How observe the drawing of line with the given coordinates - python

I have the code, where it draws the line over the image, but here I can see directly the result.
How can I change the code in order to observe how the line is drawing.
import cv2
path = r'test.jpeg'
image = cv2.imread(path)
window_name = 'Image'
start_point = (0, 0)
end_point = (250, 250)
color = (0, 255, 0)
thickness = 9
image = cv2.line(image, start_point, end_point, color, thickness)
cv2.imshow(window_name, image)
cv2.waitKey()

Try this for example. I did not add image. You can suit yourself.
import cv2
import numpy as np
import time
Frame_out = np.zeros((500, 640, 3),np.uint8)
a = 1
while a < 255:
cv2.line(Frame_out,(0,0),(a*2,a*2),(0,0,255-a),9)
time.sleep(0.05)
cv2.imshow('Animation', Frame_out)
cv2.line(Frame_out,(0,0),(a*2,a*2),(0,0,0),9)
a += 2
if(a > 254):
a = 1
k = cv2.waitKey(10)
if k == 27:
break
cv2.destroyAllWindows()

Related

CNN computer vision with Keras and open CV

I'm trying to live to detect a label in a bottle, I already have my model and weights that are working fine with images but the problem comes when I try to live to detect the label using opencv cv2.read() it won't detect correctly.
So what I have noticed is when I use load_img from Keras it work well but when I use cv2.read() does not work well. So is there a way to process live images with Keras instead of using cv2.read()?
This code below does not work well:
while True:
success, img = cap.read()
rect = cv2.rectangle(img, start_point, end_point, color, thickness)
cropImg = img[yMin:yMax,xMin:xMax] # this is all there is to cropping
cv2.imshow("Original", rect)
cv2.imshow("Cropped", cropImg)
x = cv2.resize(cropImg, (altura, longitud))
x = img_to_array(x)
x = np.expand_dims(x, axis = 0)
val = cnn.predict(x)
#resultado = arreglo[0]
#respuesta = np.argmax(resultado)
if val == 0:
color = (46, 242, 79)
else:
color = (255, 0, 0)
print(val)
And this following code works well but is not working live:
while True:
success, img = cap.read()
rect = cv2.rectangle(img, start_point, end_point, color, thickness)
cropImg = img[yMin:yMax,xMin:xMax] # this is all there is to cropping
cv2.imshow("Original", rect)
cv2.imshow("Cropped", cropImg)
if cv2.waitKey(1) & 0xFF == ord('t'):
photo = cap.read()
#cropImg2 = photo[yMin:yMax,xMin:xMax]
cv2.imwrite("pic.png", cropImg)
x = load_img("pic.png", target_size = (longitud, altura))
#x = cv2.resize(cropImg, (altura, longitud))
x = img_to_array(x)
x = np.expand_dims(x, axis = 0)
val = cnn.predict(x)
#resultado = arreglo[0]
#respuesta = np.argmax(resultado)
if val == 0:
color = (46, 242, 79)
else:
color = (255, 0, 0)
print(val)

