I'm trying to train a model in Tensorflow and get the error:
Attribute Error: 'method' object has no attribute '_from_serialized'
This is code that I have copied and seen work.
It seems that it has something to do with the compatibility of my tensorflow version and python version. I'm able to run other models, but this error seems to occur when I'm trying to track custom metrics.
What is the most recent compatible versions of Tensorflow-GPU and python can that run models while tracking custom metrics?
I've checked the table that Tensorflow provides and these versions should be compatible.
My current version of Tensorflow is 2.10.0
Python version is 3.9.6.
Is there something else that might cause this errors. I've created multiple environments with different versions and still receive this error.
import os
import pickle
from tensorflow.keras import Model
from tensorflow.keras.layers import Input, Conv2D, ReLU, BatchNormalization, \
Flatten, Dense, Reshape, Conv2DTranspose, Activation, Lambda
from tensorflow.keras import backend as K
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import MeanSquaredError
import numpy as np
import tensorflow as tf
class VAE:
"""
VAE represents a Deep Convolutional variational autoencoder architecture
with mirrored encoder and decoder components.
"""
def __init__(self,
input_shape,
conv_filters,
conv_kernels,
conv_strides,
latent_space_dim):
self.input_shape = input_shape # [28, 28, 1]
self.conv_filters = conv_filters # [2, 4, 8]
self.conv_kernels = conv_kernels # [3, 5, 3]
self.conv_strides = conv_strides # [1, 2, 2]
self.latent_space_dim = latent_space_dim # 2
self.reconstruction_loss_weight = 1000
self.encoder = None
self.decoder = None
self.model = None
self._num_conv_layers = len(conv_filters)
self._shape_before_bottleneck = None
self._model_input = None
self._build()
def summary(self):
self.encoder.summary()
self.decoder.summary()
self.model.summary()
def compile(self, learning_rate=0.0001):
optimizer = Adam(learning_rate=learning_rate)
self.model.compile(optimizer=optimizer,
loss=self._calculate_combined_loss,
metrics=[self._calculate_reconstruction_loss,
self._calculate_kl_loss])
def train(self, x_train, batch_size, num_epochs):
self.model.fit(x_train,
x_train,
batch_size=batch_size,
epochs=num_epochs,
shuffle=True)
def save(self, save_folder="."):
self._create_folder_if_it_doesnt_exist(save_folder)
self._save_parameters(save_folder)
self._save_weights(save_folder)
def load_weights(self, weights_path):
self.model.load_weights(weights_path)
def reconstruct(self, images):
latent_representations = self.encoder.predict(images)
reconstructed_images = self.decoder.predict(latent_representations)
return reconstructed_images, latent_representations
#classmethod
def load(cls, save_folder="."):
parameters_path = os.path.join(save_folder, "parameters.pkl")
with open(parameters_path, "rb") as f:
parameters = pickle.load(f)
autoencoder = VAE(*parameters)
weights_path = os.path.join(save_folder, "weights.h5")
autoencoder.load_weights(weights_path)
return autoencoder
def _calculate_combined_loss(self, y_target, y_predicted):
reconstruction_loss = self._calculate_reconstruction_loss(y_target, y_predicted)
kl_loss = self._calculate_kl_loss(y_target, y_predicted)
combined_loss = self.reconstruction_loss_weight * reconstruction_loss\
+ kl_loss
return combined_loss
def _calculate_reconstruction_loss(self, y_target, y_predicted):
error = y_target - y_predicted
reconstruction_loss = K.mean(K.square(error), axis=[1, 2, 3])
return reconstruction_loss
def _calculate_kl_loss(self, y_target, y_predicted):
kl_loss = -0.5 * K.sum(1 + self.log_variance - K.square(self.mu) -
K.exp(self.log_variance), axis=1)
return kl_loss
def _create_folder_if_it_doesnt_exist(self, folder):
if not os.path.exists(folder):
os.makedirs(folder)
def _save_parameters(self, save_folder):
parameters = [
self.input_shape,
self.conv_filters,
self.conv_kernels,
self.conv_strides,
self.latent_space_dim
]
save_path = os.path.join(save_folder, "parameters.pkl")
with open(save_path, "wb") as f:
pickle.dump(parameters, f)
def _save_weights(self, save_folder):
save_path = os.path.join(save_folder, "weights.h5")
self.model.save_weights(save_path)
def _build(self):
self._build_encoder()
self._build_decoder()
self._build_autoencoder()
def _build_autoencoder(self):
model_input = self._model_input
model_output = self.decoder(self.encoder(model_input))
self.model = Model(model_input, model_output, name="autoencoder")
def _build_decoder(self):
decoder_input = self._add_decoder_input()
dense_layer = self._add_dense_layer(decoder_input)
reshape_layer = self._add_reshape_layer(dense_layer)
conv_transpose_layers = self._add_conv_transpose_layers(reshape_layer)
decoder_output = self._add_decoder_output(conv_transpose_layers)
self.decoder = Model(decoder_input, decoder_output, name="decoder")
def _add_decoder_input(self):
return Input(shape=self.latent_space_dim, name="decoder_input")
def _add_dense_layer(self, decoder_input):
num_neurons = np.prod(self._shape_before_bottleneck) # [1, 2, 4] -> 8
dense_layer = Dense(num_neurons, name="decoder_dense")(decoder_input)
return dense_layer
def _add_reshape_layer(self, dense_layer):
return Reshape(self._shape_before_bottleneck)(dense_layer)
def _add_conv_transpose_layers(self, x):
"""Add conv transpose blocks."""
