getting a value error when attempting to make predictions with a successfully trained / compiled Variational AutoEncoder. What is strange, is that I am using vae.predict() on data that has the same dimensionality as the training set. In fact, calling predict on the same training data still produces a Value Error.
I do not understand what is happening. The Value Error clearly states there is a dimensional issue in the tensors being fed to the predict method, but I do not understand why given that the data is all the same dimensionally. I paste the code below--which is based on the code linked here.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
c:\Users\rzw3ch\Documents\logAnalyticsDFSS\testing.py in <module>
----> 1 reconstructions = vae.predict(normal_test_data,batch_size=128)
~\Anaconda3\lib\site-packages\keras\utils\traceback_utils.py in error_handler(*args, **kwargs)
65 except Exception as e: # pylint: disable=broad-except
66 filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67 raise e.with_traceback(filtered_tb) from None
68 finally:
69 del filtered_tb
~\Anaconda3\lib\site-packages\tensorflow\python\framework\func_graph.py in autograph_handler(*args, **kwargs)
1127 except Exception as e: # pylint:disable=broad-except
1128 if hasattr(e, "ag_error_metadata"):
-> 1129 raise e.ag_error_metadata.to_exception(e)
1130 else:
1131 raise
ValueError: in user code:
File "C:\Users\rzw3ch\Anaconda3\lib\site-packages\keras\engine\training.py", line 1621, in predict_function *
return step_function(self, iterator)
File "C:\Users\rzw3ch\Anaconda3\lib\site-packages\keras\engine\training.py", line 1611, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\Users\rzw3ch\Anaconda3\lib\site-packages\keras\engine\training.py", line 1604, in run_step **
outputs = model.predict_step(data)
File "C:\Users\rzw3ch\Anaconda3\lib\site-packages\keras\engine\training.py", line 1572, in predict_step
return self(x, training=False)
File "C:\Users\rzw3ch\Anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "<ipython-input-12-0cad8c303831>", line 105, in call
ValueError: Exception encountered when calling layer "vae_2" (type VAE).
Layer "decoder" expects 1 input(s), but it received 3 input tensors. Inputs received: [<tf.Tensor 'vae_2/encoder/z_mean/BiasAdd:0' shape=(None, 8) dtype=float32>, <tf.Tensor 'vae_2/encoder/z_log_var/BiasAdd:0' shape=(None, 8) dtype=float32>, <tf.Tensor 'vae_2/encoder/sampling_2/add:0' shape=(None, 8) dtype=float32>]
Call arguments received:
• x=tf.Tensor(shape=(None, 100), dtype=float32)
Here is the code:
#reassign the health labels
healthyVec['healthLabel'] = 1
unhealthyVec['healthLabel'] = 0
#recombine the healthy and unhealthy
combo = pd.concat([healthyVec,unhealthyVec])
data = combo.values
#define the x and y
y = data[:,-1]
x = data[:,0:-1]
#train, test split with sklearn
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=.10,random_state=101)
#Need to Now define some transformers to move the distributions of the embeddings to a Guassian Distribution
from sklearn.preprocessing import QuantileTransformer, PowerTransformer
#Try different Transformations for the inputs--can just comment out the different transformers and leave only one active
#qt = QuantileTransformer(output_distribution='normal', random_state=101)
#pt = PowerTransformer(method='box-cox', standardize=True)
#yeo-johnson can be used on any data without scaling
# pt = PowerTransformer(method='yeo-johnson', standardize=True)
#Perfornm the various transformations. Comment out the transformers as you see fit
# qt.fit(x_train)
# qt.transform(x_train)
# qt.transform(x_test)
# OR use the PowerTransformer
# pt.fit(x_train)
# pt.transform(x_train)
# pt.transform(x_test)
# Must scale data and make the inputs positive if using the box-cox transformation
# from sklearn.preprocessing import StandardScaler
# scaler = StandardScaler()
# scaler.fit(x_train)
# scaler.transform(x_train)
# scaler.transform(x_test)
#normalize the embeddings
min_val = tf.reduce_min(x_train)
max_val = tf.reduce_max(x_train)
x_train = (x_train - min_val) / (max_val-min_val)
x_test = (x_test - min_val) / (max_val-min_val)
#cast embeddings to float32
x_train = tf.cast(x_train,tf.float32)
x_test = tf.cast(x_test,tf.float32)
#make sure the labels are boolean type
y_train = y_train.astype(bool)
y_test = y_test.astype(bool)
#define the normal training / test and the anomalous training and test
normal_train_data = x_train[y_train]
normal_test_data = x_test[y_test]
anomalous_train_data = x_train[~y_train]
anomalous_test_data = x_test[~y_test]
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
def encoder_model(normal_train_data):
encoder_inputs = tf.keras.Input(shape=(normal_train_data.shape[1]))
x = layers.Dense(80, activation="relu")(encoder_inputs)
x = layers.Dense(60, activation="relu")(x)
x = layers.Dense(40, activation="relu")(x)
x = layers.Dense(20, activation="relu")(x)
x = layers.Dense(8, activation="relu")(x)
# So far we just copied the network from above
# Now we generate the latent space of mean and log-variance, in this case of dimension 30
z_mean = layers.Dense(8, name="z_mean")(x)
z_log_var = layers.Dense(8, name="z_log_var")(x)
# Sample from these distributions
z = Sampling()([z_mean, z_log_var])
encoder = tf.keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
return encoder
def decoder_model(normal_train_data):
# Recreate the network we used for the 'normal' autoencoder
latent_inputs = tf.keras.Input(shape=(8,))
x = layers.Dense(20, activation="relu")(latent_inputs)
x = layers.Dense(40, activation="relu")(x)
x = layers.Dense(60, activation="relu")(x)
x = layers.Dense(80, activation="relu")(x)
decoder_outputs = layers.Dense(normal_train_data.shape[1], activation="relu")(x)
decoder = tf.keras.Model(latent_inputs, decoder_outputs, name="decoder")
return decoder
class VAE(tf.keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def train_step(self, data):
if isinstance(data, tuple):
data = data[0]
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.keras.losses.binary_crossentropy(data, reconstruction)
)
kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)
kl_loss = tf.reduce_mean(kl_loss)
kl_loss *= -0.5
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
return {
"loss": total_loss,
"reconstruction_loss": reconstruction_loss,
"kl_loss": kl_loss,
}
def test_step(self, data):
if isinstance(data, tuple):
data = data[0]
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
val_reconstruction_loss = tf.reduce_mean(
tf.keras.losses.binary_crossentropy(data, reconstruction)
)
val_kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)
val_kl_loss = tf.reduce_mean(val_kl_loss)
val_kl_loss *= -0.5
val_total_loss = val_reconstruction_loss + val_kl_loss
grads = tape.gradient(val_total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
return {
"val_loss": val_total_loss,
"val_reconstruction_loss": val_reconstruction_loss,
"val_kl_loss": val_kl_loss,
}
def call(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
# Get the encoder and decoder models
encoder = encoder_model(normal_train_data)
decoder = decoder_model(normal_train_data)
# Get the combined model
vae = VAE(encoder, decoder)
# Compile the model
vae.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.00001))
# Fit the model to the training set
# history = vae.fit(normal_train_data,normal_train_data,epochs=20,batch_size=128,validation_data=(x_test,x_test),shuffle=True)
history = vae.fit(normal_train_data,normal_train_data,epochs=20,batch_size=128,shuffle=True)
The prediction code is very simple
reconstructions = vae.predict(normal_test_data)
I can confirm that all the tensors have the same dimensions:
<tf.Tensor: shape=(1515272, 100), dtype=float32, numpy=
<tf.Tensor: shape=(168320, 100), dtype=float32, numpy=
<tf.Tensor: shape=(546540, 100), dtype=float32, numpy=
<tf.Tensor: shape=(60771, 100), dtype=float32, numpy=
You need to replace self.decoder(encoded) with self.decoder(encoded[-1]) as the decoder only needs the last output of the encoder (which is z). –
Flavia Giammarino
9 mins ago
This seems to be the answer