better way to find bullet holes in a target

Hi I'm making a project about detecting bullet holes in target circles. My original idea was to use Hough circle algorithms to detect both targets which works quite alright for photos that are straight in front of it and bullet holes that are not as good. Sooo I was wandering if anyone could tip me with some better solution on finding them or helping me improve this code.
import cv2 as cv
import numpy as np
import math
import sys
from PIL import Image
import matplotlib.pyplot as plt
MAX_POINTS = 10
def main(argv):
default_file = 'tarczamala.jpg'
default_size = 600, 600
im = Image.open(default_file)
im = im.resize(default_size, Image.ANTIALIAS)
im.save('600' + default_file)
filename = argv[0] if len(argv) > 0 else '600' + default_file
# Loads an image
src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: hough_circle.py [image_name -- default ' + default_file + '] \n')
return -1
# skala szarości
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
cv.imshow('gray', gray)
# Bilateral
bilateral = cv.bilateralFilter(gray, 7, 15, 10)
cv.imshow('bilateral', bilateral)
blank = np.zeros(bilateral.shape[:2], dtype='uint8')
cv.imshow('blank', blank)
# mask = cv.circle(blank, (bilateral.shape[1] // 2, bilateral.shape[0] // 2), 320, 255, -1)
# cv.imshow('Mask', mask)
#
# masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
# cv.imshow('masked', masked)
# Edge Cascade
canny = cv.Canny(bilateral, 50, 175)
cv.imshow('canny1', canny)
# ret, tresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY)
# cv.imshow('tresch', tresh)
contours, hierarchies = cv.findContours(canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
print(f'{len(contours)} contour(s) found')
# cv.drawContours(blank, contours, -1, (255,0,0), 1)
# cv.imshow('contours drawn', blank)
rows = canny.shape[0]
# Target
circles = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 0.01,
param1=100, param2=50,
minRadius=7, maxRadius=300)
# print(f'{circles}"')
biggestCircle = findBiggestCircle(circles)
# print(f'{biggestCircle} biggest circle')
mask = cv.circle(blank, (math.floor(biggestCircle[0]), math.floor(biggestCircle[1])), math.floor(biggestCircle[2]), 255, -1)
cv.imshow('rysowanie granicy', mask)
masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
cv.imshow('granice', masked)
# Edge Cascade
canny = cv.Canny(masked, 50, 175)
cv.imshow('canny2', canny)
if biggestCircle is not None:
circles = np.uint16(np.around(circles))
# print(f'{biggestCircle} biggest circle')
delta_r = biggestCircle[2] / 10
biggest_circle_center = [biggestCircle[0], biggestCircle[1]]
center = (math.floor(biggestCircle[0]), math.floor(biggestCircle[1]))
# print(f'{center} center')
# circle center
cv.circle(src, center, 1, (255, 0, 0), 3)
# circle outline
radius = math.floor(biggestCircle[2])
cv.circle(src, center, radius, (0, 0, 255), 3)
# bullet holes
hits = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 10,
param1=300, param2=10,
minRadius=7, maxRadius=10)
# print(f'{hits}"')
score = countHitScore(hits.tolist(), delta_r, biggest_circle_center)
print(f'The score is: {score}"')
if hits is not None:
hits = np.uint16(np.around(hits))
for i in hits[0, :]:
# print(f'promien trafienia {i[2]}"')
center = (i[0], i[1])
# circle center
cv.circle(src, center, 1, (0, 100, 100), 3)
# circle outline
radius = i[2]
cv.circle(src, center, radius, (255, 0, 255), 3)
cv.imshow("detected circles", src)
cv.waitKey(0)
return 0
def findBiggestCircle(circles):
# print(f'{circles}')
listOfCircles = circles[0]
biggestCircle = listOfCircles[0]
for circle in listOfCircles:
# print(f'{circle} circle')
# print(f'2 {circle}')
# print(f'3 {biggestCircle}')
if circle[2] > biggestCircle[2]:
# print('4')
biggestCircle = circle
print(biggestCircle)
return biggestCircle.tolist()
def countHitScore(hits, delta_r, target_center):
score = 0
print(f'{hits} hits')
for hit in hits[0]:
# print(f'{hit} hit')
# print(f'{(target_center)} center')
x_dist = hit[0] - target_center[0] if hit[0] > target_center[0] else target_center[0] - hit[0]
y_dist = hit[1] - target_center[1] if hit[1] > target_center[1] else target_center[1] - hit[1]
total_dist = math.hypot(x_dist, y_dist) - hit[2]
punkty = math.ceil(total_dist / delta_r)
if punkty < 1:
punkty = 1
score += 11 - punkty
# print(f'{total_dist / delta_r} math')
# print(f'{total_dist / delta_r} total_dist / delta_r')
print(f'{11 - punkty} zdobyte punkty')
# print(f'{x_dist} x {y_dist} y')
return score
if __name__ == "__main__":
main(sys.argv[1:])