# loop through all the conv layers in reverse order and stop at the
# first layer
for layer_index in reversed(range(1, self._num_conv_layers)):
x = self._add_conv_transpose_layer(layer_index, x)
return x
def _add_conv_transpose_layer(self, layer_index, x):
layer_num = self._num_conv_layers - layer_index
conv_transpose_layer = Conv2DTranspose(
filters=self.conv_filters[layer_index],
kernel_size=self.conv_kernels[layer_index],
strides=self.conv_strides[layer_index],
padding="same",
name=f"decoder_conv_transpose_layer_{layer_num}"
)
x = conv_transpose_layer(x)
x = ReLU(name=f"decoder_relu_{layer_num}")(x)
x = BatchNormalization(name=f"decoder_bn_{layer_num}")(x)
return x
def _add_decoder_output(self, x):
conv_transpose_layer = Conv2DTranspose(
filters=1,
kernel_size=self.conv_kernels[0],
strides=self.conv_strides[0],
padding="same",
name=f"decoder_conv_transpose_layer_{self._num_conv_layers}"
)
x = conv_transpose_layer(x)
output_layer = Activation("sigmoid", name="sigmoid_layer")(x)
return output_layer
def _build_encoder(self):
encoder_input = self._add_encoder_input()
conv_layers = self._add_conv_layers(encoder_input)
bottleneck = self._add_bottleneck(conv_layers)
self._model_input = encoder_input
self.encoder = Model(encoder_input, bottleneck, name="encoder")
def _add_encoder_input(self):
return Input(shape=self.input_shape, name="encoder_input")
def _add_conv_layers(self, encoder_input):
"""Create all convolutional blocks in encoder."""
x = encoder_input
for layer_index in range(self._num_conv_layers):
x = self._add_conv_layer(layer_index, x)
return x
def _add_conv_layer(self, layer_index, x):
"""Add a convolutional block to a graph of layers, consisting of
conv 2d + ReLU + batch normalization.
"""
layer_number = layer_index + 1
conv_layer = Conv2D(
filters=self.conv_filters[layer_index],
kernel_size=self.conv_kernels[layer_index],
strides=self.conv_strides[layer_index],
padding="same",
name=f"encoder_conv_layer_{layer_number}"
)
x = conv_layer(x)
x = ReLU(name=f"encoder_relu_{layer_number}")(x)
x = BatchNormalization(name=f"encoder_bn_{layer_number}")(x)
return x
def _add_bottleneck(self, x):
"""Flatten data and add bottleneck with Guassian sampling (Dense
layer).
"""
self._shape_before_bottleneck = K.int_shape(x)[1:]
x = Flatten()(x)
self.mu = Dense(self.latent_space_dim, name="mu")(x)
self.log_variance = Dense(self.latent_space_dim,
name="log_variance")(x)
def sample_point_from_normal_distribution(args):
mu, log_variance = args
epsilon = K.random_normal(shape=K.shape(self.mu), mean=0.,
stddev=1.)