Custom loss function- Keras-

I'm trying to implement a mixed model where part of it is a variational autoencoder and the other part takes the latent space and makes predictions on the properties of the input. I'd like to train these two models jointly. Here are my models:
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim1, activation='relu')(inputs)
x1 = Dense(intermediate_dim2, activation='relu')(x)
x2 = Dense(intermediate_dim3, activation='relu')(x1)
z_mean = Dense(latent_dim, name='z_mean')(x2)
z_log_var = Dense(latent_dim, name='z_log_var')(x2)
# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling1')
x1 = Dense(intermediate_dim3, activation='relu')(latent_inputs)
x2 = Dense(intermediate_dim2, activation='relu')(x1)
x3 = Dense(intermediate_dim1, activation='relu')(x2)
outputs = Dense(2*original_dim+1, activation='sigmoid')(x3)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
#build property predictor model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling2')
x1 = Dense(64, activation='relu')(latent_inputs)
x2 = Dense(128, activation='relu')(x1)
outputs = Dense(property_dim, activation='sigmoid')(x2)
predModel = Model(latent_inputs, outputs, name='predictor')
This is the full model that has the inupts of the encoder and the output of only the predictor model.
#build full model
vaeOutputs = decoder(encoder(inputs)[2])
predOutputs = predModel(encoder(inputs)[0])
vaePred = Model(inputs, [vaeOutputs,predOutputs], name='vae_fullimage')
vaePred.summary()
Now I have trouble defining the loss function and training the model:
This is my attempt:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
help_ = "Load h5 model trained weights"
parser.add_argument("-w", "--weights", help=help_)
help_ = "Use mse loss instead of binary cross entropy (default)"
parser.add_argument("-m",
"--mse",
help=help_, action='store_true')
#args = parser.parse_args()
args = parser.parse_known_args()[0]
models = (encoder, decoder)
def custom_loss(y_true, y_pred):
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
reconstruction_loss = binary_crossentropy(y_true[0], y_pred[0])
reconstruction_loss*= original_dim
#y_pred = predOutputs
prediction_loss =K.square(y_pred[1] - y_true[1])
total_loss = K.mean(prediction_loss, axis= -1) + K.mean (reconstruction_loss) + K.mean(kl_loss)
return total_loss
optimizer = keras.optimizers.Adam(learning_rate=0.001)
vaePred.compile(optimizer, custom_loss)
vaePred.summary()
if args.weights:
vaePred.load_weights(args.weights)
else:
# train the autoencoder
history =vaePred.fit(x=x_train, y=[x_train,property_train],
epochs=epochs,
callbacks=callbacks,
batch_size=batch_size,
validation_data=(x_test, [x_test,property_test]))
It appears that you are training an autoencoder(AE) (a generative model that seeks to predict itself). The outputs for an AE should equal the inputs if it is perfect. Therefore you should change y_true to be inputs.
change:
prediction_loss = mse(y_true, predOutputs)
to be:
prediction_loss = mse(inputs, predOutputs)
note: I have not run or tested any of this code. It appears to be example code from Keras.

Categories

Resources