NameError: name 'face_frame' is not defined

This code has been taken from github.I have installed all the Dependencies.
What could be the possible fix for this issue?
If I try to run this project I get these errors
Traceback (most recent call last):
File "c:\Project\Drowsiness-Detection-System-for-Drivers\driver_drowsiness.py", line 102, in <module>
cv2.imshow("Result of detector", face_frame)
NameError: name 'face_frame' is not defined
[ WARN:0#19.631] global D:\a\opencv-python\opencv-python\opencv\modules\videoio\src\cap_msmf.cpp (539) `anonymous-namespace'::SourceReaderCB::~SourceReaderCB terminating async callback
# Importing OpenCV Library for basic image processing functions
import cv2
# Numpy for array related functions
import numpy as np
# Dlib for deep learning based Modules and face landmark detection
import dlib
# face_utils for basic operations of conversion
from imutils import face_utils
# Initializing the camera and taking the instance
cap = cv2.VideoCapture(0)
# Initializing the face detector and landmark detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# status marking for current state
sleep = 0
drowsy = 0
active = 0
status = ""
color = (0, 0, 0)
def compute(ptA, ptB):
dist = np.linalg.norm(ptA - ptB)
return dist
def blinked(a, b, c, d, e, f):
up = compute(b, d) + compute(c, e)
down = compute(a, f)
ratio = up/(2.0*down)
# Checking if it is blinked
if(ratio > 0.25):
return 2
elif(ratio > 0.21 and ratio <= 0.25):
return 1
else:
return 0
while True:
_, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(gray)
# detected face in faces array
for face in faces:
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
face_frame = frame.copy()
cv2.rectangle(face_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
landmarks = predictor(gray, face)
landmarks = face_utils.shape_to_np(landmarks)
# The numbers are actually the landmarks which will show eye
left_blink = blinked(landmarks[36], landmarks[37],
landmarks[38], landmarks[41], landmarks[40], landmarks[39])
right_blink = blinked(landmarks[42], landmarks[43],
landmarks[44], landmarks[47], landmarks[46], landmarks[45])
# Now judge what to do for the eye blinks
if(left_blink == 0 or right_blink == 0):
sleep += 1
drowsy = 0
active = 0
if(sleep > 6):
status = "SLEEPING !!!"
color = (255, 0, 0)
elif(left_blink == 1 or right_blink == 1):
sleep = 0
active = 0
drowsy += 1
if(drowsy > 6):
status = "Drowsy !"
color = (0, 0, 255)
else:
drowsy = 0
sleep = 0
active += 1
if(active > 6):
status = "Active :)"
color = (0, 255, 0)
cv2.putText(frame, status, (100, 100),
cv2.FONT_HERSHEY_SIMPLEX, 1.2, color, 3)
for n in range(0, 68):
(x, y) = landmarks[n]
cv2.circle(face_frame, (x, y), 1, (255, 255, 255), -1)
cv2.imshow("Frame", frame)
cv2.imshow("Result of detector", face_frame)
key = cv2.waitKey(1)
if key == 27:
break
There is an issue in the module itself for face_frame variable usage, which is already reported in the github
reported issue for face_frame
Working Code:-
# Importing OpenCV Library for basic image processing functions
import cv2
# Numpy for array related functions
import numpy as np
# Dlib for deep learning based Modules and face landmark detection
import dlib
# face_utils for basic operations of conversion
from imutils import face_utils
# Initializing the camera and taking the instance
cap = cv2.VideoCapture(0)
# Initializing the face detector and landmark detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# status marking for current state
sleep = 0
drowsy = 0
active = 0
status = ""
color = (0, 0, 0)
def compute(ptA, ptB):
dist = np.linalg.norm(ptA - ptB)
return dist
def blinked(a, b, c, d, e, f):
up = compute(b, d) + compute(c, e)
down = compute(a, f)
ratio = up/(2.0*down)
# Checking if it is blinked
if(ratio > 0.25):
return 2
elif(ratio > 0.21 and ratio <= 0.25):
return 1
else:
return 0
while True:
_, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(gray)
face_frame = frame.copy()
# detected face in faces array
for face in faces:
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
cv2.rectangle(face_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
landmarks = predictor(gray, face)
landmarks = face_utils.shape_to_np(landmarks)
# The numbers are actually the landmarks which will show eye
left_blink = blinked(landmarks[36], landmarks[37],
landmarks[38], landmarks[41], landmarks[40], landmarks[39])
right_blink = blinked(landmarks[42], landmarks[43],
landmarks[44], landmarks[47], landmarks[46], landmarks[45])
# Now judge what to do for the eye blinks
if(left_blink == 0 or right_blink == 0):
sleep += 1
drowsy = 0
active = 0
if(sleep > 6):
status = "SLEEPING !!!"
color = (255, 0, 0)
elif(left_blink == 1 or right_blink == 1):
sleep = 0
active = 0
drowsy += 1
if(drowsy > 6):
status = "Drowsy !"
color = (0, 0, 255)
else:
drowsy = 0
sleep = 0
active += 1
if(active > 6):
status = "Active :)"
color = (0, 255, 0)
cv2.putText(frame, status, (100, 100),
cv2.FONT_HERSHEY_SIMPLEX, 1.2, color, 3)
for n in range(0, 68):
(x, y) = landmarks[n]
cv2.circle(face_frame, (x, y), 1, (255, 255, 255), -1)
cv2.imshow("Frame", frame)
cv2.imshow("Result of detector", face_frame)
key = cv2.waitKey(1)
if key == 27:
break