sampled_point = mu + K.exp(log_variance / 2) * epsilon
return sampled_point
x = Lambda(sample_point_from_normal_distribution,
name="encoder_output")([self.mu, self.log_variance])
return x
if __name__ == "__main__":
autoencoder = VAE(
input_shape=(28, 28, 1),
conv_filters=(32, 64, 64, 64),
conv_kernels=(3, 3, 3, 3),
conv_strides=(1, 2, 2, 1),
latent_space_dim=2
)
autoencoder.summary()
LEARNING_RATE = 0.0005
BATCH_SIZE = 32
EPOCHS = 100
def load_mnist():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.astype("float32") / 255
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype("float32") / 255
x_test = x_test.reshape(x_test.shape + (1,))
return x_train, y_train, x_test, y_test
def train(x_train, learning_rate, batch_size, epochs):
autoencoder = VAE(
input_shape=(28, 28, 1),
conv_filters=(32, 64, 64, 64),
conv_kernels=(3, 3, 3, 3),
conv_strides=(1, 2, 2, 1),
latent_space_dim=2
)
autoencoder.summary()
autoencoder.compile(learning_rate)
autoencoder.train(x_train, batch_size, epochs)
return autoencoder
if __name__ == "__main__":
x_train, _, _, _ = load_mnist()
autoencoder = train(x_train[:10000], LEARNING_RATE, BATCH_SIZE, EPOCHS)
autoencoder.save("model")
The attribute error here is raised because you can't set any attribute on a method object i.e;
class Foo:
def bar(self):
print("bar")
if __name__ == "__main__":
Foo().bar.baz = 1
Output:
Traceback (most recent call last): line 7, in <module>
Foo().bar.baz = 1
AttributeError: 'method' object has no attribute 'baz'
When collecting the metric information in training_utils_v1, the metrics specified when the model is compiled (model.compile(..., metrics=[..])) are iterated over, and for each metric, the attribute _from_serialized is set:
for i, metrics in enumerate(nested_metrics):
metrics_dict = collections.OrderedDict()
for metric in metrics:
metric_name = get_metric_name(metric, is_weighted)
metric_fn = get_metric_function(
metric, output_shape=output_shapes[i], loss_fn=loss_fns[i]
)
metric_fn._from_serialized = from_serialized
In the example provided, two metrics are supplied to model.compile, and each are methods of the VAE class:
def compile(self, learning_rate=0.0001):
optimizer = Adam(learning_rate=learning_rate)
self.model.compile(optimizer=optimizer,
loss=self._calculate_combined_loss,
metrics=[self._calculate_reconstruction_loss,
self._calculate_kl_loss])
To test this, observe if metrics is entirely omitted, training will start successfully.
One of the metrics supplied, _calculate_reconstruction_loss is a method which does not need to be a method, as it does not refer to self in the body:
def _calculate_reconstruction_loss(self, y_target, y_predicted):
error = y_target - y_predicted
reconstruction_loss = K.mean(K.square(error), axis=[1, 2, 3])
return reconstruction_loss
So that can be moved outside of the class and made into a function (some IDEs will recommend this to you in the form of a message to the effect of "Make function from method"):
def _calculate_reconstruction_loss(y_target, y_predicted):
error = y_target - y_predicted
reconstruction_loss = K.mean(K.square(error), axis=[1, 2, 3])
return reconstruction_loss
The compile statement can then be revised:
self.model.compile(optimizer=optimizer,
loss=self._calculate_combined_loss,
metrics=[_calculate_reconstruction_loss,
self._calculate_kl_loss])
The same exception will appear, since we're still referring to a method in the call (self.calculate_kl_loss) but if self.calculate_kl_loss is omitted, the training will start successfully:
self.model.compile(optimizer=optimizer,
loss=self._calculate_combined_loss,
metrics=[_calculate_reconstruction_loss])
For completeness, reviewing what self.calculate_kl_loss is doing, it's a bit more tricky, but we can successfully use it as a metric by converting it into a function which takes a single argument model, which returns another function that takes arbitrary number of arguments (*args) such that it can be used both as a metric (which always expects a function of two arguments) and utilized in the loss function:
def calculate_kl_loss(model):
# wrap `_calculate_kl_loss` such that it takes the model as an argument,
# returns a function which can take arbitrary number of arguments
# (for compatibility with `metrics` and utility in the loss function)
# and returns the kl loss
def _calculate_kl_loss(*args):
kl_loss = -0.5 * K.sum(1 + model.log_variance - K.square(model.mu) -
K.exp(model.log_variance), axis=1)
return kl_loss
return _calculate_kl_loss
With these revisions, when training is started, the output is:
Epoch 1/100
10000/10000 [==============================] - 43s 4ms/sample - loss: 89.4243 - _calculate_reconstruction_loss: 0.0833 - _calculate_kl_loss: 6.1707
Epoch 2/100
10000/10000 [==============================] - 46s 5ms/sample - loss: 69.0131 - _calculate_reconstruction_loss: 0.0619 - _calculate_kl_loss: 7.1129
The entire snippet with revisions detailed above is:
import os
import pickle
from tensorflow.keras import Model
from tensorflow.keras.layers import Input, Conv2D, ReLU, BatchNormalization, \
Flatten, Dense, Reshape, Conv2DTranspose, Activation, Lambda
from tensorflow.keras import backend as K
from tensorflow.keras.optimizers import Adam
import numpy as np
import tensorflow as tf
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
def _calculate_reconstruction_loss(y_target, y_predicted):
error = y_target - y_predicted
reconstruction_loss = K.mean(K.square(error), axis=[1, 2, 3])
return reconstruction_loss
def calculate_kl_loss(model):
# wrap `_calculate_kl_loss` such that it takes the model as an argument,
# returns a function which can take arbitrary number of arguments
# (for compatibility with `metrics` and utility in the loss function)
# and returns the kl loss
def _calculate_kl_loss(*args):
kl_loss = -0.5 * K.sum(1 + model.log_variance - K.square(model.mu) -
K.exp(model.log_variance), axis=1)
return kl_loss
return _calculate_kl_loss
class VAE:
"""
VAE represents a Deep Convolutional variational autoencoder architecture
with mirrored encoder and decoder components.
"""
def __init__(self,
input_shape,
conv_filters,
conv_kernels,
conv_strides,
latent_space_dim):
self.input_shape = input_shape # [28, 28, 1]
self.conv_filters = conv_filters # [2, 4, 8]
self.conv_kernels = conv_kernels # [3, 5, 3]
self.conv_strides = conv_strides # [1, 2, 2]
self.latent_space_dim = latent_space_dim # 2
self.reconstruction_loss_weight = 1000
self.encoder = None
self.decoder = None
self.model = None
self._num_conv_layers = len(conv_filters)
self._shape_before_bottleneck = None
self._model_input = None
self._build()
def summary(self):
self.encoder.summary()
self.decoder.summary()
self.model.summary()
def compile(self, learning_rate=0.0001):
optimizer = Adam(learning_rate=learning_rate)
self.model.compile(optimizer=optimizer,
loss=self._calculate_combined_loss,
metrics=[_calculate_reconstruction_loss,
calculate_kl_loss(self)])
def train(self, x_train, batch_size, num_epochs):
self.model.fit(x_train,
x_train,
batch_size=batch_size,
epochs=num_epochs,
shuffle=True)
def save(self, save_folder="."):
self._create_folder_if_it_doesnt_exist(save_folder)
self._save_parameters(save_folder)
self._save_weights(save_folder)
def load_weights(self, weights_path):
self.model.load_weights(weights_path)
def reconstruct(self, images):
latent_representations = self.encoder.predict(images)
reconstructed_images = self.decoder.predict(latent_representations)
return reconstructed_images, latent_representations
#classmethod
def load(cls, save_folder="."):
parameters_path = os.path.join(save_folder, "parameters.pkl")
with open(parameters_path, "rb") as f:
parameters = pickle.load(f)
autoencoder = VAE(*parameters)
weights_path = os.path.join(save_folder, "weights.h5")
autoencoder.load_weights(weights_path)
return autoencoder
def _calculate_combined_loss(self, y_target, y_predicted):
reconstruction_loss = _calculate_reconstruction_loss(y_target, y_predicted)
kl_loss = calculate_kl_loss(self)()
combined_loss = self.reconstruction_loss_weight * reconstruction_loss\
+ kl_loss
return combined_loss
def _create_folder_if_it_doesnt_exist(self, folder):
if not os.path.exists(folder):
os.makedirs(folder)
def _save_parameters(self, save_folder):
parameters = [
self.input_shape,
self.conv_filters,
self.conv_kernels,
self.conv_strides,
self.latent_space_dim
]
save_path = os.path.join(save_folder, "parameters.pkl")
with open(save_path, "wb") as f:
pickle.dump(parameters, f)
def _save_weights(self, save_folder):
save_path = os.path.join(save_folder, "weights.h5")
self.model.save_weights(save_path)
def _build(self):
self._build_encoder()
self._build_decoder()
self._build_autoencoder()
def _build_autoencoder(self):
model_input = self._model_input
model_output = self.decoder(self.encoder(model_input))
self.model = Model(model_input, model_output, name="autoencoder")
def _build_decoder(self):
decoder_input = self._add_decoder_input()
dense_layer = self._add_dense_layer(decoder_input)
reshape_layer = self._add_reshape_layer(dense_layer)
conv_transpose_layers = self._add_conv_transpose_layers(reshape_layer)
decoder_output = self._add_decoder_output(conv_transpose_layers)
self.decoder = Model(decoder_input, decoder_output, name="decoder")
def _add_decoder_input(self):
return Input(shape=self.latent_space_dim, name="decoder_input")
def _add_dense_layer(self, decoder_input):
num_neurons = np.prod(self._shape_before_bottleneck) # [1, 2, 4] -> 8
dense_layer = Dense(num_neurons, name="decoder_dense")(decoder_input)
return dense_layer
def _add_reshape_layer(self, dense_layer):
return Reshape(self._shape_before_bottleneck)(dense_layer)
def _add_conv_transpose_layers(self, x):
"""Add conv transpose blocks."""