How To Draw a Triangle-Arrow With The Positions of Detected Objects

I am making a object detection project.
I have my code. And I have written it by following a tutorial. In the tutorial, the guy drew a rectangle in opencv for every single object which is detected.
But I want to change the rectangle to triangle or Arrow.
let me explain with code===>
In my function, I detect objects.
And here I draw rectangle for detected objects==>
cv2.rectangle(img, (x, y), (x+w,y+h), (255, 0 , 255), 2)
But I want to change this rectangle to a triangle.(And I want to set position of triangle to above of object.
Just like in these images:::
This is the object detection with triangle
[![enter image description here][1]][1]
This is the thing that what I want to make instead of rectangle:::
[![enter image description here][2]][2]
How Can I make a triangle/arrow with positions of my detected objects?
All of my code is here==>
from os.path import sep
import cv2 as cv2
import numpy as np
import json
# Camera feed
cap_cam = cv2.VideoCapture(0)
ret, frame_cam = cap_cam.read()
hey = 0
print(cv2. __version__)
whT = 320
confThreshold =0.5
nmsThreshold= 0.2
classesFile = "coco.names"
classNames = []
with open(classesFile, 'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
print(classNames)
## Model Files
modelConfiguration = "custom-yolov4-tiny-detector.cfg"
modelWeights = "custom-yolov4-tiny-detector_last.weights"
net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
def findObjects(outputs,img):
global hey
global previousHey
hT, wT, cT = img.shape
bbox = []
classIds = []
confs = []
for output in outputs:
for det in output:
scores = det[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
w,h = int(det[2]*wT) , int(det[3]*hT)
x,y = int((det[0]*wT)-w/2) , int((det[1]*hT)-h/2)
bbox.append([x,y,w,h])
classIds.append(classId)
confs.append(float(confidence))
global indicates
indices = cv2.dnn.NMSBoxes(bbox, confs, confThreshold, nmsThreshold)
hey = 0
for i in indices:
i = i[0]
box = bbox[i]
x, y, w, h = box[0], box[1], box[2], box[3]
# print(x,y,w,h)
cv2.rectangle(img, (x, y), (x+w,y+h), (255, 0 , 255), 2)
#cv2.line(img, (350,400), (x, y), (255,0,0), 4)
#cv2.line(img, (400,400), (x + 50 , y), (255,0,0), 4)
#cv.putText(img,f'{classNames[classIds[i]].upper()} {int(confs[i]*100)}%',
#(x, y-10), cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 255), 2)
print('success')
hey = 1
video_frame_counter = 0
while cap_cam.isOpened():
img = cv2.imread('photos' + sep + 'lutfen.jpg')
#BURADA OK VİDEOSU OYNATILACAK
#if not decetiona diye dene yarın.
blob = cv2.dnn.blobFromImage(img, 1 / 255, (whT, whT), [0, 0, 0], 1, crop=False)
net.setInput(blob)
layersNames = net.getLayerNames()
outputNames = [(layersNames[i[0] - 1]) for i in net.getUnconnectedOutLayers()]
outputs = net.forward(outputNames)
findObjects(outputs,img)
cv2.imshow('Image', img)
# Video feed
if hey == 1:
filename = 'photos' + sep + 'Baslksz-3.mp4'
cap_vid = cv2.VideoCapture(filename)
if hey == 0:
filename = 'photos' + sep + 'vid2.mp4'
cap_vid = cv2.VideoCapture(filename)
print(hey)
ret, frame_vid = cap_vid.read()
#cap_cam.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
#cap_cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
# Resize the camera frame to the size of the video
height = int(cap_vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap_vid.get(cv2.CAP_PROP_FRAME_WIDTH))
# Capture the next frame from camera
ret, frame_cam = cap_cam.read()
video_frame_counter += 1
if video_frame_counter == cap_vid.get(cv2.CAP_PROP_FRAME_COUNT):
video_frame_counter = 0
cap_vid.set(cv2.CAP_PROP_POS_FRAMES, 0)
frame_cam = cv2.resize(frame_cam, (width, height), interpolation = cv2.INTER_AREA)
#ret = cap_vid.set(cv2.CAP_PROP_POS_MSEC, time_passed)
ret, frame_vid = cap_vid.read()
if not ret:
print('Cannot read from video stream')
break
# Blend the two images and show the result
tr = 0.4 # transparency between 0-1, show camera if 0
frame = ((1-tr) * frame_cam.astype(np.float) + tr * frame_vid.astype(np.float)).astype(np.uint8)
cv2.imshow('Transparent result', frame)
if cv2.waitKey(1) == 27: # ESC is pressed
break
cap_cam.release()
cap_vid.release()
cv2.destroyAllWindows()
The easy way
You can use the cv.arrowedLine() function that will draw something similar to what you want. For example, to draw a red arrow above your rectangle:
center_x = x + w//2
cv2.arrowedLine(img, (center_x, y-50), (center_x, y-5), (0,0,255), 2, 8, 0, 0.5)
which should give a result similar to the image below. Take a look at the OpenCV documentation for the description of the parameters of the function. You can change its size, thickness, color, etc.
Custom arrow shape
If you want more control over the shape of your arrow, you can define a contour (vertex by vertex) and use cv.drawContours() to render it. For example:
# define the arrow shape
shape = np.array([[[0,0],[-25,-25],[-10,-25],[-10,-50],
[10,-50],[10,-25],[25,-25]]])
# move it to the desired position
cx = x + w // 2
cy = y - 5
shape[:,:,0] += cx
shape[:,:,1] += cy
# draw it
cv2.drawContours(img, shape, -1, (0, 255, 0), -1)
This snippet will give you the image below. You can adjust the shape by altering the vertices in the shape array, or look at the documentation to change the way OpenCV draws it.