# loop through all the conv layers in reverse order and stop at the
# first layer
for layer_index in reversed(range(1, self._num_conv_layers)):
x = self._add_conv_transpose_layer(layer_index, x)
return x
def _add_conv_transpose_layer(self, layer_index, x):
layer_num = self._num_conv_layers - layer_index
conv_transpose_layer = Conv2DTranspose(
filters=self.conv_filters[layer_index],
kernel_size=self.conv_kernels[layer_index],
strides=self.conv_strides[layer_index],
padding="same",
name=f"decoder_conv_transpose_layer_{layer_num}"
)
x = conv_transpose_layer(x)
x = ReLU(name=f"decoder_relu_{layer_num}")(x)
x = BatchNormalization(name=f"decoder_bn_{layer_num}")(x)
return x
def _add_decoder_output(self, x):
conv_transpose_layer = Conv2DTranspose(
filters=1,
kernel_size=self.conv_kernels[0],
strides=self.conv_strides[0],
padding="same",
name=f"decoder_conv_transpose_layer_{self._num_conv_layers}"
)
x = conv_transpose_layer(x)
output_layer = Activation("sigmoid", name="sigmoid_layer")(x)
return output_layer
def _build_encoder(self):
encoder_input = self._add_encoder_input()
conv_layers = self._add_conv_layers(encoder_input)
bottleneck = self._add_bottleneck(conv_layers)
self._model_input = encoder_input
self.encoder = Model(encoder_input, bottleneck, name="encoder")
def _add_encoder_input(self):
return Input(shape=self.input_shape, name="encoder_input")
def _add_conv_layers(self, encoder_input):
"""Create all convolutional blocks in encoder."""
x = encoder_input
for layer_index in range(self._num_conv_layers):
x = self._add_conv_layer(layer_index, x)
return x
def _add_conv_layer(self, layer_index, x):
"""Add a convolutional block to a graph of layers, consisting of
conv 2d + ReLU + batch normalization.
"""
layer_number = layer_index + 1
conv_layer = Conv2D(
filters=self.conv_filters[layer_index],
kernel_size=self.conv_kernels[layer_index],
strides=self.conv_strides[layer_index],
padding="same",
name=f"encoder_conv_layer_{layer_number}"
)
x = conv_layer(x)
x = ReLU(name=f"encoder_relu_{layer_number}")(x)
x = BatchNormalization(name=f"encoder_bn_{layer_number}")(x)
return x
def _add_bottleneck(self, x):
"""Flatten data and add bottleneck with Guassian sampling (Dense
layer).
"""
self._shape_before_bottleneck = K.int_shape(x)[1:]
x = Flatten()(x)
self.mu = Dense(self.latent_space_dim, name="mu")(x)
self.log_variance = Dense(self.latent_space_dim,
name="log_variance")(x)
def sample_point_from_normal_distribution(args):
mu, log_variance = args
epsilon = K.random_normal(shape=K.shape(self.mu), mean=0.,
stddev=1.)
sampled_point = mu + K.exp(log_variance / 2) * epsilon
return sampled_point
x = Lambda(sample_point_from_normal_distribution,
name="encoder_output")([self.mu, self.log_variance])
return x
LEARNING_RATE = 0.0005
BATCH_SIZE = 32
EPOCHS = 100
def load_mnist():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.astype("float32") / 255
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype("float32") / 255
x_test = x_test.reshape(x_test.shape + (1,))
return x_train, y_train, x_test, y_test
def train(x_train, learning_rate, batch_size, epochs):
autoencoder = VAE(
input_shape=(28, 28, 1),
conv_filters=(32, 64, 64, 64),
conv_kernels=(3, 3, 3, 3),
conv_strides=(1, 2, 2, 1),
latent_space_dim=2
)
autoencoder.summary()
autoencoder.compile(learning_rate)
autoencoder.train(x_train, batch_size, epochs)
return autoencoder
if __name__ == "__main__":
x_train, _, _, _ = load_mnist()
autoencoder = train(x_train[:10000], LEARNING_RATE, BATCH_SIZE, EPOCHS)
autoencoder.save("model")
Maybe you forgot to call the method which should return the value the other method _from_serialized().
You did not specify your code but what the error infers is this:
# you probably passed this
my_method._from_serialized()
# instead of
my_method()._from_serialized()
Otherwise if it's an error regarding the loading of a model I found this issue on github that may help you.
To quote it:
I have the same problem in Keras version: 2.3.0 and in my case, this behaviour can be fixed by using tf.keras.models.load_model instead of direct load_model. I also change every import statement from 'keras' to 'tensorflow.keras' to avoid crash between old keras and new tensorflow.keras. hope it helps, cheers.
I have some code that I am trying to run. But I have a problem with the code. The code is from the internet page. My data is multiple sequence alignment of a specific protein. Firstly I applied one-hot encoding and then tried to put it into a variational autoencoder for training. But I failed. when I ran this code, I got the error message about ''' Input 0 of layer "encoder" is incompatible with the layer: expected shape=(None, 28, 28, 1), found shape=(None, 13, 1)''''
As I am a beginner in this field, I don't know where I made a mistake. would you please help with this issue? Or how to train it with multiple sequence alignment data?
###################################
datax = pd.DataFrame({'sequence':['ACKIENIKYKGKEVESKLGSQLIDIFNDLDRAKEEYDKLSSPEFIAKFGDWINDEVERNVNEDGEPLLIQDVRQDSSKHYFFILKNGERFDLLTR','---------TGKEVQSSLFDQILELVKDPQLAQDAYAQIRTPEFIEKFGDWINDPYESKLDDNGEPILIE-------------------------','-------PNTGKEVQSSLFDQIIELIKDPKLAQDAYEQVRTPEFIEKFGDWINDPYAAKLDDNGEPILVERD-----------------------','-------PNQGKEVESKLYNDLVNLTGSEKAADEAYEQVHHPNFLRWFGDWINNKVSNVVDENGEPLIV--------------------------','ACRIIISLNKGKEVKSKLFDSLLDLTQSEAKAEEAYKKVFSEEFINWFGDWINTPASKVVDENGEPLMVYRFTQEE-------------------','-------PNKGKEVRSKLYDDLLELTGDDNAALEAYKKVHHPNFLRWFGDWINNKVSKVVDENGEPLIVY-------------------------','-------PNKGKEVESKLYNDLVNLTGSEKAADEAYTKVHHPNFLRWFGDWMTNPSSKVVDENGEPKIV--------------------------','-------PNKGQRVDSILYNDLLSLTGNEKSADKAYTKAHTSSFLNWFGDWINTNIQDNVDQNGEPKV---------------------------','-----------------------------NLTSEQYKLVRTPEFIAWFGNWMDDPNASVIDENGEPLVCFH-GTDNSFHIF--------------','---------------------------------KQWVQVRTPAFIEWFGDWMNDPASKGVDENGEPLVVYHGTENKFTQYDFD------------','-------------------------------TPKQYKLVRTLEFKAWFGDWENDPASKVVDENGEPLVVYH--GTDSKHNVFSYEQ---------','--------------GSSLYEQYVVIIDSSNLTTEQYKLVRTPEFKKWFGDWENNPSEAVVDENGEPLVVYH------------------------','------------------------------LTPEQYKLVRTPEFKAWFGDWENNPSSKVVDDNGEPMVVY---HGSRKKAFTEFK----------']})
from sklearn.preprocessing import OneHotEncoder
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import pandas as pd
encoder = OneHotEncoder(sparse=False)
onehot = encoder.fit_transform(datax)
print(onehot)
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
latent_dim = 10
encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
encoder.summary()
latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
decoder.summary()
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = keras.metrics.Mean(
name="reconstruction_loss"
)
self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")
#property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
]
def train_step(self, data):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
keras.losses.binary_crossentropy(datax, reconstruction), axis=(1, 2)
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
data_digits = np.concatenate([train, test], axis=0)
data_digits = np.expand_dims(data_digits, -1).astype("float32") / 255
vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam())
vae.fit(mnist_digits, epochs=1, batch_size=128)
##########################################
I am trying to run a Variational AutoEncoder and I used the code in Keras.io, but it produces the following error and I do not know why this error is shown! the code is in link : https://keras.io/examples/generative/vae/ and I could not put the code here because it said the question is code, so I put the link here. I use python 3.7.