plt.imsave saves image incorrectly

I am trying to generate the CLEVR dataset with some random images of rectangles and circle. When I am debugging the code for every plt.imshow() statement I can see a new image with the shape generated alongwith the shapes generated in the last executed loops. Although, to my surprise everytime the 5th image generated never shows during the debugging mode.
Also when I save the images locally I see only two objects. Please find the images for reference purposes.
import matplotlib.pyplot as plt
import cv2
import numpy as np
colors = [
(0, 0, 255), # r
(0, 255, 0), # g
(255, 0, 0), # b
(0, 156, 255), # o
(128, 128, 128), # k
(0, 255, 255) # y
]
img_size = 75
size = 5
def center_generate(objects):
while True:
pas = True
center = np.random.randint(0+size, img_size - size, 2)
if len(objects) > 0:
for name, c, shape in objects:
"""this condition checks if the new object generated is not completely covered by the already
generated objects"""
if ((center - c) ** 2).sum() < ((size * 2) ** 2):
pas = False
if pas:
return center
def build_dataset(dataset_type, loopnumber):
objects = []
img = np.ones((img_size, img_size, 3)) * 255
for color_id, color in enumerate(colors):
center = center_generate(objects)
if random.random() < 0.5:
start = (center[0]-size, center[1]-size)
end = (center[0]+size, center[1]+size)
img = cv2.rectangle(img, start, end, color, -1)
plt.imshow(img)
objects.append((color_id, center, 'r'))
else:
center_ = (center[0], center[1])
img = cv2.circle(img, center_, size, color, -1)
plt.imshow(img)
objects.append((color_id, center, 'c'))
if dataset_type == 'test':
plt.imsave('..\\img\\test\\img_' + str(loop) + '.jpeg', img)
else:
plt.imsave('..\\img\\train\\img_' + str(loop) + '.jpeg', img)
The image generated during debugging.
Image stored locally.
Could anyone explain the issue here?
Thanks
To save the image use cv2.imwrite():
cv2.imwrite('..\\img\\train\\img_' + str(loop) + '.jpeg', img)
Also to correctly save it with plt.imsave, you need to divide by 255:
plt.imsave('..\\img\\train\\img_' + str(loop) + '.jpeg', img/255.0)
or convert them to 'uint8':
img = img.astype('uint8')
plt.imsave('..\\img\\train\\img_' + str(loop) + '.jpeg', img)

Categories

Resources