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
latent_dim = 2
encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
encoder.summary()
latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
decoder.summary()
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = keras.metrics.Mean(
name="reconstruction_loss"
)
self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")
#property
def metrics(self):
return [
self.total_loss_tracker,
self.reconstruction_loss_tracker,
self.kl_loss_tracker,
]
def train_step(self, data):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
tf.reduce_sum(
keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2)
)
)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
mnist_digits = np.concatenate([x_train, x_test], axis=0)
mnist_digits = np.expand_dims(mnist_digits, -1).astype("float32") / 255
vae = VAE(encoder, decoder)
the error is :
Traceback (most recent call last):
File "<ipython-input-8-94ab36f0ba4a>", line 46, in <module>
vae = VAE(encoder, decoder)
File "<ipython-input-8-94ab36f0ba4a>", line 6, in __init__
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
AttributeError: module 'tensorflow._api.v1.keras.metrics' has no attribute 'Mean'
I changed it to mean, but it produced another error.
This Model is a variety of CNN and uses Causal Dilational Convolution Layer.
I can train and predict with 0 error, but when I use model.save() to save model, it throws Exception.
So I use save_weights and load_weights to save and load model.
I wonder why this error appears:
model.save("path")
out:
ValueError: Dimension size must be evenly divisible by 2 but is 745 for '{{node conv1d_5/SpaceToBatchND}} = SpaceToBatchND[T=DT_FLOAT, Tblock_shape=DT_INT32, Tpaddings=DT_INT32](conv1d_5/Pad, conv1d_5/SpaceToBatchND/block_shape, conv1d_5/SpaceToBatchND/paddings)' with input shapes: [?,745,32], [1], [1,2] and with computed input tensors: input[1] = <2>, input[2] = <[0 0]>.
Input shape is (None,743,27)
Output shape is (None,24,1)
def slice(x, seq_length):
return x[:, -seq_length:, :]
class ResidualBlock(tf.keras.layers.Layer):
def __init__(self, n_filters, filter_width, dilation_rate):
super(ResidualBlock, self).__init__()
self.n_filters = n_filters
self.filter_width = filter_width
self.dilation_rate = dilation_rate
# preprocessing - equivalent to time-distributed dense
self.x = Conv1D(32, 1, padding='same', activation='relu')
# filter convolution
self.x_f = Conv1D(filters=n_filters,
kernel_size=filter_width,
padding='causal',
dilation_rate=dilation_rate,
activation='tanh')
# gating convolution
self.x_g = Conv1D(filters=n_filters,
kernel_size=filter_width,
padding='causal',
dilation_rate=dilation_rate,
activation='sigmoid')
# postprocessing - equivalent to time-distributed dense
self.z_p = Conv1D(32, 1, padding='same', activation='relu')
def call(self, inputs):
x = self.x(inputs)
f = self.x_f(x)
g = self.x_g(x)
z = tf.multiply(f, g)
z = self.z_p(z)
return tf.add(x, z), z
def get_config(self):
config = super(ResidualBlock, self).get_config()
config.update({"n_filters": self.n_filters,
"filter_width": self.filter_width,
"dilation_rate": self.dilation_rate})
return config
class WaveNet(tf.keras.Model):
def __init__(self, n_filters=32, filter_width=2, dilation_rates=None, drop_out=0.2, pred_length=24):
super().__init__(name='WaveNet')
# Layer Parameter
self.n_filters = n_filters
self.filter_width = filter_width
self.drop_out = drop_out
self.pred_length = pred_length
if dilation_rates is None:
self.dilation_rates = [2 ** i for i in range(8)]
else:
self.dilation_rates = dilation_rates
# Layer
self.residual_stacks = []
for dilation_rate in self.dilation_rates:
self.residual_stacks.append(ResidualBlock(self.n_filters, self.filter_width, dilation_rate))
# self.add = Add()
self.cut = Lambda(slice, arguments={'seq_length': pred_length})
self.conv_1 = Conv1D(128, 1, padding='same')
self.relu = Activation('relu')
self.drop = Dropout(drop_out)
self.skip = Lambda(lambda x: x[:, -2 * pred_length + 1:-pred_length + 1, :1])
self.conv_2 = Conv1D(1, 1, padding='same')
def _unroll(self, inputs, **kwargs):
outputs = inputs
skips = []
for residual_block in self.residual_stacks:
outputs, z = residual_block(outputs)
skips.append(z)
outputs = self.relu(Add()(skips))
outputs = self.cut(outputs)
outputs = self.conv_1(outputs)
outputs = self.relu(outputs)
outputs = self.drop(outputs)
outputs = Concatenate()([outputs, self.skip(inputs)])
outputs = self.conv_2(outputs)
outputs = self.cut(outputs)
return outputs
def _get_output(self, input_tensor):
pass
def call(self, inputs, training=False, **kwargs):
if training:
return self._unroll(inputs)
else:
return self._get_output(inputs)
Train step
model = WaveNet()
model.compile(Adam(), loss=loss)
# ok
history = model.fit(train_x, train_y,
batch_size=batch_size,
epochs=epochs,
callbacks=[cp_callback] if save else None)
# ok
result = model.predict(test_x)
# error
model.save("path")
In the code here below the vector rand is initialized when I call the first time the function create_model().
def create_model(num_columns):
inp_layer = tfl.Input((num_columns,))
rand = tf.random.uniform((1,num_columns), minval = 0, maxval = 2, dtype = tf.int32), tf.float32))
inp_rand = tfl.Multiply()([inp_layer, rand])
dense = tfl.Dense(256, activation = 'relu')(inp_rand)
dense = tfl.Dense(128, activation = 'relu')(dense)
dense = tfl.Dense(64, activation = 'sigmoid')(dense)
model = tf.keras.Model(inputs = inp_layer, outputs = dense)
model.compile(optimizer = 'adam', loss = 'binary_crossentropy')
model = create_model(num_columns)
model.fit()
I would like it to be regenerated with new random values every time I call the function model.fit(), or even better, at any batch during the execution of model.fit().
Would you know how I can do this?
You can change what happens in the call() method of a subclassed Keras model.
def call(self, x, training=None, **kwargs):
rand = tf.cast(tf.random.uniform((1, *x.shape[1:]), 0, 2, tf.int32), tf.float32)
x = tf.multiply(x, rand)
x = self.conv1(x)
x = self.maxp1(x)
x = self.conv2(x)
x = self.maxp2(x)
x = self.flatt(x)
x = self.dens1(x)
x = self.drop1(x)
x = self.dens2(x)
return x
Here I did it using the MNIST, where I multipled the input tensor with a random tensor of the same shape:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow import keras as K
from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout
from tensorflow import nn as nn
from functools import partial
dataset, info = tfds.load('mnist', with_info=True)
train, test = dataset['train'], dataset['test']
def prepare(dataset):
inputs = tf.divide(x=dataset['image'], y=255)
targets = tf.one_hot(indices=dataset['label'], depth=10)
return inputs, targets
train = train.take(5_000).batch(4).map(prepare)
test = test.take(1_000).batch(4).map(prepare)
class MyCNN(K.Model):
def __init__(self):
super(MyCNN, self).__init__()
Conv = partial(Conv2D, kernel_size=(3, 3), activation=nn.relu)
MaxPool = partial(MaxPooling2D, pool_size=(2, 2))
self.conv1 = Conv(filters=8)
self.maxp1 = MaxPool()
self.conv2 = Conv(filters=16)
self.maxp2 = MaxPool()
self.flatt = Flatten()
self.dens1 = Dense(64, activation=nn.relu)
self.drop1 = Dropout(.5)
self.dens2 = Dense(10, activation=nn.softmax)
def call(self, x, training=None, **kwargs):
rand = tf.cast(tf.random.uniform((1, *x.shape[1:]), 0, 2, tf.int32), tf.float32)
x = tf.multiply(x, rand)
x = self.conv1(x)
x = self.maxp1(x)
x = self.conv2(x)
x = self.maxp2(x)
x = self.flatt(x)
x = self.dens1(x)
x = self.drop1(x)
x = self.dens2(x)
return x
model = MyCNN()
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(train, validation_data=test, epochs=10,
steps_per_epoch=1250, validation_steps=250)
What I was trying to implement is actually the Dropout layer. So no point in searching further.